Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products

PRODUCT ASSESSMENT REPORT OF A BIOCIDAL PRODUCT FOR NATIONAL AUTHORISATION APPLICATIONS

(Submitted by the evaluating Competent Authority)

V33 TRAITEMENT MULTI USAGES

Product type 8

Cypermethrin, Propiconazole and Tebuconazole as included in the Union list of approved active substances

Case Number in R4BP: BC-TF017337-39

Evaluating Competent Authority: FR

Date: April 2017

Contents

1	CONCLUS	ION	2
2	ASSESSM	ENT REPORT	3
	2.1 SUMM	ARY OF THE PRODUCT ASSESSMENT	3
	2.1.1 Adr	ninistrative information	3
	2.1.1.1	Identifier of the product	3
	2.1.1.2	Authorisation holder	3
	2.1.1.3	Manufacturer(s) of the product	3
	2.1.1.4	Manufacturer(s) of the active substance(s)	3
	2.1.2 Pro	duct composition and formulation	4
	2.1.2.1	Identity of the active substance	
	2.1.2.2	Candidate(s) for substitution	
	2.1.2.3	Qualitative and quantitative information on the composition of the biocidal product	
	2.1.2.4	Information on technical equivalence	
	2.1.2.5	Information on the substance(s) of concern	
	2.1.2.6	Type of formulation	
		zard and precautionary statements	
		horised use(s)	
	2.1.4.1	Use description: Preventive treatment for wood of use classes 1 and 2	
	2.1.4.2	Use description: Preventive treatment for wood of use classe 3	
	2.1.4.3	Use description: Curative treatment for wood in service	
		neral directions for use	
	2.1.5.1	Instructions for use	
	2.1.5.2	Risk mitigation measures	
	2.1.5.3	Particulars of likely direct or indirect effects, first aid instructions and emergency measures to pro	
	2.1.5.4	Instructions for safe disposal of the product and its packaging	
	2.1.5.4	Conditions of storage and shelf-life of the product under normal conditions of storage	
		er information	
		ckaging of the biocidal product	
		cumentation	
	2.1.8.1	Data submitted in relation to product application	
	2.1.8.2	Access to documentation	
	-	SMENT OF THE BIOCIDAL PRODUCT	
		ended use(s) as applied for by the applicant	
		/sico, chemical and technical properties	
	2.2.2.1	Active ingredient	
	2.2.2.2	Biocidal product	
	2.2.3 Phy	vsical hazards and respective characteristics	24
	2.2.4 Me	thods for detection and identification	27
	2.2.4.1	Physico-chemical properties and Analytical method for determination of active ingredient and im	purities
	in the tec	hnical active ingredient	27
	2.2.4.2	Analytical method for determining the active substance and relevant component in the biocidal p 27	roduct
	2.2.4.3	Analytical methods for determining relevant components and/or residues in different matrices	28
	2.2.5 Ris	k assessment for Physico-chemical properties	38
	2.2.6 Effi	cacy against target organisms	38
	2.2.6.1	Function and field of use	38
	2.2.6.2	Organisms to be controlled and products, organisms or objects to be protected	
	2.2.6.3	Effect on target organisms and efficacy	
	2.2.6.4	Mode of action including time delay	
	2.2.6.5	Occurrence of resistance - resistance management / Unacceptable Effect	

2.2.6.6	Evaluation of the label claim	
2.2.6.7	Summary of efficacy assessment	40
2.2.7 Ris	sk assessment for human health	
2.2.7.1	Assessment of effects on Human Health	41
2.2.7.2	Human exposure assessment	49
2.2.7.3	Risk assessment for human health	
2.2.8 Ris	sk assessment for the environment	
2.2.8.1	Fate and distribution in the environment of the active substance AAA	71
2.2.8.2	Effects on environmental organisms for active substance	76
2.2.8.3	Effects on environmental organisms for biocidal product	80
2.2.8.4	Environmental exposure assessment	80
2.2.8.5	Local PECs	
2.2.8.6	Risk characterisation for the environment	
2.2.8.7	Conclusions	
2.2.9 Me	easures to protect man, animals and the environment	
2.2.10	Comparative assessment	
ANNEX 2: LIST	r of studies reviewed	157
ANNEX 4: TOX	(ICOLOGY AND METABOLISM -ACTIVE SUBSTANCE	
ANNEX 5: TOX	(ICOLOGY – BIOCIDAL PRODUCT	
ANNEX 6: SAF	ETY FOR PROFESSIONAL OPERATORS	

ANNEX 7: SAFETY FOR NON-PROFESSIONAL OPERATORS AND THE GENERAL PUBLIC......167

1 CONCLUSION

• Physico-chemical properties

V33 TRAITEMENT MULTI USAGES is not considered to be potentially explosive nor contains an oxidising agent. The product is not intended to be used in combination with other products. The product is not flammable. Its technical properties indicate that no particular problems are to be expected when it is handled, stored or applied as recommended.

<u>Efficacy assessment</u>

The product shows a sufficient efficacy for the preservation of wood. The product is used:

- for the preventive control of wood boring beetles (*Hylotrupes bajulus, Anobium punctatum* and *Lyctus brunneus*), wood rotting fungi (brown rot and white rot)) and termites (*Reticulitermes spp.* and *Heterotermes spp.*), in use class 1 to 3 by superficial application;.
- for the curative control of wood in service against wood boring beetles (*Hylotrupes bajulus, Anobium punctatum* and *Lyctus brunneus*) and termites (*Reticulitermes spp.* and *Heterotermes spp.*), indoor and outdoor, by superficial application, completed by injection if need be.

The application rates validated are the following:

- Preventive treatments: superficial application at 200 g of product 06LBCEOL20/2PT / m² of wood
- Curative treatment: superficial application at 300 g of product 06LBCEOL20/2PT / m² of wood (injection 150 g of product 06LBCEOL20/2PT / m² of wood if need be).
 - Risk assessment for human health

Risks related to the use of V33 TRAITEMENT MULTI USAGE by professionals and non-professionals are considered acceptable for all the intended uses mentioned above.

Risks related to a secondary exposure to treated wood are considered acceptable except in the case of chewing of a piece of treated wood by an infant, considering a curative treatment (spraying or brushing combined with injection) with an application dose of 450 g/m². Therefore, the curative treatments with the highest application doses and combining a superficial treatment and injection should be restricted to inaccessible woods (construction wood).

<u>Risk for consumers via residues</u>

The acute or chronic exposure to residues in food resulting from the intended uses is unlikely to cause a risk to consumers. Regarding consumer health protection, there are no objections against the intended uses. Wood treated with V33 TRAITEMENT MULTI USAGES must contain label restrictions against use in contact with livestock, food and feed.

• Risk assessment for environment

For use classes 1 and 2, emissions are considered negligible according to PT08 ESD. The risks for the application phase and service life are therefore considered acceptable for treatment in classes 1 and 2.

For the application phase for wood in class 3, risks are only acceptable if emissions to the aquatic and terrestrial compartments are prevented whatever the type of treatment. As a consequence, no application above or near surface water is allowed to protect the aquatic compartment and the ground has to be covered with an appropriate plastic sheet to prevent any emission to the terrestrial compartment.

For the service-life phase of treated wood, considering that no emissions occurs during application with the use of appropriate risk mitigation measures and considering the systematic application of a top-coat after the wood treatment, risks can be considered acceptable for all the compartments whatever the type of treatment.

The risks are also acceptable for the service-life phase using the bridge over pond and noise barrier scenarios, which covers urban direct and indirect releases to the aquatic compartment.

2 ASSESSMENT REPORT

2.1 Summary of the product assessment

2.1.1 Administrative information

2.1.1.1 Identifier of the product

Identifier	Country (if relevant)
06LBCEOL20/2PT	France
V33 TRAITEMENT MULTI USAGES	

2.1.1.2 Authorisation holder

	Name	V33
Name and address of the	Address	La Muyre
authorisation holder		39210 Domblans
		FRANCE
Authorisation number	FR-2017-0027	
Date of the authorisation	10/05/2017	
Expiry date of the authorisation	09/05/2022	

2.1.1.3 Manufacturer(s) of the product

Name of manufacturer	V33
Address of manufacturer	La Muyre
	39210 Domblans
	FRANCE
Location of manufacturing sites	La Muyre
	39210 Domblans
	FRANCE

2.1.1.4 Manufacturer(s) of the active substance(s)

Active substance	Cypermethrin
Name of manufacturer	Arysta LifeScience Benelux
Address of manufacturer	26/1 Rue Renory
	BE-4102 Ougrée
	Belgium
Location of manufacturing sites	Mitchell Cotts Chemicals
	Steanard Lane, Mirfield
	West Yorkshire, WF14 8QB
	United Kingdom
	Gharda Ltd
	D, ½, MIDC, LOTE PARSHURAM TAL. KHED DIST.
	Ratnagiri 415 722, Maharashtra
	India

Active substance	Propiconazole
Name of manufacturer	LANXESS Deutschland GmbH
	Material Protection Products
Address of manufacturer	Kennedyplatz 1
	D-50569 Köln
	Germany
Location of manufacturing sites	Syngenta Crop Protection AG
	CH-1870 Monthey
	Switzerland
	Jiangsu Yangnong Chemical Group Co., Ltd
	Wenfeng Road
	Yangzhou
	Jiangsu 225009, P.R.
	China
	Jiangsu SevenContinent Green Chemical Co., Ltd
	North Area of Dongsha Chem-Zone
	Zhanjiagang
	Jiangsu, 215600, P.R.
	China

Active substance	Tebuconazole
Name of manufacturer	LANXESS Deutschland GmbH
	Material Protection Products
Address of manufacturer	Kennedyplatz 1
	D-50569 Köln
	Germany
Location of manufacturing sites	Bayer Corp., Agriculture Division
5	P.O. Box 4913 Hawthorn Road
	MO 64120-0013 Kansas City
	United-States

2.1.2 **Product composition and formulation**

NB: the full composition of the product according to Annex III Title 1 should be provided in the confidential annex.

