

SUBSTANCE EVALUATION CONCLUSION

as required by REACH Article 48

and

EVALUATION REPORT

for

CYCLOHEXYLAMINE

EC No 203-629-0 CAS No 108-91-8

Evaluating Member State(s): Belgium

Dated: 20 September 2017

Evaluating Member State Competent Authority

Belgian Federal Public Service Health, Food Chain Safety and Environment Risk Management service

Adress : Eurostation Victor Horta plein 40/10 1060 Brussels Belgium Tel: / Fax: + 32 2 524 96 03

Email: evaluation.reach@environment.belgium.be

Year of evaluation in CoRAP: 2016

Member State concluded the evaluation without any further need to ask more information from the registrants under Article 46(1) decision.

Further information on registered substances here:

http://echa.europa.eu/web/guest/information-on-chemicals/registered-substances

DISCLAIMER

This document has been prepared by the evaluating Member State as a part of the substance evaluation process under the REACH Regulation (EC) No 1907/2006. The information and views set out in this document are those of the author and do not necessarily reflect the position or opinion of the European Chemicals Agency or other Member States. The Agency does not guarantee the accuracy of the information included in the document. Neither the Agency nor the evaluating Member State nor any person acting on either of their behalves may be held liable for the use which may be made of the information contained therein. Statements made or information contained in the document are without prejudice to any further regulatory work that the Agency or Member States may initiate at a later stage.

Foreword

Substance evaluation is an evaluation process under REACH Regulation (EC) No. 1907/2006. Under this process the Member States perform the evaluation and ECHA secretariat coordinates the work. The Community rolling action plan (CoRAP) of substances subject to evaluation, is updated and published annually on the ECHA web site¹.

Substance evaluation is a concern driven process, which aims to clarify whether a substance constitutes a risk to human health or the environment. Member States evaluate assigned substances in the CoRAP with the objective to clarify the potential concern and, if necessary, to request further information from the registrant(s) concerning the substance. If the evaluating Member State concludes that no further information needs to be requested, the substance evaluation is completed. If additional information is required, this is sought by the evaluating Member State. The evaluating Member State then draws conclusions on how to use the existing and obtained information for the safe use of the substance.

This Conclusion document, as required by Article 48 of the REACH Regulation, provides the final outcome of the Substance Evaluation carried out by the evaluating Member State. The document consists of two parts i.e. A) the conclusion and B) the evaluation report. In the conclusion part A, the evaluating Member State considers how the information on the substance can be used for the purposes of regulatory risk management such as identification of substances of very high concern (SVHC), restriction and/or classification and labelling. In the evaluation report part B the document provides explanation how the evaluating Member State assessed and drew the conclusions from the information available.

With this Conclusion document the substance evaluation process is finished and the Commission, the Registrant(s) of the substance and the Competent Authorities of the other Member States are informed of the considerations of the evaluating Member State. In case the evaluating Member State proposes further regulatory risk management measures, this document shall not be considered initiating those other measures or processes. Further analyses may need to be performed which may change the proposed regulatory measures in this document. Since this document only reflects the views of the evaluating Member State, it does not preclude other Member States or the European Commission from initiating regulatory risk management measures which they deem appropriate.

¹ <u>http://echa.europa.eu/regulations/reach/evaluation/substance-evaluation/community-rolling-action-plan</u>

Contents

Part A. Conclusion 7
1. CONCERN(S) SUBJECT TO EVALUATION7
2. OVERVIEW OF OTHER PROCESSES / EU LEGISLATION
3. CONCLUSION OF SUBSTANCE EVALUATION
4. FOLLOW-UP AT EU LEVEL
4.1. Need for follow-up regulatory action at EU level7
4.1.1. Harmonised Classification and Labelling
4.1.2. Identification as a substance of very high concern, SVHC (first step towards authorisation)7
4.1.3. Restriction
4.1.4. Other EU-wide regulatory risk management measures8
5. CURRENTLY NO FOLLOW-UP FORESEEN AT EU LEVEL
5.1. No need for regulatory follow-up at EU level
5.2. Other actions
6. TENTATIVE PLAN FOR FOLLOW-UP ACTIONS (IF NECESSARY)
Part B. Substance evaluation9
7. EVALUATION REPORT
7.1. Overview of the substance evaluation performed9
7.2. Procedure
7.3. Identity of the substance
7.4. Physico-chemical properties11
7.5. Manufacture and uses13
7.5.1. Quantities
7.5.2. Overview of uses
7.6. Classification and Labelling14
7.6.1. Harmonised Classification (Annex VI of CLP)14
7.6.2. Self-classification
7.7. Environmental fate properties14
7.7.1. Degradation
7.7.2. Environmental distribution15
7.7.3. Bioaccumulation
7.8. Environmental hazard assessment16
7.8.1. Aquatic compartment (including sediment)16
7.8.2. Terrestrial compartment
7.8.3. Microbiological activity in sewage treatment systems17
7.8.4. PNEC derivation and other hazard conclusions17
7.8.5. Conclusions for classification and labelling18
7.9. Human Health hazard assessment
7.9.1. Toxicokinetics
7.9.2. Acute toxicity and Corrosion/Irritation
7.9.3. Sensitisation

7.9.4. Repeated dose toxicity
7.9.5. Mutagenicity
7.9.6. Carcinogenicity
7.9.7. Toxicity to reproduction (effects on fertility and developmental toxicity)40
7.9.8. Hazard assessment of physico-chemical properties49
7.9.9. Selection of the critical DNEL(s)/DMEL(s) and/or qualitative/semi-quantitative descriptors for critical health effects
7.9.10. Conclusions of the human health hazard assessment and related classification and labelling49
7.10. Assessment of endocrine disrupting (ED) properties49
7.10.1. Endocrine disruption – Environment
7.10.2. Endocrine disruption - Human health49
7.10.3. Conclusion on endocrine disrupting properties (combined/separate)
7.11. PBT and VPVB assessment49
7.12. Exposure assessment
7.12.1. Human health
7.12.2. Environment
7.13. Risk characterisation
7.13.1. Human health
7.13.2. Environment
7.14. References
7.15. Abbreviations

Part A. Conclusion

1. CONCERN(S) SUBJECT TO EVALUATION

Cyclohexylamine was originally selected for substance evaluation in order to clarify concerns about:

- Toxicity for reproduction
- Exposure of environment
- High aggregated tonnage

During the evaluation no other concerns were identified.

2. OVERVIEW OF OTHER PROCESSES / EU LEGISLATION

NA

3. CONCLUSION OF SUBSTANCE EVALUATION

The evaluation of the available information on the substance has led the evaluating Member State to the following conclusions, as summarised in the table below.

Table 1

CONCLUSION OF SUBSTANCE EVALUATION	
Conclusions	Tick box
Need for follow-up regulatory action at EU level	
Harmonised Classification and Labelling	
Identification as SVHC (authorisation)	
Restrictions	
Other EU-wide measures	
No need for regulatory follow-up action at EU level	Х

4. FOLLOW-UP AT EU LEVEL

4.1. Need for follow-up regulatory action at EU level

4.1.1. Harmonised Classification and Labelling

4.1.2. Identification as a substance of very high concern, SVHC (first step towards authorisation)

NA

4.1.3. Restriction

4.1.4. Other EU-wide regulatory risk management measures NA

5. CURRENTLY NO FOLLOW-UP FORESEEN AT EU LEVEL

5.1. No need for regulatory follow-up at EU level

Table 2

REASON FOR REMOVED CONCERN	
The concern could be removed because	Tick box
Clarification of hazard properties/exposure	х
Actions by the registrants to ensure safety, as reflected in the registration dossiers(e.g. change in supported uses, applied risk management measures, etc.)	

After evaluation of all available information, no concern was identified for reproductive toxicity justifying the request for further information under the substance evaluation process or regulatory action, despite the fact that the registration dossier only contained an old 6-generation study of which the eMSCA couldn't clearly identify the reliability compared to the EORGTS endpoints.

Indeed, based on the currently available information the substance has a harmonized classification as Repr. Cat. 2, H361f, and since then no new data have become available. The substance is only used in industrial settings and is also classified as Skin Corrosive 1B, H314. In addition to this, the substance has a fishy odour, so exposure to the substance at the workplace will not be unremarked and protective measures can be expected to be in place.

Based on all this information taken together in a weight of evidence approach, the eMSCA concludes that despite the questions that can be raised about the reliability of the available long term reproductive toxicity test, currently there is no concern that arises from the uses of the substance as explained above that would merit further action.

5.2. Other actions

N/A

6. TENTATIVE PLAN FOR FOLLOW-UP ACTIONS (IF NECESSARY)

N/A

Part B. Substance evaluation

7. EVALUATION REPORT

7.1. Overview of the substance evaluation performed

Cyclohexylamine was originally selected for substance evaluation in order to clarify concerns about:

- Toxicity for reproduction : Classified as Repr. Category 2, H361f, but there is limited information on the studies. Some further information would be needed to clarify the concern and to check whether the classification is appropriate.

- Exposure of environment
- High aggregated tonnage

During the evaluation also other concern[s] was/were identified. The additional concern[s] was/were:

NA

Table 3

EVALUATED ENDPOINTS	
Endpoint evaluated	Outcome/conclusion
Reprotoxicity	Concern not substantiated. No further action
<i>Exposure of environment/high aggregated tonnage</i>	Concern not substantiated. No further action.

7.2. Procedure

- 22 March 2016: the evaluation officially started
- 4 April 2016: the registrant was contacted and full study reports were requested.
- 18 April 2016: most full study reports were received
- 12 May 2016: the lead registrant announced initiation of transfer of the Lead role to a member of the SIEF
- 24 September 2016: the new lead registrant officially accepted this role.
- 7 October 2016: the new lead registrant was contacted to ask additional information regarding the environmental part
- 20 October 2016: the additional information was partially received and some followup questions were raised.
- 30 November 2016: the **new** lead registrant announces his plan to update the dossier.
- March 2017 eMSCA concludes that there is no need for a draft decision to clarify the initial reprotoxicity concern.
- End of May 2017 eMSCA considered the updated dossier concerning exposure data and took this into account in this evaluation report.

The available data were evaluated for human health and environment. After evaluation, there was no remaining concern.

7.3. Identity of the substance

Table 4

SUBSTANCE IDENTITY	
Public name:	Cyclohexylamine
EC number:	203-629-0
CAS number:	108-91-8
Index number in Annex VI of the CLP Regulation:	612-050-00-6
Molecular formula:	C6H13N
Molecular weight range:	99.1741
Synonyms:	1-aminocyclohexan Aminohexahydrobenzol CHA Cyclohexanamin Cyclohexylamin Hexahydroanilin

Type of substance

🗵 Mono-constituent

□ Multi-constituent

□ UVCB

Structural formula:

The following two substances were also used in several human health tests. In aqueous medium, it can be expected that both salts will dissociate easily to result in the protonated form of cyclohexylamine and the negative ions of two strong acids (resp. HSO_4^- and CL^-). This read-across is plausible.

SUBSTANCE IDENTITY	
Public name:	Cyclohexylamine sulfate
EC number:	-
CAS number:	27817-50-1
Index number in Annex VI of the CLP Regulation:	-

Molecular formula:	C6H15NO4S
Molecular weight range:	197.2526
Synonyms:	

SUBSTANCE IDENTITY	
Public name:	Cyclohexylammonium chloride
EC number:	225-661-4
CAS number:	4998-76-9
Index number in Annex VI of the CLP Regulation:	-
Molecular formula:	C6H14CIN
Molecular weight range:	135.64
Synonyms:	Cyclohexanamine hydrochloride cyclohexanaminium chloride Cyclohexylamine Hydrochloride

7.4. Physico-chemical properties

Table 5

OVERVIEW OF PHYSICOCHEMICAL PROPERTIES	
Property	Value
Physical state at 20°C and 101.3 kPa	Liquid with a strong, fishy, amine-like odor
Vapour pressure	Number of data from peer-reviewed handbooks: 1.028 kPa at 25° (estimated by calculation, purity unknown) 1.4 kPa at 20°C (experimental result, purity unknown) 1.283 kPa at 25°C (estimated by calculation, purity unknown) 1.261 kPA at 25°C (experimental result, purity unknown) 1.43kPa at 20°C (experimental result, purity unknown), used for CSR 1.340 at 25°C (estimated by calculation, purity unknown) Epi Suite v.4.11 estimation: 1.346 kPa at 25°C
Water solubility	Number of data from peer-reviewed handbooks: - 1000 g/L at 20°C (estimated by calculation, study report)

	 Completely miscible with water at 20°C, pH not specified (experimental result, study report, purity >98%), used for CSR Miscible (experimental results, purity unknown)
	Epi Suite v.4.11. estimation: 61040 mg/L at 25°C (from LogKow) (WSKOW v1.42)
Partition coefficient n-octanol/water (Log Kow)	Key study (experimental result, according to OECD TG 117 HPLC method):
	 log Pow 3,7 at 25°C (purity unknown), used for CSR
	Number of data from peer-reviewed handbooks:
	 log Pow 1.49 at 25°C, pH not specified (experimental result, purity unknown) Log Pow: 1,49, pH and temp. not reported (experimental result, purity unknown) log Pow 1.4, pH and temp. not specified (experimental result, purity unknown) log Pow 1.63 (estimated by calculation, study report, calculation by KOWWIN v1.67)
	 log Pow 1.49, pH=13, temp. not reported (estimated by calculation, purity unknown)
	Epi Suite v. 4.11 estimation: log Pow = 1.63 (KOWIN v1.68)
Flammability	Flammable
Flash point	Number of data from peer-reviewed handbooks:
	 26.5°, pressure not reported (experimental result, purity unknown) 28°C at 101.325 kPa in closed cup (experimental result, purity unknown), used for CSR (flammable liquid)
Explosive properties	Justified data waiving based on the chemical structure of the substance: lack of a chemical moiety suggesting potential for explosivity (Column 2 of Annex VII of REACH Regulation).
Oxidising properties	Justified data waiving based on chemical structure of the substance: lack of a chemical moiety suggesting oxidising potential. (Column 2 of Annex VII of REACH Regulation).
Granulometry	Justified data waiving with accordance to Column 2 of Annex VII, REACH Regulation.
Stability in organic solvents and identity of relevant degradation products	Peer-reviewed handbook data: The substance is unstable, as it is capable to react with ketones (like acetone) or aldehydes (like formaldehyde) (experimental result, purity unknown).

Dissociation constant	Number of data from peer-reviewed handbooks:
	pKa: 10.7, temp. not reported (experimental result, purity unknown) pKa:10.66 temp.: 24°C (experimental result, purity unknown) pKa: 10.67, temp. not reported (experimental result, purity unknown) pKa:10.64 at 25°C (experimental result, purity unknown) pKa:10.68, temp.: 25°C (experimental result, purity unknown)

7.5. Manufacture and uses

7.5.1. Quantities

Table 6

AGGREGATED TONNAGE (PER YEAR)					
🗆 1 – 10 t	🗆 10 – 100 t	🗆 100 – 1000 t	🗆 1000- 10,000 t	🛛 10,000-50,000 t	
□ 50,000 - 100,000 t	□ 100,000 - 500,000 t	□ 500,000 - 1000,000 t	□ > 1000,000 t	Confidential	

This aggregated tonnage includes also the tonnages for the intermediate uses. Non-intermediate tonnage is in the range of 100-1000 t/a.

7.5.2. Overview of uses

Table 7

USES	
	Use(s)
Uses as intermediate	NA
Formulation	Use for formulation of preparations : industrial (PROC 1, 2, 3, 4, 5, 8a, 8b, 9, 15)
Uses at industrial sites	Use as laboratory chemical, as intermediate in chemical synthesis, as corrosion inhibitor, use of formulations containing the substance as cutting oil and as water treatment chemical (PROC 1, 2, 3, 4, 8a, 8b, 9, 15, 17, 18, 21, 24)
Uses by professional workers	Use of formulations containing the substance as water treatment and as cutting oil, use as laboratory chemical (PROC 1, 2, 3, 8b, 9, 17, 18, 20, 21, 24)
Consumer Uses	NA
Article service life	NA

7.6. Classification and Labelling

7.6.1. Harmonised Classification (Annex VI of CLP)

Table 8

HARMONISED CLASSIFICATION ACCORDING TO ANNEX VI OF CLP REGULATION (REGULATION (EC) 1272/2008)							
Index No	International	EC No	CAS No	Classification		Spec.	Notes
	Identification			Hazard Class and Category Code(s)	Hazard stateme nt code(s)	Limits, M- factors	
612-050-	Cyclohexylamine	203-629-0	108-91-8	Flam. Liq. 3	H226		
00-0				Acute Tox. 4*	H302		
				Acute Tox. 4*	H312		
				Skin Corr. 1B	H314		
				Repr. 2	H361f		

7.6.2. Self-classification

• In the registration(s) (as verified on 9th Augustus 2016):

Acute Tox. 3; H301

Acute Tox. 3; H 311

• The following hazard classes are in addition notified among the aggregated selfclassifications in the C&L Inventory (as verified on 9th Augustus 2016):

Skin Irrit. 2; H315

Eye Damage 1; H318

STOT SE 3 (central nervous system); H336

Aquatic chronic 3; H412

Met. Corr. 1; H290

Flam. Liq. 2; H225

7.7. Environmental fate properties

7.7.1. Degradation

7.7.1.1. Photo-degradation in air

The photo-degradation in air was estimated using AOP Program v1.91 of EPi-suite software. According to the calculations a half-life of 6.95h for the neutral form and 11.2h for the protonated form can be expected (Registration dossier: study report 2006).

A calculation with the atmospheric Oxidation Program v 1.83 led to a half-life of 4.6h.

Although the half-life seems to be in the order of hours, photo-transformation in air is not expected to be a major degradation route in view of the relatively low vapour pressure and Henry value of the substance.

7.7.1.2. Hydrolysis

Hydrolysis is considered not relevant since the substance is readily biodegradable.

The eMSCA supports this conclusion.

7.7.1.3. Biodegradation in water

In a test according to EU method C.4-E (Closed bottle test) (Registration dossier: study report, 1976), 75% degradation was seen after 10 days and 92% within 20 days. It can therefore be concluded that the substance is readily biodegradable.

The eMSCA agrees with this conclusion.

7.7.2. Environmental distribution

In an adsorption/desorption study according to OECD Guideline 121 (Registration dossier: study report 2010), a Log Koc value of 3.4 was determined at 25°C and at a pH of 6.7.

Based on model calculations (Mackay level I, v.2.11) performed by the registrant, the neutral form of the substance will mainly partition to water (95.16%). Only smaller amounts of the substance are expected to partition to air (4.37%), soil (0.23%) and sediment (0.24%). For the protonated form, the calculated distribution was 100% distribution to water.

Based on the dissociation constant of around 10.68 (Registration dossier: study report 1965), the substance will under environmental relevant conditions (pH 4 to 9)), be present solely in the protonated form.

The eMSCA performed a MacKay level III fugacity estimation (Episuite 4.1), with a water solubility of 1000 g/l, a vapour pressure of 10.5 mmg Hg and a log Kow of 3.7. In this estimation 66.1% partitioned to soil and 33.2% to water. Smaller amounts partitioned to air (0.6%) and sediment (0.1%).

The Mackay level I fugacity model does not take transformation (eg. Photolysis, biodegradation) and active transport into account (closed system in equilibrium). The level III model however does and seems to be a more realistic estimation of the environmental fate of the substance (open system in steady state).

Based on the available data, the eMSCA concludes that the substance will mainly partition to soil and water.

7.7.3. Bioaccumulation

The registrant reported a measured log Kow value of 3.7 (pH of 6.8) via HPLC method (Registration dossier: study report, 2010). In a supporting study (KOWWIN estimation) a value of 1.63 for the neutral form and -1.55 for the protonated form are reported.

The eMSCA concludes that cyclohexylamine shows some potential to bioaccumulate (based on the measured Log Kow of 3.7). No definite bioaccumulation study is available. Since there is no PBT/vPvB concern, no further testing is required.

7.8. Environmental hazard assessment

7.8.1. Aquatic compartment (including sediment)

7.8.1.1. Fish

<u>Short term</u>

In a 14 day prolonged fish toxicity study (Registration dossier: review article or handbook 1997) with *Oryzias Latipes* (OECD 204) an LC50 of 19 mg/L in unbuffered media was found. The pH in the unbuffered medium significantly increased reaching a pH of 9.5. In a buffered medium no fatalities were recorded up to a concentration of 100 mg/L.

It is stated in OECD guideline 204 that the pH of the media should preferably be between 6.0 and 8.5. If the pH in the unbuffered media increases above 8.5, it can be assumed that the adverse effects seen are mainly due to the increase in pH. These high pH values however don't reflect relevant environmental conditions.

In a 96h acute fish toxicity study (Registration dossier: review article or handbook 1997) (OECD 203) with Oryzias latipes an LC50 of 33 mg/L was established in an unbuffered medium. Again in a buffered medium no mortalities were seen at the highest concentration of the substance of 100mg/L.

Other supporting acute fish tests were presented by the registrant(s) providing LC50 values >54 mg/L. These tests were not considered because of insufficient test duration and/or other methodological deficiencies.

The eMSCA accepts that the LC50 value of 19 mg/L presents a worst case value.

Long term:

No data available.

7.8.1.2. Aquatic invertebrates

Short term:

In an OECD 202 (Daphnia acute immobilisation) test (registration dossier : review article or handbook 1997) a 48h EC50 of 36.3 mg/L was determined. The medium in the test was not adjusted for pH increases. It is possible that the effects seen are based on the pH increases rather than on the toxicity of the substance itself and therefore, this result can be considered as worst case.

<u>Long term</u>

In a OECD 211 (Daphnia magna reproduction) test (Registration dossier : review article or handbook 1997) a 21d NOEC of 1.6 mg/L was determined, based on effects on reproduction. The pH of the test medium remained within the range of 6 to 9 as the test method prescribes, except for the highest concentration tested (30,3 mg/l). This tested concentration slightly exceeded the pH range of the test with a pH of 9.1. This sample was excluded from the evaluation because 60% of the parental daphnia died after the test duration of 21 days.

The eMSCA accepts the established NOEC of 1.6 mg/L as being a worst case value.

7.8.1.3. Algae and aquatic plants

The effects on aquatic plants and algae were tested according to OECD 201 (Registration dossier : review article or handbook 1997): Alga, growth inhibition test. The 72h EC50 was 29.3 mg/L based on growth rate. The 72h NOEC was 10.3 mg/L. The test medium was not

adjusted for pH and the pH values increased with increasing substance concentration. It is possible that the effects seen are caused by the increase in pH rather than the toxicity of the substance itself.

The eMSCA accepts that the established NOEC of 10.3 mg/L presenst a worst case value.

7.8.1.4. Sediment organisms

No data available. The equilibrium partitioning method (EPM) is applied for PNEC derivation (see section 7.8.4).

7.8.2. Terrestrial compartment

No data available. The equilibrium partitioning method (EPM) is applied for PNEC derivation (see section 7.8.4).

7.8.3. Microbiological activity in sewage treatment systems

Several non-guideline tests based on single species of microorganisms are included in the registration dossier. Generally, tests for the assessment of toxicity to microorganisms in sewage treatment plants are performed using inocula with multiple species of microorganisms. Therefore only those tests with multiple species were considered.

In an activated sludge ISO 8192 test (Registration dossier: study report 1990) for inhibition of oxygen consumption by activated sludge, a 3h EC50 of 2152 mg/L and a 3h EC10 of 326 mg/L were determined.

7.8.4. PNEC derivation and other hazard conclusions

PNEC DERIVATION AND OTHER HAZARD CONCLUSIONS					
Hazard assessment conclusion for the environment compartment	Hazard conclusion	Remarks/Justification			
Freshwater	PNEC Aqua (freshwater) 0.016 mg/L	Assessment factor: 100 Based on the NOEC for Daphnia of 1.6 mg/L. An assessment factor of 100 was used because 2 long term results from species representing different trophic levels are available, but not fro the most sensitive species (fish).			
Marine water	PNEC Aqua (marine) 0.0016 mg/L	Assessment factor: 1000 Based on NOEC for fresh water			
Intermittent releases to water	PNEC Aqua (intermitted release) 0.19 mg/L	Assessment factor: 100 Based on the most sensitive species fish EC50 of 19 mg/L			
Sediments (freshwater)	PNEC sediment (freshwater): 4.1 mg/kg sediment dw	Equilibrium partitioning (TGD EU, 2003). A Koc of 2512, and PNEC aqua of 0.016 mg/L			
Sediments (marine water)	PNEC sediment (marine): 0.41 mg/kg sediment ww	Equilibrium partitioning (TGD EU, 2003). A Koc of 2512,			

Table 9

		Henrys Law constant of 0.42 Pa m3/mole and PNEC aqua of 0.0016 mg/L
Sewage treatment plant	PNEC STP: 21.5 mg/L	Assessment factor 100
		Based on EC50 of 2153 mg/L
Soil	PNEC soil: 0.805 mg/kg dw	Equilibrium partitioning (TGD EU, 2003) using a Koc of 2512, Henrys Law constant of 0.42 Pa m3/mole and PNEC aqua of 0.016 mg/L

7.8.5. Conclusions for classification and labelling

The chronic aquatic toxicity results are above 1 mg/L, the substance is readily biodegradable and has a log Kow below 4.

Therefore, the eMSCA concludes that based on the available information there is no classification needed for environmental hazards.

7.9. Human Health hazard assessment

7.9.1. Toxicokinetics

Method	Results	Rel.	Reference
In vitro	Major metabolic route : deamination (in		Kurebayashi
Rabbit liver	presence of NADPH and oxygen by liver		H. <i>et al.</i>
microsomes	microsomes)		(1979)
Test substance (CAS	Cyclohexylamine is also metabolized to N-		
number) : 108-91-8	hydroxylated cyclohexylamine		
In vivo	Absorption : almost complete enteral	2	Eichelbaum
Human	absorption		M. <i>et al.</i>
Doses : 2.5, 5, 10	Excretion: 86-95% of the doses were		(1974)
mg/kg bw	excreted in urine during 48h as unchanged		
Oral	compound		
Test material (CAS	Half life in plasma : 3.5-4.8h		
number): 108-91-8			
In vivo	Distribution : penetrates membrane	2	Air prods &
Rat (4/group)	barriers		Chem Inc
Exposure : once, IV	92% distributed in tissue : GI		(1987)
Test material (CAS	tract>IIver>Iungs>tall		
number): 108-91-8	Wasn>testes>brain>spieen>muscie>neart		
	>kiuney. And 8% bound to plasma		
	40% of the doce detected in carcase		
	Abcorption : total recovery : 02 04% (rat)	2	Donwick
III VIVU Date (Mistar) rabbite	ADSOLUTION : LOLAL RECOVERY : $92-94\%$ (Tal), 94% (rabbit) $98-100%$ (quinos pig) $95%$	2	
(New Zealand	(man)		Williams
White) quines nigs	Excretion : mainly in urine and largely		R T (1072)
(Duncan-Hartley)	unchanged (4-5% metabolites for rat and		(1)(2)
(oral and In) : 50	$a_{\rm uinea}$ nig 1-2% for man vs 30% for		
500 ma/ka bw	rabbit)		
Human (oral) : 25.	Metabolism : in rat 5 major metabolites		

Table 10 : Summary of toxicokinetic informations

		1	
200 mg/person Test substance (CAS number): 4998-76-9	(cyclohexanol, trans-3-, cis-4-, trans-4-4 and cis-3-aminocyclohexanol) In rabbit 8 metabolites (cyclohexanol, trans-cyclohexan-1,2-diol, cyclohexanone, cyclohexylhydroxylamine, trans-3-, cis-3-, trans-4- and cis-4-aminocyclohexanol) In guinea pig 6 minor metabolites (cyclohexanol, trans-cyclohexane-1,2-diol, trans-3-, cis-3-, trans-4- and cis-4- aminocyclohexanol) In man 2 metabolites (cyclohexanol and trans-cyclohexane-1,2-diol)		
<i>In vivo</i> IV to 2 pregnant monkeys Doses : 50 μCi Exposure : 180min Test material (CAS number): 4998-76-9	Distribution : levels of radioactivity in dams and foetuses relatively identical (then freely diffuse the primate placenta)	2	Pitkin R.M. <i>et al.</i> (1969)
In vivo Male Mouse (3/group) (IP, SC and oral) Doses (once) : ip : 35 mg/kg bw, oral : 35, 200 and 500 mg/kg bw and sc : 35 mg/kg bw Test substance (CAS number): 4998-76-9	Metabolite : 95-96% unchanged cyclohexylamine, 1-2% 3- aminocyclohexanol or 4- aminocyclohexanol Excretion : 90% in urine within 24h	2	Roberts A. and Renwick A.G. (1985)
In vivo Rabbit (1/sex/dose) Doses : 170 mg/kg bw (once) Feed Test substance (CAS number): 108-91-8	Metabolites : 45% of dose unconjugated cyclohexylamine, 0.2% as N- Hydroxycyclohexylamine in conjugated form Excretion : 68% in urine within 60h	/	Ellio T.H. <i>et</i> <i>al.</i> (1968)
In vivo Rat (Wistar and DA) (IP and oral) Doses : male wistar rats : iP : 35 mg/kg bw, oral : 35, 200 and 500 mg/kg bw Female wistar rat : oral : 35 mg/kg bw Male CD rat : oral 200 mg/kg bw Test material (CAS number): 4998-76-9	Excretion : about 80% in urine within 24h (mainly unchanged)	/	Roberts A. and Renwick A.G. (1985)
In vivo 1 Dog (oral and SC) Doses : 80 or 120 mg/kg bw Exposure : 7d Test material (CAS number): 4998-76-9	The organisme catabolise the substance completely (no catabolic products detected in urine)	/	Bernhard K. (1937)

Absorption: Cyclohexylamine is rapidly and completely absorbed in man and animals when it is orally administrated and peak blood or plasma level occurred between 1 and 2 hours. The half life ranged from 3 to 5 hours.