Does the product have the same identity and composition as the product evaluated in connection with the approval for listing of the active substance(s) on the Union list of approved active substances under Regulation No. 528/2012?

Yes	
No	\boxtimes

2.1.2.1 Identity of the active substance

• Cypermethrine

Main constituent(s)		
ISO name	Cypermethrin cis/trans +/- 40/60	
IUPAC or EC name	(RS)-α-cyano-3-phenoxybenzyl-(1RS)-cis, trans-3-(2,2-dichlorovinyl)-2,2-	
	dimethylcyclopropane carboxylate	
EC number	257-842-9	
CAS number	52315-07-8	
Index number in Annex VI of CLP	02-2119680758-20-0000	
Minimum purity / content	92.0%	

Structural formula	~

Propiconazole

Ma	in constituent(s)
ISO name	Propiconazole
IUPAC or EC name	1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-
	yl]methyl]-1H-1,2,4-triazole
EC number	262-104-4
CAS number	60207-90-1
Index number in Annex VI of CLP	613-205-00-0
Minimum purity / content	94.0%
Structural formula	

<u>Tebuconazole</u>

Main constituent(s)			
ISO name	Tebuconazole		
IUPAC or EC name	(RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol- 1-ylmethyl)-pentan-3-ol		
EC number	403-640-2		
CAS number	107534-96-3		
Index number in Annex VI of CLP	603-197-00-7		
Minimum purity / content	95.0%		
Structural formula			

2.1.2.2 Candidate(s) for substitution

• Tebuconazole

According to the PT07-AR of tebuconazole (2013), tebuconazole does not fulfil the PBT nor the vPvB criteria. Nonetheless, the substance is candidate for substitution, as it fulfils the P and T criteria.

Common name	IUPAC name	Function	CAS number	EC number	Content (%)
Cypermethrin cis/trans +/- 40/60 (technical)	RS)-α-cyano-3- phenoxybenzyl- (1RS)-cis, trans-3-(2,2- dichlorovinyl)-2,2- dimethylcyclopropane carboxylate	Active substance	52315-07-8	257-842-9	0.18 % (technical) (0.17% pure)
Preventol A 8 Tebuconazole (technical)	(RS)-1-(4- chlorophenyl)-4,4- dimethyl-3-(1H-1,2,4- triazol-1-ylmethyl)- pentan-3-ol.Ratio (1:1)	Active substance	107534-96-3	403-640-2	0.15 % (technical) (0.14% pure)
Preventol A 12 Propiconazole (technical)	1-[[2-(2,4- dichlorophenyl)-4- propyl-1,3-dioxolan- 2-yl]methyl]-1H-1,2,4- triazole	Active substance	60207-90-1	262-104-4	0.14 % (technical) (0.13% pure)

2.1.2.3 Qualitative and quantitative information on the composition of the biocidal product

2.1.2.4 Information on technical equivalence

The origin of propiconazole "Monthey" is the one assessed for the approbation of the active substances as PT8.

The origin for propiconazole "Jiangsu Yangnong Chemical Group Co., Ltd" is not the origin assessed for the approbation of the active substance for PT8. This origin has been found equivalent to the reference source.

The origin for propiconazole "Jiangsu Seven continent Green Chemical Co. Ltd" is not the origin assessed for the approbation of the active substance for PT8. This origin has been found equivalent to the two reference source (decision TAP-D-1182636-27-00 on February 2016).

2.1.2.5 Information on the substance(s) of concern

The product contains 2 preservatives, both under review as active substance in PT06:

- 2-methyl-2H-isothiazol-3-one (MIT, CAS N°2682-20-4);
- 1,2-benzisothiazol-3(2H)-one (BIT, CAS N°2634-33-5).

These 2 substances should therefore be considered as substances of concern. However, as both active substances are under review as PT06, they cannot be currently taking into account for the risk assessment of the product.

2.1.2.6 Type of formulation

EW (emulsion oil in water, ready to use)

2.1.3 Hazard and precautionary statements¹

Classification and labelling of the product according to the Regulation (EC) 1272/2008

Classification	
Hazard category	Aquatic Acute 1
	Aquatic Chronic 1
Hazard statement	H400 – Very toxic to aquatic life
	H410 – Very toxic to aquatic life with long lasting effects
Labelling	
	¥
Signal words	Warning
Hazard statements	H410 – Very toxic to aquatic life with long lasting effects
Precautionary statements	P102: Keep out of reach of children.
2	P103: Read label before use
	P273 – Avoid release to the environment
	P501 – Dispose of contents/container in accordance with
	local/regional/national/international regulation (to be specified).
Note	EUH 208 – Contains propiconazole and 2-methyl-3(2H)-isothiazolone (MIT). May produce an allergic reaction.
	EUH 210: Safety data sheet available on request.

2.1.4 Authorised use(s)

2.1.4.1 Use description: Preventive treatment for wood of use classes 1 and 2

|--|

Product Type	8 – Wood preservatives
Where relevant, an exact	
description of the authorised	Preventive treatment for wood on use classes 1 and 2
use	
Target organism (including	Wood rotting fungi (brown rot and white rot)
development stage)	 Wood boring beetles House longhorn beetle (<i>Hylotrupes bajulus</i>) Common furniture beetle (<i>Anobium punctatum</i>) Powder post beetles (<i>Lyctus brunneus</i>) Termites (<i>Reticulitermes spp.</i> et <i>Heterotermes spp.</i>)
Field of use	Preventive treatment for wood on use classe 1
	Preventive treatment for wood on use classe 2
Application method(s)	Superficial application / brush
	Superficial application / spray

¹ For micro-organisms based products: indication on the need for the biocidal product to carry the biohazard sign specified in Annex II to Directive 2000/54/EC (Biological Agents at Work).

Application rate(s) and frequency	The produit is ready to use. The application is performed by brushing or spraying. The application rate is : - CU1 and 2 : 200 g of product / m ² of wood
Category(ies) of users	Professional and non-professional users
Pack sizes and packaging material	The product is packed in can in steel with polyethylene closure of 0,5L and 1L can in steel with polyethylene closure of 5L and 6L tin in steel with polyethylene closure of 25L and 30L.
	All cans are coated inside with an epoxy pigmented varnish.

2.1.4.1.1 Use-specific instructions for use

_	

	2.1.4.1.2	Use-specific risk mitigation measures	
--	-----------	---------------------------------------	--

- 2.1.4.1.3 Where specific to the use, the particulars of likely direct or indirect effects, first aid instructions and emergency measures to protect the environment
- -2.1.4.1.4 Where specific to the use, the instructions for safe disposal of the product and its packaging
- 2.1.4.1.5 Where specific to the use, the conditions of storage and shelf-life of the product under normal conditions of storage
- -

2.1.4.2 Use description: Preventive treatment for wood of use classe 3

|--|

Product Type	8 – Wood preservatives
Where relevant, an exact description of the authorised use	Preventive treatment for wood on use class 3
Target organism (including development stage)	 Wood rotting fungi (brown rot and white rot) Wood boring beetles House longhorn beetle (<i>Hylotrupes bajulus</i>) Common furniture beetle (<i>Anobium punctatum</i>) Powder post beetles (<i>Lyctus brunneus</i>) Termites (<i>Reticulitermes spp.</i> et <i>Heterotermes spp.</i>)
Field of use	Preventive treatment for wood on use classe 3
Application method(s)	Superficial application / brush Superficial application / spray
Application rate(s) and frequency	The produit is ready to use.