Distribution: In rats the highest concentrations were observed in lungs, spleen, liver, adrenal glands, heart, gastrointestinal tract and kidneys.

Cyclohexylamine diffuses across the placental barrier.

Metabolism : See Figure 1. Metabolism of Cyclohexylamine (Bopp B.A. et al. 1986)

Figure 1. Metabolism of Cyclohexylamine (Bopp B.A. *et al.* 1986)

Elimination: approximately 90% of the administered dose of cyclohexylamine is eliminated in the urine.

Difference between species: Cyclohexylamine is absorbed and eliminated more rapidly by mice than by rats.

The eMSCA agrees that cyclohexylamine has no bioaccumulation potential.

7.9.2. Acute toxicity and Corrosion/Irritation

7.9.2.1. Acute toxicity

Oral route :

Table 11 : Summary table of animal studies on acute oral toxicity

Method	Results	Rel.	Reference
Standard acute method	Mortality : 0, 0, 0, 0,	2	Registration
In male rat (Wistar)	2, 4, 9, 13, 15, 15/15		dossier (study
15/group	respectively at 25, 50,		report 1968)
By gavage : 25, 50, 100,	100, 250, 300, 350,		
250, 300, 350, 500, 600,	500, 600, 750, 1000		
750, 1000 mg/kg bw (no	mg/kg bw		
control group)			
No GLP	LD50:432 mg/kg bw		
Test material (CAS			
number) : 108-91-8			

Standard acute method In rat (NIA) By gavage : 1-4% aequous solutions (no control group) No GLP Test material (CAS number) : 108-91-8	Mortality : no data available LD50 : 350 ml/kg bw (ca 300 mg/kg bw)	2 in the registration dossier eMSCA supports a reliability of 3 (no data available in the registration dossier)	Registration dossier (study report 1970)
Standard acute method In male rat (Wistar) 15/dose By gavage : 250, 500, 1000, 1500, 2000 and 2500 mg/kg bw (no control group) No information about GLP compliance Test material (CAS number) : 4998-76-9	Mortality : 0, 0, 1, 7, 10, 13/15 respectively at 250, 500, 1000, 1500, 2000, 2500 mg/kg bw LD50 : 1660 mg/kg bw	2	Registration dossier (study report 1968)
In rat Test material (CAS number) : 108-91-8	LD50 : 348 mg/kg bw No more information available	No reliability indicated in the registration dossier eMSCA supports a reliability of 3 (no data available)	Bopp B.A. <i>et</i> <i>al.</i> (1986)
Standard acute method In rat (Sprague-Dawley) 5/dose By gavage : 316, 398, 501, 631, 794 mg/kg bw Test material (CAS number) : 108-91-8	Mortality : 0, 1, 1, 3, 5/5 respectively at 316, 398, 501, 631, 794 mg/kg bw LD50 : 590 mg/kg bw	4	Randall D.J. and Bannister R.M. (1990)
Standard acute method In rat (Sprague Dawley) (5/group) By gavage : 7.94, 10.0, 12.6, 15.8 mg/kg bw Test material (CAS number) : 108-91-8	Mortality : 0/5, 2/5, 2/5, 4/5 LD50 : ca 11 mg/kg bw/d	4	Randall D.J. and Bannister R.M. (1990)
Standard acute method In rat (Wistar and Wistar- Imamichi) 10/sex/dose/strain By gavage (no control group) No information available about dose levels Test material (CAS number) : 108-91-8	No information available about mortality LD50 (Wistar males) : 278 mg/kg bw LD50 (Wistar females) : 237 mg/kg bw LD50 (Wistar- Imamichi females non pregnant) : 157 mg/kg bw LD50 (Wistar Imamichi females pregnant) : 180 mg/kg bw	4	Tanaka S. <i>et</i> <i>al.</i> (1973)
In mouse Test material (CAS number) : 108-91-8	LD50 : 710 mg/kg bw No more information available	4	Takahashi A. (1976)

Standard acute method In female mouse (Swiss) 10/dose By gavage : 5.0, 6.0, 6.5, 7.5, 10.0 ml/kg bw No GLP Test material (CAS number) : 108-91-8	Mortality : 1, 2, 4, 6 and 8/10 LD50 : 7.3 ml/kg bw	4	Registration dossier (study report 1987)
In rat (Wistar) (5males/group) By gavage (no information about dose levels) Test substance (CAS number) : 108-91-8	No information available about mortality LD50 : 610 mg/kg bw	4	Smyth H.F. <i>et</i> <i>al.</i> (1969)
Standard acute method In female mouse (Swiss Webster) 10/group By gavage : trial 1 : 1000, 1500, 2000, 2500 mg/kg bw (no control group) Trial 2 : 250, 350, 500, 750, 850, 1000, 1250 mg/kg bw (no control group) Test material (CAS number) : 27817-50-1	Mortality : trial 1 : 0, 4, 6 and 7/10 Trial 2 : 0, 3, 3, 5, 6, 8 and 9/10 LD50 (trial 1) : 1850 mg/kg bw LD50 (trial 2) : 680 mg/kg bw	4	Registration dossier (study report 1987)
In female mouse (Swiss Webster) 10/dose By gavage : trial 1 : 400, 500, 600, 750, 850, 1250 mg/kg bw Trial 2 : 1000, 2000, 2500, 2750, 3500 mg/kg bw No GLP Test material (CAS number) : 4998-76-9	Mortality : trial 1 : 0, 3, 6, 8, 9, 9 and 10/10 Trial 2 : 0, 1, 2, 7 and 10/10 LD50 (trial 1) : 530 mg/kg bw LD50 (trial 2) : 2750 mg/kg bw	4	Registration dossier (study report 1987)

Three studies of reliability 2 in the registration dossier, performed in rats, showed a LD_{50} of 300 mg/kg bw (Registration dossier: study report 1970), of 432 mg/kg bw (Registration dossier : study report 1968) for the studies performed with cyclohexylamine and of 1660 mg/kg bw (Registration dossier: study report 1968) for the study performed with cyclohexylammonium chloride.

<u>eMSCA comment</u> : the eMSCA does not agree with the reliability of 2 for the study which has a LD50 of 300 mg/kg bw (Registration dossier: study report, 1970). The only information available is the LD50. The eMSCA supports a reliability of 3.

Other studies with minimal description of methods and results (reliability 4) were presented. The calculated LD50 in the study using cyclohexylamine were between 11 and 610 mg/kg bw in rats and a LD50 of 710 mg/kg bw and of 7.3 ml/kg in mice.

Cyclohexylamine has a harmonised classification as **Acute toxicity Category 4* H302** Harmful if swallowed. The registrant concludes that the substance is acutely toxic via the oral route and classified, in the registration dossier, the substance as **Acute toxicity Category 3 H301 Toxic if swallowed**.

Based on the available information, the eMSCA concludes that there is no need to request further information under this substance evaluation.

Inhalation route :

Table 12 : Summary table of animal studies on acute inhalation toxicity

Method	Results	Rel.	Reference
Standard acute	LC50 : >15 mg/l air	4	Registration
method in rats	No mortality		dossier (study
(10/sex/doses)			report 1966)
Doses : 555, 1500			
mg/m ³			
Exposure : 1h			
Test material (CAS			
number) : 108-91-8			
Standard acute	LC50 : >15 mg/l air	4	Registration
method in mouse	No mortality		dossier (study
(20), rabbit (3),			report 1966)
guinea pig (5)			
Doses : 555, 1500			
mg/m ³			
Exposure : 1h			
Test material (CAS			
number) : 108-91-8			
In rats	LC50: 7500 mg/m ³	4	Lomonova G.V.
Doses : up to 11500	air		(1963)
mg/m³			
Test material (CAS			
number) : 108-91-8			
Standard acute	LC50 : >0.363 mg/l	4	Registration
method in rats (20	air after 1h of		dossier (study
males/group)	exposure		report 1966)
Doses : 363 mg/m ³	LC50 : >900		
(exposure 1h)	mg/m ³ after 4h of		
360, 837, 900	exposure		
mg/m ³ (exposure	(Smortality at 900		
4h)	mg: 2/20)		
Exposure : 1h and 4h			
Test material (CAS			
number) : 108-91-8			Deviaturation
Standard acute	LC50 : >700	4	Registration
method in rats	mg/m ³		dossier (study
(10/sex/doses)	700 mg/m ³ : 1 rat		report 1966)
Doses : 96, 108, 700	uleu		
Test material (CAS			
1 = 51 a = d (CAS)			
Standard acuto	Mortality • 0/12	1	Pegistration
method in rate	after 10min of	-	dossion (study
Doce - a caticfied	exposure and 3/6		report 1070)
vanour atmosphere	after 30min of		
Fynosure · 10min			
20min			

Test material (CAS			
Study in rats and mice Doses : 60mg/l resp 60000 mg/m ³ Exposure : 1h Test material (CAS number) : 108-91-8	LC50 : >6000 mg/m ³ No mortality	4	Registration dossier (study report 1966)
Standard acute method in rats (6/group) Doses : no information Exposure : 4h Test material (CAS number) : 108-91-8	No mortality at 4ppm All rats died at 8 ppm	4	Smyth H.F. <i>et</i> <i>al.</i> (1969)
Study in mouse Doses : 4, 15, 49, 355 ppm Exposure : 50min Test material (CAS number) : 108-91-8	RD50% : 27ppm	4	Nielsen G.D. and Yamagiwa M. (1989)
Study in mice Doses : up to 4300 mg/m ³ Exposure : unspecified Test material (CAS number) 108-91-8	LC50 : 1070 mg/m ³	4	Lomonova G.V. (1963)
Study in rats Doses : unspecified Exposure : 2h Test material (CAS number) : 108-91-8	50% mortality after 2h	4	Smyth H.F. <i>et</i> <i>al.</i> (1969)
No information Test material (CAS number) : 108-91-8	Lethal dose in rabbits, guinea pigs and rats : 4900 mg/m ³ air	4	Watrous R.M. and Schulz H.N. (1950)
Study in mouse, rabbit, guinea pig Doses : 98, 108, 700 mg/m ³ Exposure : 4h Test material (CAS number) : 108-91-8	LC50 : >700 mg/m ³ Mortality 108 mg/m ³ 1/10mice and 700mg/m ³ 4/5guinea pigs and 1/20mice	4	Registration dossier (study report 1966)
In rat Test material (CAS number) : 108-91-8	LC50 : 1000 (no information about unit)	No reliability indicated in the registration dossier. eMSCA supports a rel. of 4(no information available)	Izmerov <i>et al.</i> (1982)

Only studies with minimal description of methods and results (reliability 4) were presented and summarized in a weight of evidence approach.

No effects were seen in these inhalation studies, that would merit the need for further testing.

Dermal route :

Table 13 : Summar	y table of anima	I studies on	acute dermal	toxicity
-------------------	------------------	--------------	--------------	----------

Method	Results	Rel.	Reference
Standard acute method In male rabbit (New Zealand white) 4/dose (no more information avalaible) Occlusive No GLP Test material (CAS number) : 108- 91-8	LD50 : 275 mg/kg bw	4	Smyth H.F. <i>et al.</i> (1969)
Standard acute method In rabbit (New Zealand white) 1/dose Doses : 398, 631, 1000 and 1560 mg/kg bw Test material (CAS number) : 108- 91-8	Approx. LD50 : >631 - < 1000 mg/kg bw/d	4	Randall D.J. and Bannister R.M. (1990)

Only studies with minimal description of methods and results (reliability 4) were presented.

Cyclohexylamine has a harmonised classification as **Acute toxicity Category 4* H312 Harmful in contact with skin.**

The registrant concludes that the substance is acutely toxic via the oral route and classified, in the registration dossier, the substance as **Acute toxicity Category 3 H311 Toxic in contact with skin**.

Based on the available information, the eMSCA concludes that there is no need to request further information under this substance evaluation.