	The application is performed by brushing or spraying. The application rate is : - CU3: 200 g of product / m ² of wood (with a top coat)
Category(ies) of users	Professional and non-professional users
Pack sizes and packaging material	 The product is packed in can in steel with polyethylene closure of 0,5L and 1L can in steel with polyethylene closure of 5L and 6L tin in steel with polyethylene closure of 25L and 30L. All cans are coated inside with an epoxy pigmented varnish.

2.1.4.2.1 Use-specific instructions for use

For preventive superficial application on wood for use class 3, a top coat has to be applied.

2.1.4.2.2 Use-specific risk mitigation measures

- The outdoor use of treated wood is allowed only if wood preservation is followed by the application of a top-coat which does not contain biocides. This top-coat has to be stable under the standard EN 927-2 in order to limit biocide leaching all along the service-life of wood.
- Do not apply where the product can reach surface water during outdoor application.
- For outdoor treatment, cover the ground with an appropriate plastic sheet to prevent any emission to the terrestrial compartment.
- For outdoor treatment, do not apply under rainfall or when rainfall is expected during the next 24 hours.

2.1.4.2.3 Where specific to the use, the particulars of likely direct or indirect effects, first aid instructions and emergency measures to protect the environment

-

2.1.4.2.4 Where specific to the use, the instructions for safe disposal of the product and its packaging

-

2.1.4.2.5 Where specific to the use, the conditions of storage and shelf-life of the product under normal conditions of storage

-

2.1.4.3 Use description: Curative treatment for wood in service

Table 2.1-3. Use # 3 – Curative treatment for wood in service

Product Type	8 – Wood preservatives
Where relevant, an exact description of the authorised use	Curative treatment for wood in service
Target organism (including development stage)	 Wood boring beetles House longhorn beetle (<i>Hylotrupes bajulus</i>) Common furniture beetle (<i>Anobium punctatum</i>) Powder post beetles (<i>Lyctus brunneus</i>) Termites (<i>Reticulitermes spp.</i> et <i>Heterotermes spp.</i>)
Field of use	Curative treatment for wood in service (except for wood in permanent contact with soil or submerged)

Application method(s)	Superficial application / brush
	Superficial application / spray
	Injection (combined with a superficial application)
Application rate(s) and	The produit is ready to use.
frequency	
	The application is performed by brushing or spraying.
	The application rate is :
	- 300 g of product / m ² of wood
	When the application is performed by injection (combined with superficial application), the application rate is : - 150 g of product / m ² of wood (+ 300 g of product / m ² of wood)
Category(ies) of users	Professional and non-professional users
Pack sizes and packaging	The product is packed in
material	- can in steel with polyethylene closure of 0,5L and 1L
	 can in steel with polyethylene closure of 5L and 6L
	- tin in steel with polyethylene closure of 25L and 30L.
	All cans are coated inside with an epoxy pigmented varnish

2.1.4.3.1 Use-specific instructions for use

<FR>

- Curative treatments performed by injection must always be combined with curative treatments applied by surperficial application.

2.1.4.3.2 Use-specific risk mitigation measures

- Curative treatments by brushing or spraying, combined with treatment by injection, should only be applied to timber inaccessible to children.
- The outdoor use of treated wood is allowed only if wood preservation is followed by the application of a top-coat which does not contain biocides. This top-coat has to be stable under the standard EN 927-2 in order to limit biocide leaching all along the service-life of wood.
- Do not apply where the product can reach surface water during outdoor application.
- For outdoor treatment, cover the ground with an appropriate plastic sheet to prevent any emission to the terrestrial compartment.
- For outdoor treatment, do not apply under rainfall or when rainfall is expected during the next 24 hours.

2.1.4.3.3 Where specific to the use, the particulars of likely direct or indirect effects, first aid instructions and emergency measures to protect the environment

-	
2.1.4.3.4	Where specific to the use, the instructions for safe disposal of the product and its packaging
-	
2.1.4.3.5	Where specific to the use, the conditions of storage and shelf-life of the product under normal conditions of storage

-

2.1.5 General directions for use

2.1.5.1 Instructions for use

- Always read the label or leaflet before use and follow all the instructions provided.
- The users should inform if the treatment is ineffective and report straightforward to the authorisation holder.

2.1.5.2 Risk mitigation measures

- Wear protective chemical resistant gloves (glove material to be specified by the authorization holder within the product information) protective and a coverall type VI during handling of the product for spray application.
- ⁻ Keep out of reach of children.
- ⁻ Do not apply on wood likely to be in contact with food, feed, drinks and livestock.

2.1.5.3 Particulars of likely direct or indirect effects, first aid instructions and emergency measures to protect the environment

- Skin contact: remove contaminated clothing and shoes. Wash contaminated skin with water. Seek medical advice or call a poison control centre if symptoms occur.
- Eye contact: Immediately flush with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse with warm water for at least 15 minutes. Get medical attention if irritation or vision impairment occurs.
- Ingestion: Wash out mouth with water. Seek medical advice immediately or call a poison control centre.
- Inhalation of spray mist: Remove victim to fresh air and keep at rest in a half-sitting position. Seek medical advice immediately or call a poison control centre if symptoms occur.
- Do not drink or induce vomiting in case of impaired consciousness; place in recovery position and seek medical advice immediately.
- ⁻ Keep the container or label available.

2.1.5.4 Instructions for safe disposal of the product and its packaging

- Dispose of unused product, its packaging and all other waste (i.e. plastic sheet) in accordance with local regulations.
- Do not discharge unused product on the ground, into water courses, into pipes (sink, toilets...) nor down the drains.

2.1.5.5 Conditions of storage and shelf-life of the product under normal conditions of storage

Shelf life: 3 years

2.1.6 Other information

- The presence of propiconazole, MIT and BIT, skin sensitizer that may produce a allergic reaction, must be reported on the label.
- Treated wood should not be intended for uses involving contact with food, feed or livestock.

2.1.7 Packaging of the biocidal product

The packaging of the biocidal product for non-professional users and professional users are:

- can in steel with polyethylene closure of 0,5L and 1L,
- can in steel with polyethylene closure of 5L and 6L,
- can in steel with polyethylene closure of 25L and 30L.

All cans are coated inside with an epoxy pigmented varnish.

2.1.8 Documentation

2.1.8.1 Data submitted in relation to product application

Identity, physico-chemical and analytical method data

Physico-chemical properties studies and analytical methods on the biocidal product V33 TRAITEMENT MULTI USAGES were provided by V33.

Efficacy data

The product 06LBCEOL20/2PT is identical to the product V33 TRAITEMENT MULTI USAGES. The following efficacy studies were submitted:

- Laboratory efficacy study conducted according to the standard EN113, with the product 06LBCEOL20/2PT concentrate after ageing following EN 73 (evaporating procedure);
- Laboratory efficacy study conducted according to the standard EN113, with the product 06LBCEOL20/2PT concentrate after ageing following EN 84 (leaching procedure);
- Laboratory efficacy study conducted according to the standard EN 46-1, with the product 06LBCEOL20/2PT, after ageing following EN 73 (evaporating procedure);
- Laboratory efficacy study conducted according to the standard EN 49-1, with the product 06LBCEOL20/2PT, after ageing following EN 73 (evaporating procedure);
- Laboratory efficacy study conducted according to the standard EN 49-1, with the product 06LBCEOL20/2PT, after ageing following EN 84 (leaching procedure);
- Laboratory efficacy study conducted according to the standard EN 46-1, with the product 06LBCEOL20/2PT, after ageing following EN 84 (leaching procedure);
- Laboratory efficacy study conducted according to the standard EN 20-1, with the product 06LBCEOL20/2PT, after ageing following EN 73 (evaporating procedure);
- Laboratory efficacy study conducted according to the standard EN 118, with the product 06LBCEOL20/2PT, after ageing following EN 73 (evaporating procedure) against *Reticulitermes grassei*;
- Laboratory efficacy study conducted according to the standard EN 118, with the product 06LBCEOL20/2PT, after ageing following EN 84 (leaching procedure) against *Reticulitermes grassei*;
- Laboratory efficacy study conducted according to the standard EN 118, with the product 06LBCEOL20/2PT, after ageing following EN 73 (evaporating procedure) against *Heterotermes tenuis*;
- Laboratory efficacy study conducted according to the standard EN 118, with the product 06LBCEOL20/2PT, after ageing following EN 84 (leaching procedure) against *Heterotermes tenuis*;
- Laboratory efficacy study conducted according to the standard EN 370, with the product 06LBCEOL20/2PT, after ageing following EN 73 (evaporating procedure)
- Laboratory efficacy study conducted according to the standard EN 1390, with the product 06LBCEOL20/2PT.

Toxicology data

An eye irritation study in rabbit and a skin sensitizer in mice performed with V33 TRAITEMENT MULTI USAGES habe been submitted in the context of this dossier.

An *in vitro* dermal absorption study performed with V33 TRAITEMENT MULTI USAGES has also been submitted.

Residue data

No specific residue data were submitted in the context of this dossier. The product TRAITEMENT MULTI USAGES is intended to be used as preventive and curative treatment of interior woods especially in wet situation (beams, frames, wood in cellars, basements and bathrooms) and exterior woods (shutters, doors,

siding, fences, gates, awnings, roof overhangs). It will not get into contact with food or feed. Residues in food or feed are not expected. Considering the intended uses no data is required.

Ecotoxicology data

The product 06LBCEOL20/2PT is identical to the product V33 TRAITEMENT MULTI USAGES. Only the following leaching study was submitted:

 Wood preservative 06LBCEOL 20/2PT Estimation of emission from wood preservative – treated wood to the environment: For wood held in storage after treatment and for wooden commodities that are not covered and are not in contact with ground (NT build 509). Test report #402/12/1074F-e from May 18, 2016. FCBA Institut Technologique.

2.1.8.2 Access to documentation

Identity, physico-chemical and analytical method data

V33 has access to analytical methods on the active substance Cypermethrin with a Letter of Access of Agriphar.

V33 has access to analytical methods on the active substance Propiconazole with a Letter of Access of Lanxess.

V33 has access to analytical methods on the active substance Tebuconazole with a Letter of Access of Lanxess.

2.2 Assessment of the biocidal product

2.2.1 Intended use(s) as applied for by the applicant

Product Type(s)	8 – Wood preservatives		
Where relevant, an exact description of the authorised use	Preventive treatment for wood on use classes 1, 2 and 3		
Target organism (including	Wood rotting fungi (brown rot and white rot)		
development stage)	 Wood boring beetles House longhorn beetle (<i>Hylotrupes bajulus</i>) Common furniture beetle (<i>Anobium punctatum</i>) Powder post beetles (<i>Lyctus brunneus</i>) 		
	Termites (Reticulitermes spp. et Heterotermes spp.)		
Field of use	Preventive treatment for wood on use classes 1, 2 and 3		
Application method(s)	Superficial application / brush		
	Superficial application / spray		
Application rate(s) and	Preventive treatment by superficial application (Brush or Spray)		
frequency	- 200 g product/m² (or 200 mL/m²)		
Category(ies) of user(s)	Professional and non-profesional users		
Pack sizes and packaging	The product is packaged in 0.5, 1, 5, 6, 25 or 30 L steel cans with		
material	polyethylene closure systems.		

Table 2.2-1.	Intended	use # 1 ·	- Preventive use

Table 2.2-2.	Intended	use #	2 –	Curative	use

Product Type(s) 8 – Wood preservatives
--

< V33 TRAITEMENT MULTI USAGES >

Where relevant, an exact description of the authorised use	Curative treatment for wood in service (indoor and outdoor)		
Target organism (including development stage)	 Wood rotting fungi (brown rot and white rot) Wood boring beetles House longhorn beetle (<i>Hylotrupes bajulus</i>) Common furniture beetle (<i>Anobium punctatum</i>) Powder post beetles (<i>Lyctus brunneus</i>) 		
	Termites (Reticulitermes spp. et Heterotermes spp.)		
Field of use	Indoor and outdoor		
Application method(s)	Superficial application / brush		
	Superficial application / spray		
	Injection (combined with a superficial application)		
Application rate(s) and	Curative treatment by superficial application (Brush or Spray)		
frequency	- 300 g product/m² (or 300 mL/m²)		
	Curative treatment by injection (combined with superficial application) The application rate is : - 150 g of product / m ² of wood (+ 300g of product / m ² of wood)		
Category(ies) of user(s)	Professional and non-profesional users		
Pack sizes and packaging	The product is packaged in 0.5, 1, 5, 6, 25 or 30 L steel cans with		
material	polyethylene closure systems.		

2.2.2 Physico, chemical and technical properties

2.2.2.1 Active ingredient

The sources of the active substances Cypermethrin, Propiconazole and Tebuconazole are recognized at EU level.

2.2.2.2 Biocidal product

The biocidal product is not the same as the one assessed for the inclusion of the active substances in annex 1 of directive 98/8/EC. The composition of the product is confidential and is presented in a confidential annex. In terms of pure substance active content, the product contains 0.17% of pure cypermethrin (cis:trans/ 40:60); 0.14% of pure tebuconazole; 0.13% of pure propiconazole.

The biocidal product 06LBCEOL20/2PT is a translucent pale yellow liquid with a characteristic odour of linseed oil. The pH of the pure product is about 6.9 at 20°C and its density is about 1.00. The product forms and maintains a stable uniform emulsion, without free oil, cream or solid matter.

Trade Name	V33 TRAITEMENT MULT	I USAGES	
Manufacturer's development code number	06LBCEOL20/PT		
Ingredient of product	Function	Content of pure substance (% w/w)	Content of technical substance (% w/w)
Cypermethrin (CAS n°52315-07-8)	Active substance	0.17	0.18
Tebuconazole (CAS n°107534-96-3)	Active substance	0.14	0.15
Propiconazole (CAS n°60207-90-1)	Active substance	0.13	0.14
Formulants	Details on confidential PA	R	
Physical state of product	Liquid		

Nature of the product

EW (emulsion oil in water)

The preservatives in the biocidal product are in the review program for TP6.

The tested product is V33 TRAITEMENT MULTI USAGES (code 06LBCEOL20/2PT). The used batch is 16011520/2PT.

The product is an emulsion oil in water, ready to use.

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Comments	Reference
Physical state at 20 °C and 101.3 kPa Colour at 20 °C and 101.3 kPa Odour at 20 °C and 101.3 kPa	visual method		Translucent pale yellow liquid, with no deposit no phase partition.	Acceptable	Legay S. 2015, final report No.402/14/ 1207F/abc de-e
Acidity / alkalinity	CIPAC MT 75.3		pH of the pure test item : 6.86 at 20°C acidity is not required since pH of the test item is > 4 and < 10	Acceptable	Legay S. 2015, final report No.402/14/ 1207F/abc de-e
Relative density / bulk density	EEC A.3		1.003 at 20°C and 101.3kPa	Acceptable	Legay S. 2015, final report No.402/14/ 1207F/abc de-e

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results			Comments	Reference		
Storage stability test – accelerated storage 14 days at 54°C	Analytical methods validated in	methods validated in	methods		Packaging: 1 L stee	I can with epoxy varnish		Acceptable, The product is stable 14 days at	Legay S. 2015, final report No.402/14/
	2.3.2.4			Initial	After 14 days at 54°C	54°C.	1207F/abc		
	CIPAC MT 46.3 CIPAC MT 75.3		Appearance	Translucent pale yellow liquid, with no deposit no phase partition.	No change		de-e		
	CIPAC MT 36.3		Appearance of packaging		No change				
	50.5		Content of tebuconazole (% w/w)	0.138	0.135				
			% variation	/	-2.2%				
			Content of Cypermethrin (% w/w)	0.168	0.164				
			% variation	/	-2.4%				
			Content of propiconazole (% w/w)	0.129	0.131				
			% variation	/	+1.6%				
			Weight	580.46	580.3				
			Variation of weight	/	-0.028%				
					·				

Property	Guideline and Method	Purity of the test substance (% (w/w)		Result	S	Comments	Reference
			pH undiluted Emulsion stability of the pure test item initially after 30 minutes after 2 hours after 24 hours after re- emulsification after 24 h 30 minutes after the re-emulsification	6.86 at 20 °C Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous	6.29 at 20 °C Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous		

Property	Guideline and Method	Purity of the test substance (% (w/w)	Storoge in com-	noraial 41 and	Results		with opposition	arnich)	Comments	Reference
Storage stability test – long term storage at ambient temperature	Technical Monograph 17 Analytical methods		Study has been performed with formulation 06LBCEOL20PT. The product 06LBCEOL20/2PT and 06LBCEOL20PT have very close compositions, with the following difference: 06LBCEOL20PT contains 0.16% w/w additional					Study has been performed with 06LBCEOL20PT, which is also acceptable for	Legay S. 2015, final report No.402/09/ 1046F/a +	
	validated in section			Initial	After 1 year	After 3 years	After 4 years		06LBCEOL20/2P T regarding the	Legay S. 2015, final
	2.3.2.4		Appearance	Translucent pale yellow liquid, with no deposit no phase partition.	Deposit 0.01% No phase partition	Deposit 0.01% No phase partition	Deposit 0.01% No phase partition		composition. report The product is No.402/09,	report No.402/09/ 1046F/b-e
			Appearance of packaging	No sign of corrosion, or degradation	No change	No change	No change			
			Content of tebuconazole (% w/w)	0.14	0.13	0.15	0.129		is higher than 10%. The acceptable	
			% variation	/	-7.1%	+7.1%	-7.9%		self-life is 3 years	
			Content of Cypermethrin (% w/w)	0.33	0.32	0.32	0.294		at ambient temperature.	
			% variation	/	-3.0%	-3.0%	-10.9%			
			Content of propiconazole (% w/w)	0.15	0.14	0.14	0.127			
			% variation	/	-6.7%	-6.7%	-15.3%			
			Weight	1131.4	/	1131.1	1131.6			
			Variation of weight	/	-0.028%					