Other routes :

Table 14 : Summary of acute toxicity studies via others route

Method	Route	Results	Reference
In mouse Test material (CAS number) : 108-91-8	IV	LD50 : 200 mg/kg bw	Takahashi A. (1976)
In mouse	SC	LD100 : 2000 mg/kg bw	Pliss G.B. (1958)
In rat Test material (CAS number) : 108-91-8	IP	LD50 : 164- 199 mg/kg	Registration dossier (study report 1978)
In mouse	SC	LD50 : 1150 mg/kg	Pliss G.B. (1958)
In mouse Test material (CAS number) : 108-91-8	IP	LD50 : 300 mg/kg bw	Bopp B.A. <i>et al.</i> (1986)
In rat Test material (CAS number) : 108-91-8	IP	LD50 : 300 mg/kg bw	Japanese journal of pharmacology (1969)
In rabbit	SC	No info	Registration dossier (study report 1929)
In dog Test material (CAS number) : 108-91-8	IV	LD50 : 200 mg/kg bw	Miyata T. <i>et al.</i> (1969)

In rabbit	IV	No info	Registration dossier (study report 1929)
In rat	IP	No info	Registration dossier (study report 1929)
In mouse Test material (CAS number) : 108-91-8	IP	LD50 : 465 mg/kg bw	Bopp B.A. <i>et al.</i> (1986)
In mouse Test material (CAS number) : 108-91-8	IP	LD50 : 770 mg/kg bw	Bopp B.A. <i>et al.</i> (1986)
In mouse Test material (CAS number) : 108-91-8	IP	LD50 : 520 mg/kg bw	Bopp B.A. <i>et al.</i> (1986)
In mouse	IP	LD50 : 48 mg/kg bw	Registration dossier (study report 1979)
In mouse Test material (CAS number) : 108-91-8	IP	LD50 : 477 - 806 mg/kg bw	Miyata T. <i>et al.</i> (1969)
In rabbit Test material (CAS number) : 108-91-8	IV	LD50 : 150 mg/kg bw	Bopp B.A. <i>et al.</i> (1986)
In mouse Test material (CAS number) : 108-91-8	IP	No info	Lee I.P. and Dixon R.L. (1972)
Mammal Test material (CAS number) : 108-91-8	IP	LD50 : 200 mg/kg bw/d	Mallette F.S. and Von Haam E. (1952)
In mouse Test material (CAS number) : 108-91-8	No info	LD50 : 129 mg/kg bw	Pharmaceutical chemistry Journal (1988)
Rabbit	Injection	No info	Carswell T.S. and Morill H.L. (1937)
In mouse	SC	LDLo: 1000 mg/kg bw	Pliss G.B. (1958)
In rat Test material (CAS number) : 108-91-8	IP	LD50 : 74 – 95 mg/kg bw	Registration dossier (study 1978)
Review Many studies	IP SC IV	Rats : I.P. 350 mg/kg bw Mice : I.P. 619 mg/kg bw, S.C. 1150 mg/kg bw Dogs : I.V. 200 mg/kg bw	Bopp B.A. <i>et al.</i> (1986)

Only studies with minimal description of methods and results were presented and no concern was identified.

7.9.2.2. Corrosion/irritation

<u>Skin :</u>

Table 15 : Summary of irritation studies

Method	Result	Rel.	Reference
Human three-	Viability : 1.33 +-	2	Liebsch M. et al.
dimensional <i>in vitro</i>	3.1%		(1995)
model Skin2 ZK 1350	Corrosive		

10sec, 15µg Test material (CAS number) : 108-91-8			
In vivo Rabbit Undiluted test substance Coverage : no information Observation period : 24h and 8d Exposure : up to 20h Test material (CAS number) : 108-91-8	After 1min exposure : Necrosis After 5 and 15min exposure : marked necrosis After 20h exposure : marked necrosis rounded by significant erythema, Not reversible	2	Registration dossier (study report 1970)
In vivo Rabbit 0.5 ml Undiluted test substance, 4h Obsvertion period : up to 17d Semiocclusive Test material (CAS number) : 108-91-8	After 4h : severe erythema and edema Within 14 to 17d : loosening about edges of scrab showing injury in depth Not reversible Corrosive	2	Registration dossier (Study report 1977)
In rabbit No more information available	Corrosive No other information available	2 in the registration dossier eMSCA supports a reliability of 3 (no other information available)	Registration dossier (study report 1959)
In vivo Rabbit Occlusive (50%) Exposure : 1, 5 and 15min Test material : cyclohexylamine	Erythema score : 2/4 after 5 and 15min (not fully reversible within 15min) + scar formation observed	2	Registration dossier (study report 1959)
In vivo Rabbit Test material (CAS number) : 108-91-8	Erythema score : 4/4 Edema score : 0/4	4	Registration dossier (microfiche : 1967)
<i>In vivo</i> Mammal Test material (CAS number) : 108-91-8	Highly irritating	4	Mallette F.S. and Von Haam E. (1952)
<i>In vivo</i> Rabbit Exposure : 24h Open Test material (CAS number) : 108-91-8	Grade 7 : severe necrosis	4	Smyth H.F. <i>et</i> <i>al.</i> (1969)
In vivo Rabbit Exposure : 4h Semiocclusive : 0.5ml Test material (CAS number) : 108-91-8	Erythema score : 4/4 (not reversible) (+slight eschar formation) Edema score : 2/4 after 1d and ¼ after 2d Necrosis observed in	4	Registration dossier (study report 1973)

	all animals		
<i>In vivo</i> Rabbit Doses : 20mg and above Test material (CAS number): 108-91-8	Immediately : corrosive effects (fully reversible within 4w)	4	Lomonova G.V. (1963)
Rabbit	Irritating	eMSCA supports a rel. of 4 (no information available)	Registration dossier (study report 1970)
Rabbit Exposure 24h, 2mg Test material (CAS number) : 108-91-8	Severely irritating	eMSCA supports a rel. of 4 (no information available)	Marhold J. (1986)
Guinea pig	Corrosive	eMSCA supports a rel. of 4 (no information available)	Registration dossier (study report 1929)

Studies showed non-reversible necrosis.

Cyclohexylamine is classified as **Skin Corrosive 1B H314: causes severe skin burns and eye damage**. And based on the available information, the eMSCA supports this classification and concludes that there is no need to request further information under this substance evaluation.

<u>Eye :</u>

Table 16 : Summary of the eye irritation/corrosion studies

Method	Results	Rel.	Reference
In rabbit 0.5 ml undiluted test substance Observation period : up to 8d No GLP Test material (CAS number) : 108-91- 8	Overall irritation (at 1h, 24h and 8d) : mucous membranes etched, marked erythema, edema, cornea opacity, not reversible (scores not given) Additional findings : 1h : haemorrhage 8d : staphyloma	2	Registration dossier (study report 1970)
In rabbit (New Zealand withe) 0.1ml during 1min Observation period : up to 24h Test material (CAS number) : 108-91- 8	Immediatly after application : severe discomfort with pawing, squealing, thrashing After 10min and 1h : moderate corneal cloudiness, iris congestion, severe erythema with a slight discharge After 24h : corrosive Not reversible (Scores not given)	2	Registration dossier (study report, 1977)
In rabbit Test A : exposure of 5min and reading at 7min Test B : exposure of 24h and reading at 24h No GLP	Test A : Score : corneal opacity 4/4, iritis 2/4, conjunctivae 4/4 Test B : Score : corneal opacity 4/4, iritis 2/4, conjunctivae 4/4	2	Registration dossier (study report 1987)

Test material (CAS number) : 108-91- 8			
In rabbit No GLP Test material (CAS number) : 108-91- 8	Overall irritation : severe burn from 0.5ml of a 1% solution Corneal necrosis No data about time point	4	Smyth H.F. <i>et al.</i> (1969)
In rabbit Doses : 50 µg Exposure period : 24 hours Test material (CAS number) : 108-91- 8	Severely irritating		Registration dossier (study report 1986)

Studies of reliability 2 showed severe eye irritation. The classification in Skin Corrosive category 1B H 314 covers the eye damages.

Based on the available information, the eMSCA supports this classification and concludes that there is no need to request further information under this substance evaluation.

7.9.3. Sensitisation

7.9.3.1. Skin

A study (Mallette F.S. and Von Haam E., 1952) with minimal description of method and results (reliability 4) was presented. This study was an *in vivo* patch test using cyclohexylamine. The laboratory animals (no more information available) were exposed to 100% of the test substance (undiluted test material). The clinical observations were dull-red discoloration with edema, slight maceration and possibly petechiae.

The eMSCA concludes that there is no concern for skin sensitisation and no need to request further information under this substance evaluation due to the corrosive properties.

7.9.4. Repeated dose toxicity

7.9.4.1. Repeated dose toxicity : Oral route

Table 17 : Summar	y of the repeated	dose toxicity	studies via	oral route
-------------------	-------------------	---------------	-------------	------------

Method	Results	Rel.	Reference
Chronic study (2years) in rats (Wistar)(48/sex/group) Doses : 0, 600, 2000, 6000 ppm Feed No GLP Test material (CAS number) : 4998-76-9	LOAEL : 600 ppm (approx. 18mg/kg bw/d) : decreased body weight, changes of some relative organ weight (gonads, thyroid, brain)	2	Gaunt I.F. <i>et</i> <i>al.</i> (1976)
Chronic study (2years) in rats (FDRL)(30/sex/group) Doses : 0, 15, 50, 100 and 150 mg/kg bw/d (cyclohexylamine) Feed Test material (CAS number) : 4998-76-9	NOAEL : 15 mg/kg bw/d of cyclohexylamine	2	Oser B.L. <i>et</i> <i>al.</i> (1976)
Chronic study (80weeks) in mice (ASH-CS1) (50 males and 48 females) Doses : 0, 300, 1000 and 3000 ppm (ca 0, 29, 102, 292 mg/kg bw/d) Feed Test material (CAS number) : 4998-76-9	 BW : initial and terminal bw were significantly changed Histopathology : mild hepatic changes in females at the highest dose level Tumours found in all dose levels but not statistically significant differences. NOAEL : 1000 ppm <u>eMSCA comment :</u>Not possible to conclude on NOAEL based on the information available (no information in the registration dossier about the dose at which the effects were observed). However in the MAK Collection for Occupational Health and safety (Value Documentation 2006), a NOAEL of 29 mg/kg bw/d was indicated due to a decreased of body weight gain in males at 102 mg/kw bw/d) 	2 in the registration dossier however eMSCA supports a reliability of 3 (no data available)	Hardy J. <i>et al.</i> (1976)
Chronic study (30 months) in rats (Sprague Dawley)(52/sex/dose) Doses : 0, 200 mg/kg bw/d Feed Test material (CAS number) : 108-91-8	NOAEL : 200 mg/kg bw/d No toxic effects, no tumours observed	4	Schmaehl D. (1973)
Chronic study (5 days) in male rats (30 receiving	Endpoint analyzed : mortality No animal died	4	Registration dossier (study

increasing dose) (Wistar) Doses : 86, 130, 194, 292, 437 mg/kg bw/d Feed Test material (CAS number)			report 1968)
: 108-91-8 Subchronic study (82 days) in rats, guinea pigs and rabbits Doses : 100 mg/kg bw/d Test material (CAS number) : 108-91-8	1 rabbit and 1 guinea pig died (pneumonia) No other effects	4	Carswell T.S. and Morill H.L. (1937)
Study (9 weeks) in rats (15/doses) Doses : 0, 200 mg/kg bw/d Test material (CAS number) : 108-91-8	 ↓ bwg, food intake, motor activity ↓ testicular and seminal vesicles weights, testosterone concentration, ↓ spermatogenesis (pachytene spermatocytes, early and late spermatids) ↑ FSH concentration 	4	James R.W. <i>et al.</i> (1981)
Chronic study (2years) in dogs (3/sex/dose) Doses : 0, 0.15, 1.5, 15 mg/kg bw/d Test material (CAS number) : 27817-50-1	NOAEL : 15 mg/kg bw/d No effects	4	Bopp B.A. <i>et</i> <i>al.</i> (1986)
Subchronic study (90days) in male rats (Wistar and Sprague Dawley)(25/dose) Doses : 0, 600, 2000 and 6000 ppm (ca 0, 30, 105, 343 mg/kg bw/d cyclohexylamine) Feed Test material (CAS number) : 4998-76-9	NOAEL : 600 ppm Significant decrease of bwg (Wiaster rats : 323, 341, 269, 181g and SD 438, 422, 380, 255g respectively at 0, 600, 2000 and 6000ppm) Organ weight :6000 ppm : decrease weight (no more information available) of prostate, adrenals, pituitary, thyroid, heart, liver, kidneys and testes Histopathology : 6000 ppm : significant increase of testicular damage, no or immobile spermatozoa, increased number of decapitated sperms in wistar rats Loss of germinal cells leading to a reduction of spermatogenesis in over 80% of tubules	eMSCA supports a reliability of 4	Mason P.L. and Thompson G.R. (1977)
Subchronic study (13weeks) in rats (CFE) (15/sex/dose) Doses : 0, 600, 2000 and 6000 ppm (ca 0, 41, 143	2000 and 6000 ppm : significant decrease of bw and food consumption 0ppm 600ppm 6000ppm	eMSCA supports a reliability of 2	Gaunt I.F. <i>et</i> <i>al.</i> (1974)

and 468 mg/kg bw/d	Bw gain (g) at D84	Males	372	377	338*	274*		
cyclohexylamine)		Females	201	190	160*	133*		
Test material (CAS number)	Food consumtpion (g/rat/d)	Males	21.4	20.5	20.0*	18.6*		
: 4998-76-9		Females	16.5	14.9*	14.3*	13.9*		
	Rel. brain weight (g/100g bw)	Males	0.42	0.41	0.44	0.50*		
		Females	0.62	0.63	0.70*	0.80*		
	Rel. stomach weight (g/100g	Males	0.38	0.39	0.39	0.45*		
	bw)	Females	0.49	0.49	0.52	0.59*		
	Rel. gonads weight (g/100g bw)	Males	0.81	0.80	0.81	0.67*		
		Females	43	45	56*	55*		
	Rel. thyroid weight (g/100g bw)	Males	5.1	5.2	5.1	5.1		
		Females	6.1	7.1	7.2	7.4*		
	Rel. small intestine weight	Males	1.67	1.72	1.71	1.81*		
	(g/100g bw)	Females	2.21	2.31	2.16	2.40		
	Rel. caecum weight (g/100g	Males	0.23	0.21	0.21	0.21		
	bw)	Females	0.25	0.26	0.27	0.31*		
	Rel. adrenal weights (g/100g	Males	14.4	14.0	14.5	15.8		
	bw)	Females	23.4	24.8	25.5*	26.5*		
	Histopathology : reduced spermate	ogenesis a	nd tubu	ar atrophy	in testes a	t the mid		
	and high dose groups (respectively	/ 4/11male	es and 1	8/20males	5).			
				-	,			
	NOAEL : 600 ppm (ca 30 mg/kg by	√d)						
Subchronic study (13	Mortality : 2.5% : all rats died						4	Collings A.J.
weeks) in rats (15 or	Bwg : 0.2% and above: significant	decrease						et Kirby W.W.
16males/dose)	Organ weight : many organ weights were decreased					(1974)		
Doses : 0.01, 0.05, 0.1, 0.2,	Testes : absolute weight decreased at 1.0 and 2.5% while relative weight					ht		
0.5, 1.0 and 2.5% (ca. 3.5 –	increased at 0.5% and decreased at 1%							
434 mg/kg)	Histopatholgy : degeneration of th	Histopatholgy : degeneration of the tubular epithelium in both testes at 1% in 13 of						
Feed	15 rats (with \geq 95% of the tubules being affected in 8 rats, \geq 70% in 4 rats and \geq 40%					s and ≥40%		
Test material (CAS number)	in 1 rat)							
: 4998-76-9	NOAEL : 0.1% in diet							
Multi generation (F6) study	Short term study (4 months) :						4	Kroes R. <i>et al.</i>
in mouse (Swiss SPF)	Bwg decreased							(1977)
Doses : 0, 600 mg/kg Feed	Histopatholigy : no effect observed	1						
Test material (CAS number)	Long term study :							
: 27817-50-1	Bw decreased							

	No effects on food intake, haematology, histopathology		
Study (9 weeks) in dogs	Decrease motor activity, body weight, food intake	4	James R.W.
(4males/dose)	Pachytene spermatocytes, early and late spermatids decreased		<i>et al.</i> (1981)
Doses : 0, 250 mg/kg bw/d	Reversible effects		
Chronic study (52 weeks) in	Degenerative changes in livers and kidneys	4	Pliss G.B.
rats	No more information available		(1958)
Doses : 114 mg/kg bw/d	No tumours observed		
Test material (CAS			
number) : 108-91-8			
Study in monkeys (5males)	No NOAEL identified	4	Scientific
Exposure : 7w	Testicular damage		Committee on
Doses : 1w : 17 mg/kg	2/5 monkeys with minimal effects on spermatogenesis		food (1995)
bw/d; 1w : 34 mg/kg ; and	Decrease food intake		
5w : 50 mg/kg bw/d			
+ follow up study of 4w : 17			
mg/kg bw/d			
Test material (CAS			
number) : 108-91-8			
Chronic study (2years) in	No significant changes between test and control animals for food intake, mortality	4	Price J.M. et
rats (Charles river)	and haematological parameters		<i>al.</i> (1970)
(25/sex/dose)	Slight depression of bwg in males		
Doses : 0, 0.15, 1.5, 15 mg	At the highest dose : 1 bladder tumour in 1 of 8 animals		
/kg bw/d			
Test material :			
cyclohexylamine sulphate			

In the key study Gaunt I.F. et al. (1976), rats (48/sex/dose) were exposed to 0, 600, 2000 and 6000 ppm of cyclohexylamine hydrochloride during 2 years. The doses in ppm correspond to 0, 24, 82 and 300 mg/kg bw/d in males and 0, 35, 120 and 440 mg/kg bw/d in females of cyclohexylamine hydrochloride and then to 0, 18, 60 and 219 mg/kg bw/d in males and 0, 26, 88, 321 mg/kg bw/d in females of cyclohexylamine. A significant decrease of body weight in all dose groups were noted. The tested haematological parameters were Hb, PCV, RBC, Retics and leucocytes. At the end of the study, the haematology evaluation revealed in the male highest dose group an increase of Hb and PCV and a decrease of reticulocytes and in all dose groups a significant dose dependent decrease of total leucocytes. Signifcant changes in clinical chemistry analysis (urea an albumin) were shown in all doses in males. At necropsy, the organ weight analysis indicated some changes in males and females and the histopathological examination showed modification in the highest dose group (in lungs : significant increased incidence of rats which had alveoli with foamy macrophages and in testes : significant increased incidence of rats with bilateral atrophy. Moreover, at mid dose group an increase of incidence of testes with tubules showing few or no spermatids were observed).

Table 18 : summary of the significant changes in the chronic study (Gaunt I.F. *et al.*, 1976)

	Sex	0	600	2000	6000
		(controls)	ppm	ppm	ppm
Mortality	Males	24	21	18	5
	Females	16	10	4	7
Terminal body weight	Males	646g	623g	575g*	451g*
	Females	399g	360g*	311g*	240g*
Clinical chemistry : urea	Males	48	30*	32*	23*
Clinical chemistry : albumin	Males	2.97	3.16*	3.34*	4.09*
Relative brain weight (mg/100g	Males	0.34	0.36	0.39*	0.48*
bw)	Females	0.50	0.56*	0.65*	0.82*
Relative liver weight (mg/100g bw)	Males	2.65	2.64	2.43	2.32*
Relative spleen weight (mg/100g bw)	Males	0.29	0.28	0.27	0.21*
Relative kidneys weight (mg/100g bw)	Males	0.72	0.66	0.63	0.56*
Relative gonads weight (mg/100g bw)	Females	32.6	36.1	43.8*	54.4*
Relative thyroid weight (mg/100g bw)	Females	7.9	8.1	9.8*	9.1*
Lungs : alveoli with foamy	Males	6/34	8/40	12/39	19*/46
macrophages (number of affected animals/number of examined animals)	Females	5/38	13/43	8/47	21*/41
Testes : bilateral atrophy (number of affected animals/number of examined animals)		0/34	2/40	2/39	18*/46
Testes : tubules with few or no spermatids (number of affected animals/number of examined animals)		2/34	6/40	10*/39	7/46

In the second key study, Oser B.L. *et al.* (1976), 30 rats/sex/doses received in diets cyclohexylamine hydrochloride (corresponding to 0, 15, 50, 100 and 150 mg/kg bw/d of cyclohexylamine) during 2 years (113w). The treatment had no influence on the mortality rate, on clinical signs, on hematology, on clinical chemistry and on urinalysis parameters.

Substance Evaluation Conclusion document

Whereas the body weight was significantly reduced at dose of 50 mg/kg bw/d and above in females and at dose of 100 mg/kg bw/d and above in males (No more data available). Some organ weights were changed, however relative organ weights were not modified indicating an effect of the lower terminal body weight. The gross pathology revealed some change.

Doses (mg/kg bw/d)			0	15	50	100	150
Body weight	Males		562	540	508	436	415
5	Females		392	383	333	292	287
Kidney weight	Males	Abs.	4.19	3.83	4.15	3.91	3.38
5		Rel.	0.75	0.71	0.82	0.90	0.81
	Females	Abs.	2.93	2.79	2.58	2.57	2.55
		Rel.	0.75	0.73	0.78	0.88	0.89
Gonads weight	Males	Abs.	3.47	4.09	2.76	3.07	2.31
5		Rel.	0.62	0.76	0.54	0.70	0.56
	Females	Abs.	277.6	237.7	207.1	208.3	210.7
		Rel.	70.8	62.1	62.2	71.3	73.4
Incidence of renal calcification		·	2/33 (male+female/number of animals examinated)	5/24	11/35	10/27	8/41
Thickening of urinary bladder mucosa		/	8/57 (male+female/number of animals examinated)	9/58	13/56	9/56	13/56
Testicular	atrophia		5/19 (male/males examinated)	6/15	9/13	3/10	12/20
Abnormal epithelium	germinal 1		0/19 (male/males examinated)	0/15	1/13	1/10	3/20

	Table 19 :	Summary	of gross	pathology	examination
--	------------	---------	----------	-----------	-------------

Abs. : Absolu (g); Rel. : Relative (g/100 g bw)

In the third key study, Hardy J. *et al.* (1976), mice (50 males and 48 females) were exposed by diets to cyclohexylamine hydrochloride (0, 300, 1000 and 3000 ppm) during 80 weeks. No difference for mortality, body weight gain, haematological examination or incidence of tumors. The only histopathological change was an increased incidence on minor hepatic changes in females of the highest dose group.

Other studies with minimal description of methods and results (reliability 4 or no score assigned) were presented.

The data presented result from older studies, not following a guideline and therefore, several parameters are missing. The data however show only a concern for testes, which is covered by the harmonised classification as repr. Cat. 2. Moreover, due to the known corrosive property and the specific fishy smell of the substance, the eMSCA concludes that there is no need to request further information under this substance evaluation.

7.9.5. Mutagenicity

7.9.5.1. In vitro

Table 20 : summary of the *in vitro* mutagenicity studies

Method	Result	Rel.	Reference
Gene mutation <i>S. Typh</i> . TA 98, TA 100, TA 1535, TA 1537. OECD 471 (bacterial reverse mutation assay) Test material (CAS number) :	Genotoxicity : negative Cytotoxicity : yes	1	Mortelmans K. <i>et al.</i> (1986)
Gene mutation	Genotoxicity : negative	2	Brusick D. <i>et al.</i>
assay Chinese Hamster ovary cells International guidelines and EPA GeneTox Test material (CAS number) : 108-91-8	Cytotoxicity . yes		(1989)
DNA damage and/or repair, unscheduled DNA synthesis Adult males rat hepatocytes Internaltional guidelines and EPA GeneTox Test material (CAS number) : 108-91-8	Without met. act. Genotoxicity : negative Cytotoxicity : yes	2	Brusick D. <i>et al.</i> (1989)
Bacterial reverse mutation assay <i>S. Typh.</i> TA 98, 100, 1535, 1537. Cyclohexylamine hydrochloride	Genotoxicity : negative Cytotoxicity : no	2	Herbold B.A. and Lorke D. (1980)
Adenovirus transformation in hamster cells Hamster embryo cells Test material (CAS number) : 108-91-8	Genotoxicity : positive Cytotoxicity : no data	4	Casto B.C. (1981)
Sister chromatid exchange assay in mammalian cells (human lymphocytes)	Genotoxicity : positive Cytotoxicity : no data	3	Wolff S. (1983)
DNA damage and/or repair, unscheduled DNA synthesis in mammalian cells (Hela cells)	Genotoxicity : sign increase in grains at 100µg/ml compared to control (2277 vs 1748) Cytotoxicity : sign. decrease in grains at 200µg/ml compared to controls (906 vs 1748)	4	Koizumi A. <i>et al.</i> (1971)
In vitro mammalian chromosome aberration test Test material (CAS number) : 108-91-8	Genotoxicity : positive Cytotoxicity : no data	3	Dixon C.H. (1973)
Gene mutation Microsome assay <i>S. Typh</i> . TA 98, 100, 1535, 1537, His G46, C207, C3076	Genotoxicity : positive Cytotoxicity : no data Positive result only in the presence of additional liver	4	Rao V.S. and Aiyar A.S. (1975)

Test material (CAS number) : 108-91-8	microsomal fraction		
<i>In vitro</i> mammalian chromosome aberration test Rat bone marrow cells	Genotoxicity : negative	2	Dick C.E. <i>et al.</i> (1974)
Gene mutation <i>S. Typh</i> . G46, serratia marcescens Hy a 21	Genotoxicity : negative Cytotoxicity : no data	4	Buselmaier W. <i>et al.</i> (1972)
Bacterial gene mutation assay S. Typh. TA 98, 100, 1535, 1538 Test material (CAS number) : 108-91-8	Genotoxicity : negative Cytotoxicity : no data	2	Anderson D. and Styles JA. (1978)
Gene mutation Various strains of S. Typh.	Genotoxicity : negative Cytotoxicity : no data	4	Rao V.S. and Aiyar A.S. (1975)
Gene mutation (E. Coli)	Genotoxicity : negative Cytotoxicity : no data	4	Fluck E.R. <i>et al.</i> (1976)
Chromosome aberration Human leucocytes	Genotoxicity : negative Cytotoxicity : no data	4	Brewen J.G. <i>et</i> <i>al.</i> (1971)
No information avalaible	No information avalaible		Cattanach B.M. (1976)

Generally, negative results were found in bacterial reverse mutation assay and in mammalian chromosome aberration test.

Other studies with minimal description of methods and results (reliability of 3 or 4) were presented.

Based on the available information, the eMSCA concludes that there is no concern for mutagenicity and no need to request further information under this substance evaluation.

7.9.5.2. In vivo

Table 21 : Summary of *in vivo* mutagenicity studies

Method	Results	Rel.	Reference
Chromosome aberration (dominant lethal assay in male rats)	the average of 35 % of the ova flushed 48h after insemination from the oviducts of females mated with CHA-treated males showed no cleavage and did not exhibit 2	2	Green S. <i>et al.</i> (1972)
Exposure : Ip Test substance	pro-nuclei. This indicated that fertilization had not occurred .		
(CAS number) : 108-91-8	The pre-implantation loss in females mated with CHA treated males results		
	from some mechanism other than that of dominant lethal mutations		
Chromosome aberration (rat)	Genotoxicity : negative Toxicity : no effects	2	Khera K.S. <i>et</i> <i>al.</i> (1971)
Chromosome	Genotoxicity : positive	2	Legator M.S.
aberration (rat)	Toxicity : no data		<i>et al.</i> (1969)
Exposure : Ip	Mean percent breakage for the		
Test substance	spermatogonial cells : 4.4, 7.6, 11.2,		
(CAS number):	16.2, 19.2 (respectively at 1, 10, 20, 40,		
108-91-8	50 mg/kg bw/d) vs 1.8 controls		
Chromosome	Genotoxicity : negative	2	Lorke D. and
aberration (mouse)	Toxicity : no effects		Machemer L.

	No pre- or post-implantation loss. The treatment did not damage the males and did not impair their mating capacity and fertility		(1974)
Chromosome aberration (rat)	Genotoxicity : negative Toxicity : no data	2	Dick C.E. <i>et</i> <i>al.</i> (1974)
Chromosome aberration (mouse) Test substance (CAS number): 108-91-8	Genotoxicity : negative Toxicity : yes	2	Chauhan P.S. <i>et al.</i> (1975)
Chromosome aberration (mouse) Test substance (CAS number): 108-91-8	Genotoxicity : negative Toxicity : no data	2	Cattanach B.M. and Pollard C.E. (1971)
Chromosome aberration (rat)	Genotoxicity : negative Toxicity : no effects	2	Khera K.S. <i>et</i> <i>al.</i> (1971)
Chromosome aberration (Chinese hamster) Test substance (CAS number): 108-91-8	Genotoxicity : positive Toxicity : no data	2	Van Went-de- Vries G.F. <i>et</i> <i>al.</i> (1975)
Chromosome aberration (rat) Test substance (CAS number): 108-91-8	Genotoxicity : positive Toxicity : yes Mean percent breakage for the bone marrow cells : 4.0, 5.12, 8.0, 12.16, 16.28 (respectively at 1, 10, 20, 40, 50 mg/kg bw/d) vs 2.72 of controls	2	Legator M.S. <i>et al.</i> (1969)
Chromosome aberration (mice) Test substance (CAS number): 108-91-8	Genotoxicity : positive Toxicity : no data	2	Petersen K.W. <i>et al.</i> (1972)
Chromosome aberration	Genotoxicity : negative Toxicity : no effects	2	Lorke D. and Machemer L. (1975)
Chromosome aberration (Chinese hamster) Ip Test substance (CAS number): 108-91-8	Genotoxicity : negative Toxicity : no data	4	Brewen J.G. <i>et</i> <i>al.</i> (1971)
Chromosome aberration (pregnant sheep) Test substance (CAS number): 108-91-8	Genotoxicity : positive Toxicity : no data Clastogenic	4	Turner J.H. and Hutchinson D.L. (1974)
Chromosome aberration (rat) Test substance (CAS number): 108-91-8	Genotoxicity : negative Toxicity : no effects	4	Mostardi R.A. <i>et al.</i> (1972)
Chromosome	Genotoxicity : positive	4	Khera K.S.

aberration (rat)	Toxicity : yes Decrease numbers of implantations due to pre-implentation loss		And Stoltz D.R. (1970)
Gene mutation (mouse spot test) According OECD 484 Test substance (CAS number): 108-91-8	Genotoxicity : positive (weakly) Toxicity : no data	/	Fahrig R. (1982)
Chromosome aberration (Chinese hamster)	Genotoxicity : negative Toxicity : no data	/	Machemer L. and Lorke D. (1976)

In most of the studies no genetic damage from cyclohexylamine has not been detected.