Property	Guideline and Method	Purity of the test substance (% (w/w)			Results			Comments	Reference
Storage stability test -	Technical		Packaging: 1L s	teel can with e	epoxy varnish.			Acceptable. The	Legay S.
long term storage at ambient temperature	Monograph 17			Initial	After 1 year	After 3 years	After 4 years	product is stable after storage 3	2013, final report
	Analytical methods validated in section 2.3.2.4		Appearance	Translucent pale yellow liquid, with no deposit no phase partition.	Translucent pale yellow liquid, with no deposit no phase partition.	Transluce nt pale yellow liquid, with no deposit no phase partition.	Transluc ent pale yellow liquid, with no deposit no phase partition.	years at ambient temperature in commercial packaging.	No.402/13/ 1030F/a-e
			Appearance of packaging	No sign of corrosion, or degradation	No change	No change	No change		
			Content of tebuconazole (% w/w)	0.141	0.138	0.135	0.140		
			% variation	/	-2.1	-4.3	-0.7		
			Content of Cypermethrin (% w/w)	0.167	0.162	0.164	0.162		
			% variation	/	-3	-1.8	-3		
			Content of propiconazole (% w/w)	0.129	0.133	0.129	0.129		
			% variation	/	+3.1	0	0		
			Variation of weight	/	+0.009%	No variation	-0.004%		

Property	Guideline and Method	Purity of the test substance (% (w/w)		Results		Comments	Reference
Storage stability test –	CIPAC MT		Storage in closed glass bot	ttle.		Acceptable	Legay S.
low temperature stability test for liquids	75.3 CIPAC MT 36.3			Initial	After 7days at 0°C	The product is stable at low temperature.	2015, final report No.402/14/
			Appearance	Homogeneous transparent clear yellow liquid, with a chemical odour.	No change		1207F/ fgh-e+ Legay S.
			Emulsion stability in pure test item initially after 30 minutes after 2 hours after 24 hours after re-emulsification after 24 h 30 minutes after the re-emulsification	Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous	Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous		2015, final report No.402/14/ 1207F/ b-e
Effects on content of the active substance and technical characteristics of the biocidal product - light						Since the packagings are barrier to light and since the active substances are sensitive to light, no data are required.	
Effects on content of the active substance and technical characteristics of the biocidal product – temperature and						The product is stable at 54°C for 14 days. Therefore, no mitigation on temperature	

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results		Comments	Reference
humidity					applied.	
Effects on content of the active substance and technical characteristics of the biocidal product - reactivity towards container material Wettability Suspensibility,					The product isstable incommercialpackaging. It hasbeendemonstratedwith the shelf lifestudy.Not applicableNot applicable	
spontaneity and dispersion stability Wet sieve analysis and dry sieve test					Not applicable	
Emulsifiability, re-	CIPAC MT		Undiluted		Acceptable	Legay S.
emulsifiability and	36.3		initially	Homogeneous		2015, final
emulsion stability			after 30 minutes	Homogeneous		report
			after 2 hours	Homogeneous		No.402/14/
			after 24 hours	Homogeneous		1207F/abc
			after re-emulsification after 24 h	Homogeneous		de-e
			30 minutes after the re-emulsification	Homogeneous		+ Legay S. 2015, final report No.402/14/ 1207F/fgh- e
Disintegration time					Not applicable	
Particle size distribution, content of dust/fines, attrition, friability					Not applicable	

<PT8>

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Comments	Reference
Persistent foaming			The product 06LBCEOL20/2PT is a ready to use product and is not intended to be diluted in water before using. Therefore no formation of foam is expected. Moreover, emulsion tests have been performed with the product before and after storage 14 days at 4°C. During this test, the product is shaking 10 times and no foam has been noticed. Therefore, the product is not expected to be a foaming product	Acceptable	
Flowability/Pourability/ Dustability				Not applicable	
Burning rate — smoke generators				Not applicable	
Burning completeness — smoke generators				Not applicable	
Composition of smoke — smoke generators				Not applicable	
Spraying pattern — aerosols				Not applicable	
Physical compatibility				Not applicable	
Chemical compatibility				Not applicable	
Degree of dissolution and dilution stability				Not applicable	
Surface tension	OECD Guideline 115 (Surface Tension of Aqueous Solutions)		On neat test item Temperature : 20°C ± 0.5°C: 31.48 mN/m	Acceptable The product is surface active.	Legay S. 2015, final report No.402/14/ 1207F/fgh- e

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Comments	Reference
Viscosity	OECD Test Guideline 114 (Viscosity of Liquids)		Temperature: 20°C ± 0.5°C < 6.62 mm²/s 40°C ± 0.5°C < 6.62 mm²/s	The product is a non-Newtonian liquid. Acceptable	Legay S. 2015, final report No.402/14/ 1207F/fgh- e

2.2.3 *Physical hazards and respective characteristics*

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
Explosives	Statement	-	The product 06LBCEOL20/2PT is not explosive. Test is not required as 06LBCEOL20/2PT contains more than 95% w/w water and as no ingredient is classified as explosive.	-
Flammable gases	-	-	Not required as the product is a liquid product.	-
Flammable aerosols	-	-	Not required as the product is a liquid product.	-
Oxidising gases	-	-	Not required as the product is a liquid product.	-
Gases under pressure	-	-	Not required as the product is a liquid product.	-
Flammable liquids	Statement	-	The product 06LBCEOL20/2PT is not flammable. Test is not required as 06LBCEOL20/2PT contains more than 95% w/w water and as no ingredient is classified as flammable.	
Flammable solids	-	-	Not required as the product is a liquid product.	-

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
Self-reactive substances and mixtures	-	-	Not required as the product is a liquid product.	-
Pyrophoric liquids	-	-	Not required as the product is a liquid product.	-
Pyrophoric solids	-	-	Not required as the product is a liquid product.	-
Self-heating substances and mixtures	-	-	Not required as the product is a liquid product.	-
Substances and mixtures which in contact with water emit flammable gases	-	-	Not required as the product is a liquid product.	-
Oxidising liquids	Statement	-	The product 06LBCEOL20/2PT is not oxidising. Test is not required as 06LBCEOL20/2PT contains more than 95% w/w water and as no ingredient is classified as oxidising liquid or solid.	Legay S. 2015, final report No.402/14/1207F/a bcde-e
Oxidising solids	-	-	Not required as the product is a liquid product.	-
Organic peroxides	-	-	Not required as the product is a liquid product.	-
Corrosive to metals	Statement	-	One co-formulant is corrosive to metals, but it is in very low quantity so the product is not corrosive to metals. Moreover, no sign of corrosion has been noticed during the accelerated and ambient storage stability study.	
Auto-ignition temperatures of products (liquids and gases)	Statement	-	The product 06LBCEOL20/2PT is not expected to present a significant hazard for auto-flammability. Test is not required as 06LBCEOL20/2PT contains more than 95% w/w water and as no ingredient is considered to be auto-flammable based on available data found in safety data sheets. The product is not flammable at ambient temperature.	Legay S. 2015, final report No.402/14/1207F/a bcde-e
Relative self-ignition temperature for solids	-	-	Not required as the product is a liquid product.	-
Dust explosion hazard	-	-	Not required as the product is a liquid product.	-

Conclusion on the physical, chemical and technical properties of the product

The product 06LBCEOL20/2PT is a translucent pale yellow liquid, ready to use product. It is not explosive and has no oxidising properties. It is not highly flammable and is not expected to be auto-flammable in the conditions of use. It has a pH (pure) of 6.86 at 20°C. Its density is 1.003g/mL. The surface tension of the neat formulation is 31.48mN/m, therefore, the product is considered as surface active. The product is a non-Newtonian liquid (kinematic viscosity < 6.62 mm²/s at 20°C and 40°C). The product is stable after 14 days at 54°C, 7 days at 0°C and after 3 years at ambient temperature in steel can with epoxy varnish. The product forms stable

emulsion. Effect of light has not been investigated. Nevertheless, packagings are light barrier and the active substances are not sensitive.

2.2.4 Methods for detection and identification

2.2.4.1 Physico-chemical properties and Analytical method for determination of active ingredient and impurities in the technical active ingredient

The applicant has letters of access to the data provided at EU level for each active substance.