Based on the available information, the eMSCA concludes that there is no concern for mutagenicity and there is no need to request further information under this substance evaluation.

7.9.6. Carcinogenicity

Table 22 : Summary of the carcinogenicity studies

Method	Results	Rel.	Reference
In mouse By feed (80 weeks) Doses : 0, 300, 1000 and 3000ppm (ca. 0, 40, 140 and 400 mg/kg bw/d) Test material (CAS number) : 4998-76-9	No carcinogenic effect NOAEL (toxicity) : 1000 ppm	2	Hardy J. <i>et</i> <i>al.</i> (1976)
In rats (30/sex/dose) By feed (2 years) Doses : 0, 15, 50, 100, 150 mg/kg bw/d Test material (CAS number) : 4998-76-9	No carcinogenic effect	2	Oser B.L. <i>et</i> <i>al.</i> (1976)
In rat (48/sex/dose) By feed (2 years) Doses : 0, 600, 2000, 6000 ppm (ca. 0, 40, 133, 400 mg/kg bw/d) Test material (CAS number) : 4998-76-9	No carcinogenic effect	2	Gaunt I.F. <i>et</i> <i>al.</i> (1976)
In mouse By feed (84 weeks) Doses : 0, 0.5% (ca. 0, 600 mg/kg bw/d) Test material (CAS number) : 27817-50-1	No carcinogenic effect	4	Kroes R. <i>et</i> <i>al.</i> (1977)
In rat By feed (52 weeks) Doses : 0, 114 mg/kg bw/d Test material (CAS number) : 108-91-8	No carcinogenic effect Degenerative changes in liver and kidneys	4	Pliss G.B. (1958)
In rat By feed (2 years) Doses : 0, 0.15, 1.5, 15 mg/kg	15 mg : 1/8 rats showed an invasive transitional cell tumour of grade 2	4	Price J.M. <i>et</i> <i>al.</i> (1970)

bw/d Test material (CAS number) : 27817-50-1			
In rat By feed (30 months) Doses : 0, 200 mg/kg/d Test material (CAS number) : 108-91-8	No carcinogenic effect		Schmaehl D. (1973)
In dog Capsule (2 years) Doses : 0, 0.15, 1.5, 15 mg/kg bw/d Test material (CAS number) : 27817-50-1	No evidence of tumour development	4	Bopp B.A. <i>et</i> <i>al.</i> (1986)
<i>In vitro</i> test Mammalian cells (Human WI 38, Rodent BHK 21) Doses : 250 – 0.08µg/ml Test material (CAS number) : 108-91-8	No cell transformation activity	4	Styles J.A. (1978)
Principe : Degranulation test sebaceous-gland test tetrazolium reduction test Imlant test	All tests were negative	4	Purchase IFH (1978)

There is no evidence that cyclohexylamine is carcinogenic in rats, mice or dogs.

Based on the available information, the eMSCA concludes that there is no concern for carcinogenicity and no need to request further information under this substance evaluation.

7.9.7. Toxicity to reproduction (effects on fertility and developmental toxicity)

7.9.7.1. Toxicity to reproduction

Table 23 : Summary of the fertility studies

Method	Results	Rel.	Referen
			ce
In mouse	No effects on behaviour and weight	eMSCA	Lorke
Doses :	Fertility was normal	support	D. and
0.11% in	No important increase in pre- and post-implantation	s a	Machem
diet = ca.	losses	reliabili	er L.
136		ty of 4	(1975)
mg/kg		(no	
bw/d		more	
Exposure		informa	
: >10w		tion	
Feed		availabl	
Test		e)	
material			
(CAS			
number) :			
108-91-8			
Multigener	No NOAEL identified	4	Gondry
ation	↑ mortality of the offsprings during the first 21days of		E.
study (F1-	their lifes		(1973)
F4)	↓ body weight gain		
In mouse	Effects dose dependent		

Doses : 0, 0.1, 0.5 and 1% (ca. 0, 143, 715 and 1430 mg/kg bw/d) Feed Test material (CAS number) : 108-91-8	NOAEL (fertility : P. E1. E2) : 600ppm	3	Pegistra
ation study (3) In mouse (10 males and 40 females) Doses : 0, 600, 2000, 6000 ppm (ca. 0, 86, 286, 857 mg/kg bw/d) Exposure : feed Test material (CAS number) : 4998-76-9	NOAEL (fertility : P, F1, F2) : 000ppm NOAEL (general toxicity : P) : 600ppm Parental : ↓ body weight gain in females (P- generation at 2000ppm; F1 generation : in all dose groups) Offspring : ↓ viability index (D4) (F1 generation : 68.8, 81.7*, 31.7*, 41.9*% at 0, 600, 2000 and 6000ppm; F2 generation : 81.3, 83.2, 57.3* and 35.0% at 0, 600, 2000 and 6000ppm; F3 generation : 84.3, 63.3* and 61.8*% at 0, 600and 2000ppm)	7	tion dossier (study report, 1983)
In rats (5 males/gro up) Doses : 0, 6000 ppm (ca. 0, 343 mg/kg bw) Exposure : 10 months and were caged for 10days with 3 young untreated females Test material (CAS number) ·	NOAEL(male) : 6000 ppm No significant difference between test and control groups in the number of fertile males, in litter size and in growth	4	Gaunt I.F. <i>et</i> <i>al.</i> (1974)

In rats	NOAEL (aeneral	tovid	-i+./) .	4						-
(30/sex/gr oup) Doses : 0, 15, 50, 100, 150 mg/kg bw/d Feed Exposure : 2years. (F4) Test material (CAS number) : 4998-76-9	NOAEL (general toxicity) : 15 mg/kg bw/d NOAEL (reproductive toxicity) : 100 mg/kg bw/d 150 mg : growth retardation due to the lower food consumption Reproduction parameters : normal in all dose groups Slight reduce of the litter size and the weaning weight In male : significant higher incidence of testicular atrophy at the high dose group however these rats continued to be fertile							4	Oser B.L. <i>et al.</i> (1976)		
In rats and rabbits Doses : 0, 1.5 and 15 mg/kg bw/d Exposure : Before and during mating, gestation and lactation in both sexes, + during the critical period of organogen esis in females Test material (CAS number) : 27817-50- 1	No NOAE Parental groups fi sites, res reproduc Offspring external	EL ident : No di or num sorptior ce g : No a , intern	ified fferer ber of sites abnor al and	nce bo f corp s, the maliti d skel	etwee ora lu abilit es ob letal e	en test utea, i cy to c servec examin	and mplar opula d duri nation	contro ntation te, to ng	1	4	Kenned y G.L. <i>et al.</i> (1969)
Multigener ation study (F6) In mouse (Swiss) Doses : 0, 0.5% (ca. 0, 600 mg/kg bw/d) Exposure	Significa in all ger sites, ↓si weight g mortality (D20/D0 Mean no. of livebo	nt diffe neratior gn num ain of t (decre)) Cont rol 0.5	rence n : ↓si nber c he of ease p F1 a 10 .7 9.	betw gn of of live fsprin oostna F2 a 11 .5 8.	veen t num born g and atal s F3 a 10 .0 8.	est an ber of foetu: 1 1sign urvivo F3b 12. 2 10.	nd cor impla ses, ↓ perin r ratio F4 a 11 .1 9.	ntrol g antatio sign b natal 5 F5a 11. 8 10.	F6 a 11 .4 9.	4	Kroes R. <i>et al.</i> (1977)

Substance Evaluation Conclusion document

			-				-				
Test	fetuse	%	2*	4*	3*	2*	3*	5*	9*		
(CAS	Postn	Cont	37	79	88	93	85	91	98		
number) :	atal	rol									
27817-50-	surviv	0.5	10	49	55	76*	75	60*	73		
1	ors	%		*	*		*		*		
	(D5/D										
	0)										
	Mean	Cont	2.	2.	3.	2.6	3.	2.9	3.		
	bw	rol	3	4	0		2		0		
	D20	0.5	0	2	2	25	2	25	2		
		%	8	0	2. 4*	2.5	2. 9*	*	2. 5*		
			1				·		ı		
			Con	trol	0.	5%					
	Mean n	o of			C	/CIO					
	implant	ations									
	F2b		14.0)	10).9*					
	F3c		14.1	L	1	1.3*					
	F4b		13.4	1	1	1.9*					
	F5D F6b		13.	L 1	<u> </u>	1.0* > >					
	FOD		13.4	+	1,	2.2					
	Embryot	oxic ac	tion								
Mutligener	NOAEL (fertility	: P, I	F1, F2	2):6	00ppn	٦			3	Registra
ation	NOAEL (general	l toxic	city:	P): (500ppr	n				tion
In mouse	Parental	: 1 bod	lv wei	iaht a	i, rz) fema	les (F	D_			(study
(10 males	generati	on at 2	000pj	pm; F	1 gei	neratio	nes (i n : ir	n all do	se		report,
and 40	groups)				5						1982)
females)	Offspring	g:↓via	bility	inde	x (D4) (F1 (gener	ation :			
Doses : $0,$	68.8, 81	./*, 31	./*,4	41.9*	% at	0,600 0000	J, 200	JU and	4		
2000.	35.0% a	t 0, 60	0.20	00 an	d 600)())()	., 57. 1: F3 (aenera	tion		
6000 ppm	: 84.3, 6	53.3* a	nd 61	.8*%	at 0	, 600a	nd 20)00ppr	n)		
(ca. 0, 86,	,								,		
286, 857											
mg/kg											
DW/d)											
: feed											
Test											
material											
(CAS											
number) : $4008.76.0$											
4990-70-9											

Only older fertility studies with minimal description of methods and results (reliability 3 or 4) were presented.

The data presented result from older studies, not following a guideline and therefore, several parameters are missing. The data however show a concern for fertility, which is covered by the harmonised classification as repr. Cat. 2. Moreover, due to the known corrosive property and the specific fishy smell of the substance, in combination of the use which is limited to industrial and professional settings, the eMSCA concludes that no further testing is required.

7.9.7.2. Developmental toxicity

Table 24 : 9	Summary of	developmental	toxicity studies

Method	Results	Rel.	Reference
NMRI Mice (25 inseminated virgin mice/group) Doses : 0, 10, 30, 100 mg/kg bw (ca. 0, 14, 42, 140 mg/kg of cyclohexylamine) Exposure : gavage, GD 6-15 Test material (CAS number) : 4998-76-9 Guideline : US-FDA	NOAEL (maternal toxicity) : 140 mg/kg bw/d No effects NOAEL (developmental toxicity) : 140 mg/kg bw/d No effects on the average number of implantations, resorption rate, sex ratio of the fetuses, average foetus weight, average placenta weight, incidence of foetus with skeletal variation, runts, malformation rate	2	Lorke D. and Machemer L. (1983)
Long Evans Rats (25 inseminated virgin rats/group) Doses : 0, 10, 30, 100 mg/kg bw (ca. 0, 14, 42, 140 mg/kg of cyclohexylamine) Exposure : GD 6-15, gavage Test material (CAS number): 4998-76-9 Guideline : US-FDA	NOAEL (maternal toxicity) : 42 mg/kg bw/d Jsign bwg at 140mg during the treatment period (39.9** vs 56.6g in control group) and during the entire pregnancy (133.8* vs 146.0g in control group) NOAEL (developmental toxicity) : 42 mg/kg bw/d Jsign at 140mg of fetal weight (3.37**g vs 4.03 in control group) and placental weight (0.47**g vs 0.56 in control group) No effects on the average number of implantations, resorption rate, sex ratio of the fetuses, incidence of foetus with skeletal variation, runts, malformation rate	2	Lorke D. and Machemer L. (1983)
Rats (Wistar-Imamichi) (15/group) Doses : 0, 1.8, 3.6, 18, 36 mg/kg bw/d Exposure : gavage, GD7-13 Test material (CAS number) : 108-91-8	NOAEL (maternal toxicity) : 18mg/kg bw/d ↓ bwg, food consumption NOAEL (developmental toxicity) : 36 mg/kg bw/d No abnormalities	eMSCA supports a reliability of 4 (no more information available)	Tanaka S. <i>et al.</i> (1973)
Mice Doses : 0, 61, 77, 122 mg/kg bw Exposure : IP, GD 11 Test material (CAS number) : 108-91-8	LOAEL (fetotoxicity) : 61 mg/kg bw ↓sign fetal bw (1.61g, 1.49, 1.47, 1.43g respectively at 0, 61, 77, 122 mg)	4	Gibson J.E. and Becker B.A. (1971)
Mice Doses : 0, 20, 50, 100 mg/kg bw/d Exposure : GD 6-11,	NOAEL (maternal toxicity) : 50 mg/kg bw/d Midly lethal at 100 mg NOAEL (embryotoxicity) : 50	4	Takano K. and Suzuki M. (1971)

gavage Test material (CAS number) : 108-91-8	mg/kg bw/d ↓sign body weight of living fetuses at 100mg No teratogenic effects observed		
In rats and rabbits Doses : 0, 1.5 and 15 mg/kg bw/d Exposure : Before and during mating, gestation and lactation in both sexes, + during the critical period of organogenesis in females Test material (CAS number) : 27817-50-1	No NOAEL identified More resporption site No skeletal, internal or external abnormalities	4	Kennedy G.L. <i>et al.</i> (1969)
Monkey Doses : 0, 25, 50, 75 mg/kg bw/d Oral Exposure : GD 20-45 Test material : cyclohexylamine	No significant teratogenic or embryotoxic effects.	eMSCA supports a reliability of 4 (no more information available)	Wilson J.G. (1972)

The data presented result from older studies, not following a OECD-guideline and therefore, several parameters are missing. The data however show a concern for fertility, which is covered by the harmonised classification as repr. Cat. 2. Moreover, due to the known corrosive property and the specific fishy smell of the substance, in combination of the use which is limited to industrial and professional settings, the eMSCA concludes that no further testing is required.

7.9.7.3. Other informations

Table 25 : summary of studies

Method	Result	Rel.	Reference
In vitro	0.1 mM : no morphological changes		Creasy
Primary cell	throughout the 72h culture period		D.M. <i>et al.</i>
cultures from	1 mM : 24h : foci of Sertoli cell		(1990)
testis	vacuolation with eosinophilic inclusions		
Doses : 0,	but the germ cell populations appeared		
0.1, 1, 3 and	unaffected		
10mM used	After 48h : occasional foci of more		
with four	severe sertoli cell vacuolation associated		
culture	with germ cell debris.		
dishes at	3 mM : changes in Sertoli cells and germ		
each level	cells after 24h		
Test material	After 48 and 72h : Sertoli cell		
(CAS	vacuolation was extensive and most		
number) :	germ cells were vacuolated.		
4998-76-9)	10 mM : overtly toxic. After 24h : all		
	Sertoli cells exhibited marked vacuolation		
	+ reduction in the number of cells		
	present.		
	After 72h : very few cells remained in		
	the cultures and those present were		
	abnormal		
In male rat	Testis :	2	Creasy

(Wistar) : 10 for the control groups and 15 for treated	After 3w treated ra cell vacuo spermato Les	of exposure ats exhibite plation + fo cytes or sp ss than 10%	e: 4 out of d basal foc cal loss of ermatogon 6 of tubule	15 i of Sertoli ia s was		D.M. <i>et al.</i> (1990)
groups Exposure : 1, 3, 7, 9 and 13w Doses : 0, 396 mg/kg bw/d, feed Test material (CAS number) : 4998-76-9	affected After 7w showed S proportio greater a 3w. + foc 1 rat of with exter and a ger depletion spermatic After 9w germ cell tubules a germ cell vacuolatic After 13w tubules w generaliz depletion Epididym After 7w showed p showed a spermato of exfolia debris in After 13w vacuolatic for 13w tubules w generaliz depletion	of exposure Sertoli cell v n of affecte nd was more cal depletion exhibited a nsive Serto neralized de of spermat ds. : 5 rats exh depletion a nd 10 rats depletion a on. / : in 5 rats vere affecte ed germ ce were observed is : and more : prominent te marked de zoa and an ted germ ce the epididy / : 3 treated on of the epididy / : 3 treated on of the epididy / : 3 treated	e : all treat vacuolation d tubules v re affected n of germ of more seve li cell vacu egeneration tocytes and hibited gen affecting ov showed on and sertoli , less than d and in 10 Il degenerat rved animals w esticular le ecrease or increased ells and cel mal lumen d rats show pithelial lin o abnormal	ed rats . The was than after cells. re lesion olation n and d eralized ver 75% of ly focal cell 10% of 0 rats ation and hich sions also absence of numbers lular ved cystic ing in the ities		
Wistar Rat and MF1 mice, male Doses : 0, 400 mg/kg bw/d Exposure : 13w, feed Test material (CAS number) : 4998-76-9	J bwg in i relative species o Histo : at of rats (V All DA rat extensive spermato spermato accompan apparent hyperplas In rats : o sperm co exfoliated	testes weig f rats (DA r rophy of te vistar and E s and 6 wis germ cell gonia, sper ds in 75-10 hied by var Leydig cell sia. epididymis ntent and in germ cells	bA fats ght only in rats) stes in the DA rats) star rats sh loss with d matocytes 0% of tubu ying degree hypertrop showed a c ncreased n in the lum	2	(1989)	
	rat	Bw (g) Testis weight (g) Rel. testis	0.44	287* 1.21 0.43		

		weiaht				
		(q/100q)				
	DA rat	Bw (g)	278	214*		
		Testis	1.29	0.55*		
		weight				
		(g)				
		Rel.	0.47	0.26*		
		testis				
		weight				
		(g/100g)				
	MF1	Bw (g)	33	37*		
	mouse	Testis	0.11	0.13		
		weight				
		(g) Dol	0.26	0.27		
		Kel.	0.36	0.37		
		woight				
		(a/100a)				
In male rate :	Rat · by	(g/100g) va motor a	ctivity to	ticular and	4	lames R W
0 200 ma/ka	seminal v	veiaht test	osterone		-	et al
bw/d	concentra	ation, spern	natogenesi	s		(1981)
In male doos	↑ FSH c	concentratio	n	5		(1901)
: 250 mg/kg	Dog:↓s	permatids,	spermatoq	enesis		
bw/d	(reversib	le)				
Exposure :	-	-				
9w, gavage						
Test material						
(CAS						
number) :						
108-91-8				o ()		
Rat	NOAEL (t	esticular eff	rects): 10	0 mg/kg	4	Brune H. <i>et</i>
Doses : $0,$	DW/a	all groups				al. (1978)
30, 100, 200, 300 mg/kg	↓ Dwy III	all groups	abt (at 200) and 300		
bw/d	v siyii re: ma/ka hv	v/d) + testi	cular lesio	ns		
Exposure :	(degener	ative chang	es in the t	ubules		
13w	giant cell	formation a	and atroph	v)		
Test material	9.2.10 001					
(CAS						
number) :						
108-91-8						
Rat	↓sign bwg	(males: 3	72, 338, 2	74g at 0,	eMSCA	Gaunt I.F.
Doses : 0,	2000 and	l 6000ppm,	females :	201, 160,	supports a	et al.
600, 2000,	133g at 0), 2000 and	6000ppm)	reliability of	(1974)
6000 ppm	↓sign relat	tive gonads	weight (r	nales :	4 (no more	
(ca. 0, 30,	0.67 at 6	000ppm vs	0.81mg/1	00g bw in	information	
105, 343	control g	roup; remai	es: 56 at	2000 and	avallable)	
mg/kg bw/d)	55 at 600	o ppm vs 4	13mg/100g	j dw in		
13w diat		enermatore	nocic and	tubular		
Test material	atrophy i	n testes at	2000 and i	5000nnm		
(CAS				oooppin		
number) :						
4998-76-9						
Male Rat	NOAEL (r	eproductive	e organs) :	2000 ppm	eMSCA	Mason P.L.
(Wistar and	↓sign bwg	at 6000 pp	m (Wistar	: 323,	supports a	and
Sprague	314, 269	and 181g a	and Spragu	le Dawley	reliability of	Thompson
Dawley)	438, 422	, 380 and 2	55g at 0, (500, 2000	4 (no more	G.R. (1977)

Doses : 0, 600, 2000, 6000 ppm (ca. 0, 30, 105, 343 mg/kg bw/d) Exposure : 13w, feed Test material (CAS number) : 4998-76-9	and 6000ppm) Jsign testes weight (no data available), 1sign testicular damage in both strains at 6000ppm + no or immobile spermatozoa increased number of decapited sperms in Wistar rats	information available)	
Monkey Doses : 1w 2*17mg/kg bw/d, 1w 2*34mg/kg bw/d, 5w 2*50mg/kg bw/d, 4w 2*17mg/kg bw/d Exposure : 7w and 4w, oral	No NOAEL identified ↓ food intake Testicular damage, effects on spermatogenesis	eMSCA supports a reliability of 4 (no more information available)	Scientific Committee on Food (1995)

Some studies showed lesions in testis (Sertoli cells affected, decrease of testis weight, spermatogenesis affected, ...).

The data presented result from older studies, not following a guideline and therefore, several parameters are missing. The data however show a concern for fertility, which is covered by the harmonised classification as repr. Cat. 2. Moreover, due to the known corrosive property and the specific fishy smell of the substance, in combination of the use which is limited to industrial and professional settings, the eMSCA concludes that no further testing is required.

7.9.7.4. Summary and conclusion

Old studies showed effects on testes such as decreased testes weight, testicular atrophy, degeneration of tubuli and reduced spermatogenesis.

The data presented result from older studies, not following a guideline and therefore, several parameters are missing. The data however show a concern for fertility (decreased testes weight, testicular atrophy, degeneration of tubuli and reduced spermatogenesis), which is covered by the harmonised classification as Repr. Cat. 2, H361f. No new data became available since. Moreover, due to the known corrosive property and the specific fishy smell of the substance, in combination of the use which is limited to industrial and professional settings, it seems that exposure to the substance at the workplace will not be unremarked and protective measures can be expected to be in place.

Based on all this information taken together in a weight of evidence approach, the eMSCA concludes that despite the questions that can be raised regarding the reliability of the available long term reproductive toxicity test, currently there is no concern that arises from the uses of the substance as explained above that would merit requiering further information under this substance evaluation or regulatory action.

7.9.8. Hazard assessment of physico-chemical properties

Not evaluated

7.9.9. Selection of the critical DNEL(s)/DMEL(s) and/or qualitative/semi-quantitative descriptors for critical health effects

Not evaluated

7.9.10. Conclusions of the human health hazard assessment and related classification and labelling

Based on the available data, the eMSCA agrees with the classification as Repr. 2; H361f (area of initial concern) and with the classification as Acute Tox. 4* H302, Acute Tox. H312 and Skin Corr. 1B H314.

7.10. Assessment of endocrine disrupting (ED) properties

7.10.1. Endocrine disruption – Environment

Not evaluated

7.10.2. Endocrine disruption - Human health

Not evaluated

7.10.3. Conclusion on endocrine disrupting properties (combined/separate)

Not evaluated

7.11. PBT and VPVB assessment

Persistence: The substance degraded 92% within 20 days in a ready biodegradable test. The P criterion is thus not fulfilled.

Bioaccumulation: The log Kow value is <3.7 and does not meet the screening criterion for B.

Toxicity: The substance is classified as Repr. 2, H361f and thus fulfills the T criterion according to Annex XIII.

Based on the available information, the eMSCA agrees with the conclusion of the registrant(s) that cyclohexylamine is not PBT/vPvB.

7.12. Exposure assessment

The registrant presented exposure scenarios for 3 different uses of the substance:

- Laboratory agent
- Corrosion inhibitor

Substance Evaluation Conclusion document

• pH-regulating agents

The exposure and risk for the environment and for workers was assessed by the eMSCA for manufacture, formulation and use of the substance.

7.12.1. Human health

7.12.1.1. Worker

The eMSCA evaluated the dermal, oral and respiratory exposure to workers for all identified uses, using ECETOC TRA v3.1. The PROCs (1, 2, 3, 4, 8a, 8b, 9 and 15) and duration of exposure proposed by the registrant seemed acceptable. The eMSCA can accept the protective values for respiratory equipment and the use of chemical resistant gloves and these were also included in the eMSCAs assessment.

7.12.1.2. Consumer

No consumer exposure is expected as there are no consumer uses for the substance.

7.12.2. Environment

The eMSCA evaluated the exposure to the aquatic, terrestrial and atmospheric compartment using EUSES 2.1.1 for the manufacture, formulation and three use categories of the substance: laboratory agent, corrosion inhibitor and pH-regulating agents. The registration dossier also mentioned a use as cutting oil, but the registrant mentioned no known tonnage for this use and no evaluation of this use was included in the assessment of the registrant. The eMSCA did not include this use in its assessment.

The evaluation was based on default values or information provided by the registrant where appropriate. The tonnage used for manufacture was the highest tonnage mentioned in the registration dossier. The registrant states that all liquid and solid waste produced during manufacture is incinerated. The eMSCA therefor did not take any emission from manufacture into account.

The registrant indicated that a consideral amount of the manufactured substance is exported outside the EU or used as an intermediate under stricktly controlled conditions. The tonnage band for non-exported and non-intermediate uses is 100-1000 t/a. No information was available on the distribution of the tonnage to the different uses. As a worst case estimation the maximum tonnage was introduced in EUSES for each of the three use categories.

The registrant provided an estimation of the number of industrial sites the substance is used, but given the remaining uncertainty the eMSCA used the default values of EUSES in their evaluation. The registrant also provided an estimation of the number of emission days. As it was unclear how the registrant calculated the number of emission days, the eMSCA used the default values of EUSES. Due to the use of the default values for the number of industrial sites and the number of emission days, the RCRs calculated by the eMSCA are more conservative than those proposed by the registrant.

7.13. Risk characterisation

7.13.1. Human health

7.13.1.1. Worker

Based on the available hazard and exposure data, the eMSCA agrees with the registrant and concludes that no immediate risk to workers is expected.

7.13.1.2. Consumer

There are no consumer uses and therefore no risk to consumers is expected.

7.13.2. Environment

Based on the available data, a limited risk was calculated for the use of laboratory agents and pH regulating agents and the formulation and use of corrosion inhibitors and this for fresh water, fresh water sediment and soil (RCR values close to 1). Due to the application of default values regarding the tonnage distribution for the different uses, the number of industrial sites and number of emission days, these calculations probably present an overestimation of the risk.

Given the above considerations, the eMSCA concludes that there is probably no risk for the different environmental compartments with the current uses and tonnage of the substance that would merit follow-up regulatory action at EU level.

7.14. References

Anderson D. and Styles J.A. (1978), *The bacterial mutation test*, Br. J. Cancer, 37, 924-930.

Air prods & Chem Inc (1987), *Cyclohexylamine : final report on distribution of cyclohexylamine at equilibrium in the rat*, EPA/OTS0540890.

Bernhard K. (1937), *Stoffwechselversuche zur Dehydrierung des Cyclohexanringes*, Hoppe-Seyler's Zeitschrift f. physiol.|Chemie, 248, 256-276.

Bopp B.A. *et al.* (1986), *Toxicological aspects of cyclamate and cyclohexylamine*, Crit. Rev. Toxicol., 16, 213-306.