Summary for Cypermethrin:

	Principle of method
Technical active substance as manufactured:	HPLC-UV at 210 nm
Impurities in technical active substance:	HPLC-FID at 260°C

Summary for Propiconazole:

	Principle of method
Technical active substance as manufactured:	GC-FID packed column, internal standardization
Impurities in technical active substance:	GC-FID

Summary for tebuconazole:

	Principle of method
Technical active substance as manufactured:	GC-FID
Impurities in technical active substance:	GC-FID

2.2.4.2 Analytical method for determining the active substance and relevant component in the biocidal product

Content of active substances in the biocidal product 06LBCEOL20/2PT after a method validation according to SANCO/3030/99/rev.4, laboratoire de Chimie Ecotoxicologie, FCBA, Pôle des laboratoires Bois, Allée de Boutaut – BP 227, 33028 Bordeaux Cédex – France, report N°.402/16/1011F/ab-e, 2016, Legay S.

Test item: 06LBCEOL20/2PT; Batch 16011520/2PT Blank matrix: 69168920M; batch 080116M Nominal content in pure active substances: 0.17% w/w cypermethrin; 0.13% w/w propiconazole; 0.14% w/w tebuconazole

<u>Principle:</u> Samples are dissolved into acetonitrile and determination is performed by HPLC-UV (210nm for cypermethrin and 230nm for tebuconazole/propiconazole) using a Lichrospher 5 ODS1 C18 column.

Specificity

Chromatograms were provided for solvent, calibration standards, test item, blank matrix, fortified matrix and no interferences and the retention time of the active ingredients. Specificity is acceptable.

Linearity

Linearity has been performed with 5 calibration standards (external calibration), over a concentration range at the nominal content +/-20%. The linearity range of each active ingredient in solution is:

- 40 to 60mg/L for cypermetrhin
- 8 to 12mg/L for propiconazole
- 8 to 12mg/L for tebuconazole

Regressions were linear with a correlation coefficient >0.99 for each active ingredient. Linearity is acceptable.

Accuracy

Accuracy was performed with blank matrix fortified with known amounts of reference item of each active substance to approx. their nominal contents.

Cypermethrin (fortification at approx. 0.17% w/w): mean=98.3%; RSD=0.30%; n=6 Propiconazole (fortification at approx. 0.13% w/w): mean=96.9%; RSD=2.40%; n=6 Tebuconazole (fortification at approx.. 0.13% w/w): mean=97.1%; RSD=2.81; n=6

Precision

Precision was performed on 6 replicate samples of test item. Cypermethrin: RSD=1.12% Propiconazole: RSD=2.23% Tebuconazole: RSD=5.00%

Conclusion

Analytical method for the determination of the active ingredients in the product 06LBCEOL20/2PT has been provided and validated according to guidance SANCO/3030/99/rev.4.

2.2.4.3 Analytical methods for determining relevant components and/or residues in different matrices

- Summary for Cypermethrin:

			Anal	ytical method	ls for monitoring	g				
Analyte (type of			Fortification range /			Recov	ery rate	(%)	Limit of	
analyte e.g. active substance)	Matrix	Analytical method	Number of measurements	Linearity	Specificity	Range	Mean	RSD	quantification (LOQ) or other limits	Reference
	Oilseed		0.05 mg/kg / 5		80-94 89		6.6			
cypermethrin	rape (seed)	GC-ECD	0.5 mg/kg / 5			80-91	85	5.7	0.05	
cypermetrini	Oilseed		0.05 mg/kg / 5			87-94	89	3.0	_	
	rape (oil)		0.5 mg/kg / 5			76-82	79	3.4		Wimbush, J (2003);
	Wheat		0.025 mg/kg / 5			71-93	84	9.7		40/037-D2149
avnarmathrin	grain	GC-ECD	0.25 mg/kg / 5			79-92	87	5.6	0.025	
	Wheat	GC-ECD	0.025 mg/kg / 5		the mean concentrations	104-117	110	4.3	0.025	
	straw		0.25 mg/kg / 5		of the	84-95	90	4.8		
	Oilseed		0.05 mg/kg / 5	0.05 to 1.5 mg/Ln N=5, r ² >0.98	interfering components in	75-85	79	4.8	0.05	ILV
	rape (seed))	0.5 mg/kg / 5		the control samples did not exceed	78-88	85	5.1		
cypermethrin	Oilseed	GC-ECD	0.05 mg/kg / 5			87-113	100	11.4		Devine H., 2003 ; CLE
oyponnounni	rape (oil)	00 200	0.5 mg/kg / 5		30% of the LOQ	69-88	78	9.5		0040/037-
	Wheat		0.025 mg/kg / 5			69-80	77	6.0	0.025	03RO
	grain		0.25 mg/kg / 5			64-80	72	9.1	0.025	
	Oilseed		0.05 mg/kg / 5			93-106	98	5.9		Confirmatory
cypermethrin	rape (seed)	0.5 mg/kg / 5			88-97	92	5.2	0.05	method of Wimbush, J	
oypermeanin	Oilseed	GC-ECD	0.05 mg/kg / 5	-		73-80	75	3.8		(2003) by column
	rape (oil)		0.5 mg/kg / 5			76-82	78	3.4		replacement

	Wheat		0.025 mg/kg / 5			101-106	105	2.0		
	grain		0.25 mg/kg / 5	-		87-102	98	6.5		
	Wheat		0.025 mg/kg / 5	-		90-98	94	3.4	0.025	
	straw		0.25 mg/kg / 5	-		93-105	97	5.3		
	Bovine		0.05 mg/kg / 5			86-91	87	2.5		
	muscle		0.5 mg/kg / 5			80-84	81	2.2		
	Bovine		0.05 mg/kg / 5			95-103	100	3.0		
	kidney		0.5 mg/kg / 5			84-89	87	2.3	0.05	
	Bovine		0.05 mg/kg / 5	0.01 to 1	No	83-87	85	2.1	0.05	Wimbush, J
	liver	GC-MSD	0.5 mg/kg / 5	mg/L	interference > 30% of LOQ	81-90	86	4.5		(2003);
cypermethrin	Bovine fat	GC-MSD	0.05 mg/kg / 5	N=6	in the control matrices.	78-84	82	3.5		40/041-D2149 Ion m/z 207
	Dovine lat		0.5 mg/kg / 5	R²>0.98		93-101	97	3.7		
	Faaa		0.01 mg/kg / 5			80-87	83	3.9	0.01	
	Eggs		0.1 mg/kg / 5			87-94	91	3.1	0.01	
	Milk		0.005 mg/kg / 5			84-106	92	9.7	0.005	
	IVIIIK		0.05 mg/kg / 5			62-90	77	15.1	0.005	
	Bovine		0.05 mg/kg / 5			82-85	83	1.3		
	muscle		0.5 mg/kg / 5			78-89	85	5.2	0.05	
	Bovine fat		0.05 mg/kg / 5	0.01 to 1	No	92-101	96	4.1	0.05	ILV
cypermethrin	Dovine lat	GC-MSD	0.5 mg/kg / 5	mg/L	interference > 30% of LOQ	72-86	79	6.5		Devine H.,
cypermetrinin	Eggs	GC-IMSD	0.01 mg/kg / 5	N=6	in the control	98-102	101	1.9	0.01	2003 ; CLE
	Lyys		0.1 mg/kg / 5	R ² >0.98	matrices.	84-86	85	1.1	0.07	0040/041-03R
	Milk	0.005 mg/kg / 5	1		73-88	82	6.8	0.005		
			0.05 mg/kg / 5			91-101	96	4.3	0.000	
cypermethrin	Bovine	GC-MSD	0.05 mg/kg / 5	0.01 to 1	No	87-92	89	2.6	0.05	Wimbush, J

muscle	0.5 mg/kg / 5	mg/L	interference > 30% of LOQ	79-84	81	2.5		(2003); 40/041-D2149			
Bovine	0.05 mg/kg / 5	N=6 R ² >0.98	in the control	97-106	103	3.3		lon m/z 209			
kidney	0.5 mg/kg / 5	1₹=>0.98	matrices.	85-89	87	2.1					
Bovine	0.05 mg/kg / 5			83-104	92	9.2					
liver	0.5 mg/kg / 5			87-91	89	1.8					
Devine fet	0.05 mg/kg / 5			80-88	83	3.7					
Bovine fat	0.5 mg/kg / 5			91-99	95	5.2					
Faas	0.01 mg/kg / 5			_	80-84	82	2.5	0.01			
Eggs	0.1 mg/kg / 5							85-97	91	5.2	0.01
Mille	0.005 mg/kg / 5			82-105	05 90 10	10.8	0.005				
Milk	0.05 mg/kg / 5			62-88	76	14.5	0.005				

	Analytical methods for soil										
Analyte (type of		Fortification			Rec	overy rate	(%)	Limit of			
analyte e.g. active substance)	Analytical method	range / Number of measurements	Linearity	Specificity	Range	Mean	RSD	<pre>quantification (LOQ) or other limits</pre>	Reference		
	GC-MSD	0.05 mg/kg / 5		No significant matrix	99-105	101	2.3				
	lon m/z 207	0.5 mg/kg / 5	0.005 to 1.0 mg/L, n=6, r²>0.999	interference	99-101	100	1.0	0.05	Wimbush, J (2003); 40/039- D2149		
cypermethrin	GC-MSD	0.05 mg/kg / 5		(control values < 30% LOQ)	98-104	101	2.4				
	lon m/z 209	0.5 mg/kg / 5			98-101	100	1.3				

			Analyt	ical methods for w	ater				
Analyte (type of		Fortification			Rec	overy rate	(%)	Limit of	
analyte e.g. active substance)	Analytical method	range / Number of measurements	Linearity	Specificity	Range	Mean	RSD	quantification (LOQ) or other limits	Reference

	GC-ECD	0.01 µg/L / 5		No significant matrix	94-116	101	8.4		
	GC-ECD	0.1 µg/L / 5	0.005 to 0.5	interference	84-94	89	4.6	0.04	Wimbush, J
cypermethrin		0.01 µg/L / 5	mg/L, n=6, r²>0.99	(control values < 30% LOQ)	89-108	93	7.6	0.01 µg/L	(2002); 40/040- D2149
	GC-MSD	0.1 µg/L / 5			79-97	88	7.8		

			Analy	ytical methods for a	air					
Analyte (type of	Analytical method	Fortification			Rec	overy rate	(%)	Limit of		
analyte e.g. active substance)		range / Number of measurements	Linearity Specificity		Range	Mean	RSD	quantification (LOQ) or other limits	Reference	
	GC-MSD	0.375 µg/m ³			-	80	8.6			
	(Ambient conditions)	3.75 µg/m ³	0.01 to 0.3	No significant matrix	-	110	12.0	– 0.375 μg/m ³	Wimbush, J (2005); 1669/016- D2149	
cypermethrin	GC-MSD	0.375 µg/m ³	µg/mL, n=6, r²≥0.98	interference (control values <	-	89	11.0			
	(Elevated conditions)	3.75 μg/m ³		30% LOQ)	-	99	3.9			

		Analytical m	ethods for anim	nal and human bo	ody fluids a	and tissue	es		
Analyte (type of	Analytical	Fortification range /	Linearity	Specificity	Recovery	v rate (%)		Limit of	Reference
analyte e.g. active substance)	method	Number of measurements			Range	Mean	RSD	quantification (LOQ) or other limits	
Not required									

Methods for body fluids and tissues and food and feeding stuffs of plant origin are not required since cypermethrin is not classified as toxic or highly toxic and as the use pattern of product will not result in any contact with food or feeding stuff of plant origin.

• Summary for Propiconazole:

			Fortification		Recov	ery rate	e (%)		
Sample	Test substance	Analytical method	range / number of measurements altogether	Specificity	Range	Mean	St. dev %	Limit of determination	Reference
soil	parent compound	REM 130.02/REM 11/81 GLC, P/N detector	0.04 – 0.4 mg/kg N=35	Parent compound	78 - 88	86	12	0.02 mg/kg	A4.2 / 01 Forrer, K., 1991
soil	parent compound	RUE 8-86 GLC, P/N detector	0.05 – 2.0 mg/kg N>12	Parent compound	75 - 112		4-20	0.02 mg/kg	A4.2 / 02 Anonymous, 1986
soil	parent compound and its degradation products CGA 21795, CGA 91305, CGA 118244, CGA 118245, CGA 136735 and CGA 71019 (1,2,4- triazole)	AG-677, separation HPLC, detection LC/MS-MS	5-50 ng/kg N= 10 N= 10	Parent compound and its degradation products CGA 21795, CGA 91305, CGA 118244, CGA 118245, CGA 136735 and CGA 71019 (1,2,4-triazole)	86 – 110 88 - 105	94 94	8 5.4	0.005 mg/kg	A4.2 / 17A Vargo J.D., 1997 A4.2 / 17B Cassidy P., 2004
soil	total 2.4- DCBA moiety	AG 465 Capillary GLC (ECD)	0.05 – 0.5 mg/kg N=8	DCBA	Not determined	85	15	0.05 mg/kg	A4.2 / 04 Perez, R., 1985
soil	free 1.2.4- triazole	REM 130.03 HPLC, 2-column switch;UV detection	0.02 – 0.1 mg/kg N=18	1,2,4-triazole	82 - 83	82	10	0.01 mg/kg	A4.2 / 05 Formica, G., 1991
soil	free 1.2.4- triazole	REM 130.04, HPLC, 2 column switch, UV	0.02 – 0.1 mg/kg N=8	1,2,4-triazole	Identical for different	74	11	0.01 mg/kg	A4.2 / 06 Formica, G., 1992

			Fortification		Recov	ery rate	(%)		
Sample	Test substance	Analytical method	range / number of measurements altogether	Specificity	Range	Mean	St. dev %	Limit of determination	Reference
		detection			fortification levels				
soil	CGA 118 244	REM 130.10, LC-LC- ESI/MS/MS	0.005 – 0.05 (sandy loam and silty clay) N=20	CGA 118 244	98 - 118	103	6	0.005 mg/kg	A4.2 / 08 Tribolet, R., 2001
potable water	Parent compound	REM 10/86 GLC, electron capture detector (ECD)	0.1 / 0.5 / 2.0 μg /L N=28	Parent compound	70 – 110	90	7	0.05 µg/L	A4.2 / 09 Formica, G.; 1986
potable water & surface water	parent compound	GC-MS, confirmatory method to REM 10/86	0.05 – 0.5 μg /L N=20	Parent compound	76-108	Within 70 - 110	< 20%	0.05 µg/L	A4.2 / 10B Pointurier R. – Duchêne P., 2000
air	parent compound	REM 130.07 GLC; N/P	10/20/100 μg/m ³ N=6	Parent compound	70 - 110	96	10	10 μg/m ³	A4.2 / 11 Tribolet, R., 1992
air	parent compound	detector GC-MS, confirmatory method to REM 130.07	10 – 100 μg/m ³ N=2	Parent compound	70 - 110	Within 70 - 110	-	10 μg/m ³	A4.2 / 11B Pointurier R. – Duchêne P., 2000
sediment	Parent compound and its degradation products CGA 217495, CGA 91305 and CGA 136735	AG-630, separation HPLC, detection LC/MS- MS	10/25/100/250 ng/kg N = 9	Parent compound and its degradation products CGA 217495, CGA 91305 and CGA 136735	84-107	96	6.8	10 μg/kg	A4.2 / 18 Vargo J.P., 1994

Methods for body fluids and tissues and food and feeding stuffs of plant origin are not required since propiconazole is not classified as toxic or highly toxic and as the use pattern of product will not result in any contact with food or feeding stuff of plant origin.

• Summary for tebuconazole:

	_			Fortificatio			Re	covery rate ((%)		
Sample	Test substance		alytical nethod	range / Numb of measuremen	Linearity	Specificity	Range	Mean	Relative standard deviation	Limit of determination	Reference
Soil	Tebu- conazole	phoru (NPD) mass detect select	(extended revised): with en/phos- s detector) and selective tor mass	mg/kg. Fortifi specimen we analysed quintuple each fortificati level. F confirmation analysis c fortified	 concentrations ranging from 0.100 to 2.01 μg/ml. correlation coefficient: in 1.0000. 	sample matrix were detected	mg/kg with s 94 – 105%, with single v 95%. Relat 4.3% for 0.0 mg/kg. Confirmation obtained we and 101% for	ingle values and 94% for values rangin ive standard 1 mg/kg and n analysis: th	ranging from 0.10 mg/kg g from 92 – deviations: 1.2% for 0.1 e recoveries 0.01 mg/kg	determination: 0.01 mg/kg; limit of detection: 0.002 mg/kg.	Weeren and Pelz, 2000a

<FR>

			Fortification			R	ecovery rate	(%)		
Sample	Test substance	ubstance method	range / Number of measurements	Linearity	Specificity	Range	Mean	Relative standard deviation	Limit of determination	Reference
Air	Tebuco- nazole	GC with nitrogen and phosphorous detection (NPD). For confirmation GC with mass selective detection (MSD) was used	Fortification experiments were performed over the range from 0.0011 to 0.142 mg a.s. /m ³ . Results were obtained from four tests for each fortification level. <u>GC-MSD:</u> Two fortification experiments were performed	concentrations ranging from 0.017 to 1.701 mg/l. Coefficient of determination: 0.998640. <u>GC-MSD:</u> Single measurement of five concentrations	GC-NPD: No significant interferences found. GC-MSD: Blank values of control samples were about 1% of the LOQ level.	two different under defin Range of m 94 to 104% Relative sta 2.0 to 6.3% <u>GC-MSD:</u> The concert the two spil- against the calculated w µg/ml, represent	andard deviation	naterials nditions. s: on: conazole in evaluated d be d 0.3235 an recovery	0.0011 mg a.s./m ³ air	Riegner, 1992 (GC- NPD) and Hellpointner (GC-MSD), 2000

			Fortification			R	ecovery rate	(%)		
Sample	Test substance	Analytical method	range / Number of measurements	Linearity	Specificity	Range	Mean	Relative standard deviation	Limit of determination	Reference
Water surface water	Tebu- conazole	GC-MSD (DFG W5)	analysed in	Single measurement of eight concentrations ranging from 0.00503 to 0.670 mg/l. Correlation coefficient: r = 0.9994 $(r^2 = 0.9988)$	No significant interferences from the sample matrix were detected at the retention time corresponding to tebuconazole in any of the control samples.	μg/l with sir to 105% a single value Relative	nd 86% for es ranging fror standard	nging from 85 0.5 µg/l with n 75 to 93%.	Limit of determination: 0.05 µg/l, limit of detection: 0.02 µg/l.	Weeren, and Pelz, 2000b
Animal	Relevant									
and	only for									
human	toxic									
body fluide and	substances									
fluids and tissues										

Methods for body fluids and tissues and food and feeding stuffs of plant origin are not required since tebuconazole is not classified as toxic or highly toxic and as the use pattern of product will not result in any contact with food or feeding stuff of plant origin.