Brewen J.G. *et al.* (1971), *Cytogenetic effects of cyclohexylamine and N-OH-cyclohexylamine on human leucocytesn Chinese hamster bone marrow*, Nature New Biol., 230, 15-19.

Brune H. *et al.* (1978), *Establishment of the no-effect dosage of cyclohexylamine hydrochloride in male Sprague-Dawley rats with respect to growth and testicular atrophy*, cited in Bopp B.A. *et al.* (1986).

Brusick D. *et al.* (1989), *Assessment oft he genotoxicity of calcium cyclamate and cyclohexylamine*, Envir. Mol. Mutagen., 14, 188-199.

Buselmaier W. et al. (1972), Mutagenitätsuntersucungen mit Pestiziden in Host-mediated assay und mit den dominanten letaltest an der Maus, Biol. Zbl., 91, 311-325.

Calamari D. et al. (1980), *biodegradation and toxicity of selected amines on aquatic organisms,* Chemosphere, 9, 753-762.

Casto B.C. (1981), *detection of chemical carcinogens and mutagens in hamster cells by enhancement of adenovirus transformation*, Adv. Mod. Environ. Toxicol., 1, 241-271.

Cattanach B.M. (1976), *The mutagenicity of cyclamates and their metabolites*, Mutat. Res., 39, 1-28.

Cattanach B.M. And Pollard C.E. (1971), *Mutagenicity tests with cyclohexylamine*, Mutat. Res., 12, 472-474.

Carswell T.S. and Morill H.L. (1937), *Cyclohexylamine and dicyclohexylamine properties and uses*, Ind. Eng. Chem., 29, 1247-1251.

Chauhan P.S. *et al.* (1975), *An investigation of the induction of dominant lethal mutations in cyclohexylamine treated mice*, Proc. Symp. Mutagen. Carcinogen. Teratogen. Chem., 34-44.

Collings A.J. and Kirby W.W. (1974), *the toxicity of cyclohexylamine hydrochloride in the rat, 90 day feeding study*, cited in Bopp B.A. *et al.* (1986), *Toxicological aspects of cyclamate and cyclohexylamine*, Crit. Rev. Toxicol., 16, 213-306.

Creasy D.M. *et al.* (1990), *The morphogenesis of cyclohexylamine induced testicular atrophy in the rat : in vivo and in vitro studies*, Exp. Mol. Pathol. 52, 155-169.

Dick C.E. *et al.* (1974), *Cyclamate and cyclohexylamine : lack of effects on the chromosomes of man and rats in vivo*, Mutation res., 26, 199-203.

Dixon C.H. (1973), *In vitro effects of sodium and calcium cyclamatesm cyclohexylamine and suchrose on growth rate and chromosomes of Chinese hamster fibroblasts*, Diss. Abstr. Int. B 33, 5933B.

Eichelbaum M. *et al.* (1974), *Pharmacokinetics, carciovascular and metabolic actions of cyclohexylamine in man*, Arch. Toxicol., 31, 243-263.

Ellio T.H. *et al.* (1968), *The metabolism of cyclohexylamine in rabbits*, Biochem. J., 109, 11-12.

Fahrig R. (1982), *Effects of food additives in the mammalian spot test*, Prog. Clin. Biol. Res., 109, 339-348.

Fluck E.R. *et al.* (1976), *Evaluation of a DNA polymerase-deficient mutant of E. Coli for the rapid detection of carcinogens*, Chem.-Biol. Interactions, 15, 219-231.

Gagnaire F. *et al.* (1989), *Nasal irritation and pulmonary toxicity of alphatic amines in mice*, J. Appl. Toxicol., 9, 301-304.

Gaunt I.F. *et al.* (1974), *Short term toxicity of cyclohexylamine in the rat*, Food Cosmet. Toxicol., 12, 609-624

Gaunt I.F. *et al.* (1976), *Long term toxicity of cyclohexylamine hydrochloride in the rat*, Food Cosmet. Toxicol., 14, 255-267.

Gibson J.E. and Becker B.A. (1971), *Teratogenicity of structural truncates of cycliophosphamide in mice*, Teratology, 4, 141-150.

Gondry E. (1973), *Recherches sur la toxicité de la cyclohexylamine, de la cyclohexanone et du cyclohexanol, metabolites du cyclamate*, Europ. J. Toxicol., 5, 227-238.

Green S. *et al.* (1972), *Effects of cyclohexylamine on the fertilita of male rats*, Food cosmet. Toxicol., 10, 29-34.

Hardy J. *et al.* (1976), *Long term toxicity of cyclohexylamine hydrochloride in mice*, Food Cosemt. Toxicol., 14, 269-276.

Herbold B.A. and Lorke D. (1980), *On the mutagenicity of artificial sweeteners and their main impurities examined in the salmonella/microsome test*, Mutation res, 74, 155-156.

Izmerov *et al.* (1982), *Toxicometric parameters of industrial toxic/chemicals under single exposure*, Moscow, center of international projects, GKNT, 41.

James R.W. *et al.* (1981), *Testicular responses of rats and dogs to cyclohexylamine overdosage*, Food Cosmet. Toxicol., 19, 291-296.

Japonese Journal of pharmacology (1969), 65, 53S

Kennedy G.L. *et al.* (1969), *Reproduction studies in rats and rabbits with cyclohexylamine sulphate*, Toxicol. Appl. Pharmacol., 14, 656 No. 110.

Khera K.S. and Stoltz D.R. (1970), *Effects of cyclohexylamine on rat fertility*, Experientia, 26, 761-762.

Khera K.S *et al.* (1971), *Reproduction study in rats orally treated cyclohexylamine sulphate*, Toxicol. Appl. Pharmacol., 18, 263-268.

Koizumi A. *et al.* (1971), Cytokinetik study on toxic action of sodium cyclamate and cyclohexylamine, Ind. Health, 9, 188-193.

Kroes R. *et al.* (1977), *Long term toxicity and reproduction study (including a teratogenicity study) with cyclamate, saccharin and cyclohexylamine*, Toxicology, 8, 285-300.

Kurebayashi H. *et al.* (1979), *Oxidative deamination of cyclohexylamine and its homologues by rabbit liver microsomes*, Biochem. Pharmacol., 28, 1719-1726.

Lee I.P. and Dixon R.L. (1972), *various factors affecting the lethality of cyclohexylamine*, Toxicol. Appl. Pharmacol., 22, 465-473.

Legator M.S. *et al.* (1969), *Cytogenetic studies in rats of cyclohexylamine a metabolite of cyclamate*, Science, 165, 1139-1140.

Liebsch M. et al. (1995), Aplication of the human dermal model/skin2 ZK 1350 to phototoxicity and skin corrosive testing, Toxic. In Vitro, 9, 557-562.

Lomonova G.V. (1963), *Toxicity of cyclohexylamine and dicyclohexylamine*, Gig Trud. Prof. Zabol., 7, 51-56.

Lorke D. and Machemer L. (1974), *Investigation of cyclohexylamine sulfatefor dominant lethal effects in the mouse*, Toxicology, 2, 231-237.

Lorke D. and Machemer L. (1975), *Einfluss einer mehrwöchigen Behandlung männlicher und weiblicher Mmäuse mit Saccharin, Cyclamat oder cyclohexylaminsulfat auf Fertilität und Dominant-Letal-effekt*, Humangenet., 26, 199-205.

Lorke D. and Machemer L. (1983), *The effect of cyclohexylamine on the embryo following oral administration to rats and mice*, Toxicology Letters, 17, 137-143.

Machemer L. and Lorke D. (1976), *Evaluation of the mutagenic potential of cyclohexylamine on spermatogonia of the chinese hamster*, Mutat. Res., 40, 243-250.

MAK Collection for Occupational Health and safety (Value Documentation 2006) (http://onlinelibrary.wiley.com/doi/10.1002/3527600418.mb10891e0022/full)

Mallette F.S. and Von Haam E. (1952), *Studies on the toxicity and skin effects of compounds used in the rubber and plastics industries*, A.M.A Arch. Ind. Hyg. Occup. Med., 5, 311-317.

Marhold J. (1986), *Toxikologie*, Preheld Prumyslove Toxikologie : Organicke, 454.

Mason P.L. and Thompson G.R. (1977), *Testicular effects of cyclohexylamine hydrochloride in the rat*, Toxicology, 8, 143-156.

Miyata T. *et al.* (1969), *Pharmacological characteristics of cyclohexylamine, one of metabolites of cyclamate*, Live Sci., 8, 843-853.

Mortelmans K. *et al.* (1986), Salmonella mutagenicity tests : II. Results from the testing of 270 chemicals, Environ. Mutagen., 8, Suppl. 7, 1-119.

Mostardi R.A. *et al.* (1972), *Cytogenetic studies of cyclohexylamine, metabolite of cyclamate*, Ohio J. Sci., 72, 313-318.

Nielsen G.D. and Yamagiwa M. (1989), *Structure activity relationship of airway irritating aliphatic amines, receptor activation mechanisms and predicted industrial exposure limits*, Chem. Biol. Interact., 71, 223-244.

Oser B.L. *et al.* (1976), *Long term and multigeneration toxicity studies with cyclohexylamine hydrochloride*, Toxicology, 6, 47-65.

Petersen K.W. *Et al.* (1972), *Dominant lethal effects of cyclohexylamine in D57B1/Fe mice*, Mutat. Res., 14, 126-129.

Pharmaceutical chemistry journal (1988), 22, 469

Pitkin R.M. *et al.* (1969), *Cyclamate and cyclohexylamine : transfer across the hemochorial placenta*, Proc. Soc. Exp. Biol., 132, 993-995.

Pliss G.B. (1958), *The carcinogenic activity of dicyclohexylamine and its nitric salt*, Vopr. Onkol., 3, 659-668.

Price J.M. *et al.* (1970), *Bladder tumors in rats fed cyclohexylamine or high doses of a mixture of cyclamate and saccharin*, Science, 167, 1131-1132.

Purchase IFH (1978), *An evaluation of 6 short term tests for detecting organic chemical carcinogens*, Br J. Cancer, 37, 873-958.

Rao V.S. and Aiyar A.S. (1975), *Mutagenicity evaluation studies with food additives and radiolytic products of sugars*, Proc. Symp. Mutagen./Carcinogen. Teratogen. Chem., 104-114.

Randall D.J. and Bannister R.M. (1990), *Acute toxicologic evaluation of cyclohexylamine*, Acute Toxic data, 1, 65-66.

Renwick A.G. And Williams R.T. (1972), *the metabolites of cyclohexylamine in man and certain animals*, Biochem. J., 129, 857-867.

Roberts A. and Renwick A.G. (1985), *The metabolism of* [14]C-Cyclohexylamine in mice and two strains of rats, Xenobiotical, 15, 477-483.

Roberts A. *et al.* (1989), *The metabolism and testicular toxicity of cyclohexylamine in rats and mice during chronic dietary administration*, Toxicol. Appl. Pharmacol., 98, 216-229.

Schmaehl D. (1973), *fehlen einer kanzerogenen wirkung von cyclamatm cyclohexylamin und saccharin bei ratten*, Arztneimittelforsch, 23, 1466-1470.

Scientific Committee on Food (1995), *Opinion on cclanic acid and its sodium and calcium salts, EU food science and techniques, Report of the scientific committee for food, thirty-eight series.*

Smyth H.F *et al.* (1969), *Range-finding Toxicity data : list VII*, Am. Ind. Hyg. Assoc. J., 30, 470-476.

Styles J.A. (1978), Mammalian cell transformation in vitro, Br J. Cancer, 37, 931-935

Takahashi A. (1976), *Problems of hygiene maintenance for food coming into contact with rubber and plastics products*, Int. Polymer sci. Technol., 3, 93-105.

Takano K. and Suzuki M. (1971), *cyclohexylamine a chromosome aberration inducing substance : no teratogenicity in mice*, Senen IjoCongenital anomalies, 11, 51-57.

Tanaka S. *et al.* (1973), *Studies on teratogenicity of food additives (2) effects of cyclohexylamine and cyclohexylamine sulphate on the fetal development in rats*, J. Food Hyg. Soc. Japan, 14, 542-548.

Turner J.H. And Hutchinson D.L. (1974), *Cyclohexylamine mutagenicity : an in vivo evaluation utilizing fetal lambs*, Mutat. Res., 26, 407-412.

Van Went-de-Vries G.F. *et al.* (1975), *In vivo chromosome damaging effect of cyclohexylamine in the Chinese hamster*, Fd Cosmet. Toxicol., 13, 415-418.

Watrous R.M. and Schulz H.N. (1950), *Cyclohexylamine p-chlornitrobenzene, 2-aminopyridine : toxic effects in industrial use*, Ind. Med. Surg., 19, 317-320.

Wilson J.G. (1972), *use of primates in teratological investigations*, Med primatology : Proc 3rd Conf exp Med Surg Primates Lyon, part III, 286-295.

Wolff S. (1983), *Sister chromatid exchange as a test for mutagenic carcinogens*, Ann. N.Y. Acad. Sci., 407, 142-153.

Yoshioka Y. et al. (1986), Evaluation of the Test method "Activated sludge, respiration inhibition test" Proposed by the OECD. Ecotoxicology and environmenial safety 12, 206-212.

7.15. Abbreviations

AOP : Atmospheric Oxidation Program

Approx. : approximately

- Bw : body weight
- BWG : body weight gain
- CHA : Cyclohexylamine
- DA rat : Dark Agouti
- EORGTS : Extended One Generation Reproductive Toxicity Test
- FSH : Follicle Stimulating Hormone
- GD : gestanional day
- GLP : Good Lanoratory practice
- Hb : Hemoglobin
- IP : intraperitoneal
- ISO : International Standard Organisation
- IV : intravenous
- LC50 : lethal concentration 50%
- LD50 : dose lethal 50%

Substance Evaluation Conclusion document

- LOAEL : Lowest Observed Adverse Effect Level
- Met. act. : metabolic activation
- NADPH : Nicotinamide adenine dinucleotide phosphate oxidase
- NOAEL : No Observed Adverse Effect Level
- OECD : Organization for Economic Co-operation and Development
- PCV : Packed Cell volume
- RBC : Red Blood Cell
- RD50 : 50% decrease in the respiratory rate
- Rel. : reliability
- SC : subcutaneous
- SD : Sprague Dawley
- SIEF : Substance Information Exchange Forums
- Sign. : Significant
- S. Typh : Salmonella Typhimurium
- US-EPA : US environmental Protection Agency
- US-FDA : USD Food and drug Administration