2.2.5 Risk assessment for Physico-chemical properties

No risk assessment for physico-chemical properties was performed.

2.2.6 Efficacy against target organisms

2.2.6.1 Function and field of use

MG 02: preservatives

Product Type 08: wood preservative

The product V33 TRAITEMENT MULTI USAGES (development code 06 LBCEOL 20/2 PT) is a water-based wood preservative product ready to use which is intended to be used by superficial application for preventive and curative treatments. For curative treatment, superficial application can be completed by injection.

The product is applied by professional and non-professional users.

2.2.6.2 Organisms to be controlled and products, organisms or objects to be protected

The product V33 TRAITEMENT MULTI USAGES (development code 06 LBCEOL 20/2 PT) is intended to be used

- for preventive treatment by superficial application for wood used in use classes 1 to 3 and,
- for curative treatment by superficial application (that could be completed by injection), for wood in service, indoor and outdoor.

The application rates recommended by the applicant are the following:

- Preventive treatments: superficial application at 200 g of product 06LBCEOL20/2PT / m² of wood
- Curative treatment: superficial application at 300 g of product 06LBCEOL20/2PT / m² of wood (+ injection 150 g of product 06LBCEOL20/2PT / m² of wood if need be).

2.2.6.3 Effect on target organisms and efficacy

According to the uses claimed by the applicant, the product V33 TRAITEMENT MULTI USAGES is intended to be used for the preservation of wood in use class 1 to 3 by superficial application against wood boring beetles (*Hylotrupes bajulus, Anobium punctatum* and *Lyctus brunneus*), wood rotting fungi (*Coniophora puteana, Gloephilum trabeum, Poria Placenta* and *Coriolus versicolor*) and termites (*Reticulitermes spp.* and *Heterotermes spp.*). The termite species *Coptotermes spp.* has been withdrawn during the evaluation.

This product is also intended to be used for the curative treatment of wood against wood boring beetles (*Hylotrupes bajulus, Anobium punctatum* and *Lyctus brunneus*) and termites (*Reticulitermes spp.* and *Heterotermes spp.*), indoor and outdoor, by superficial application, completed by injection if need be.

The claim of curative treatment against wood rotting fungi presented in the dossier is not supported by efficacy data. Furthermore, the attack of fungi results in a degradation of the structure of the wood that changes its mechanical properties. This use is therefore not considered as relevant.

The development stages claimed are larvae and adults.

All efficacy studies are presented in annex 9.

2.2.6.4 Mode of action including time delay

Cypermethrin is a synthetic pyrethroid with contact and stomach action. It acts by preventing the transmission of impulses along the nervous system of the insect. It is thought that this is achieved by blocking the sodium channels in nerve membranes, thus preventing action potentials passing down the nerve axon (see AR for Cypermethrin PT08, 12/07/2012).

As other triazole fungicides, tebuconazole and propiconazole are DMIs (DeMethylation Inhibitors). These substances inhibit the C14 demethylation step in the ergosterol biosynthesis of fungi (Fungicide Resistance Action Committee, FRAC2)

There is no time delay between the application of the product and the beginning of the preventive fungicidal and insecticidal activities. The effect is immediate

Regarding the curative insecticidal efficacy, based on the elements presented in the dossier, the product demonstrated a slow action on *Hylotrupes bajulus* and a deffered effect on *Anobium punctatum*.

2.2.6.5 Occurrence of resistance - resistance management / Unacceptable Effect

Resistance to pyrethroid insecticides such as cypermethrin has been reported for a number of pests both in agriculture and public health. However, no data has been found in the literature regarding resistance occurrence to cypermethrin among wood-boring beetle and termites.

Tebuconazole and Propiconazole are DeMethylation Inhibitor (DMI) fungicides within Sterol Biosynthesis Inhibitor (SBI) Class I. According to the FRAC Code List, DMI fungicides show no cross resistance to other SBI classes. There are big differences in the activity spectra of DMI fungicides. Resistance to DMI fungicides is known in various fungal species. Several resistance mechanisms are known incl. target site mutations in cyp51 (erg 11) gene, e.g. V136A, Y137F, A379G, I381V; cyp51 promotor; ABC transporters and others. It is generally accepted that cross resistance is between DMI fungicides active present against the same fungus, and the risk of resistance formation against DMI fungicides is regarded to be medium (Resistance management required).

For wood preservation with tebuconazole-and propiconazole-containing products, cases of resistances are not reported or known up to the time being.

To ensure a satisfactory level of efficacy and avoid the development of resistance, the following recommendations have to be implemented:

- Always read the label or leaflet before use and follow all the instructions provided.
- The users should inform if the treatment is ineffective and report straightforward to the registration holder.

2.2.6.6 Evaluation of the label claim

French competent authorities (FR CA) assessed the product 06LBCEOL20/2PT and concluded that the product shows a sufficient efficacy for the preservation of wood. The product is used:

- for the preventive control of wood boring beetles (*Hylotrupes bajulus, Anobium punctatum* and *Lyctus brunneus*), wood rotting fungi (*Coniophora puteana, Gloephilum trabeum, Poria Placenta* and *Coriolus versicolor*) and termites (*Reticulitermes spp.* and *Heterotermes spp.*), in use class 1 to 3 by superficial application;.
- for the curative control of wood in service against wood boring beetles (*Hylotrupes bajulus, Anobium punctatum* and *Lyctus brunneus*) and termites (*Reticulitermes spp.* and *Heterotermes spp.*), indoor and outdoor, by superficial application, completed by injection if need be.

The application rates validated are the following:

- Preventive treatments: superficial application at 200 g of product 06LBCEOL20/2PT / m² of wood
- Curative treatment: superficial application at 300 g of product 06LBCEOL20/2PT / m² of wood (injection 150 g of product 06LBCEOL20/2PT / m² of wood if need be).

2.2.6.7 Summary of efficacy assessment

French competent authorities considered that the data submitted in the dossier demonstrated the efficacy of the product V33 TRAITEMENT MULTI USAGES (06 LBCEOL 20/2 PT) according to the uses and the application rates claimed:

- Regarding the claim against wood rotting fungi, according to EN 113 (+EN73/EN84), the product 06LBCEOL20/2PT is efficient, for superficial application, against wood rotting fungi (brown rot and white rot) for use class 2 and 3 at the application rate of 200 g of product 06LBCEOL20/2PT / m² of wood. As for use class 3, the demonstration of the efficacy is based on the EN 113 standard. In that case, the use of a top coat is required according to the EN 599² (§5.2.17 & §5.2.18). Consequently, it can be concluded that, for preventive superficial application on wood for use class 3, a top coat has to be applied.
- Regarding the preventive efficacy claim against wood boring beetles, for superficial application, the product 06LBCEOL20/2PT is efficient according to respectively EN 46 (+EN73/EN84), EN 49 (+EN73/74) and EN 20-1 (+EN73), against *Hylotrupes bajulus, Anobium punctatum and Lyctus brunneus* for use class 1 to 3 at the application rate of 200 g of product 06LBCEOL20/2PT / m² of wood.
- Regarding the preventive efficacy claim against termites, for superficial application, the product 06LBCEOL20/2PT is efficient according to EN 118 (+EN73/EN84), against *Reticulitermes spp* and *Heterotermes spp*., for use class 1 to 3, at the application rate of 200 g of product 06LBCEOL20/2PT / m² of wood.
- Regarding the curative efficacy claim against wood boring beetles (*Hylotrupes bajulus*, *Anobium punctatum* and *Lyctus brunneus*), for superficial application, the product 06LBCEOL20/2PT is efficient according to respectively EN 1390 and EN 370 (+EN73) against *Hylotrupes bajulus* with a slow action activity and against *Anobium punctatum* with a differed activity, at the application rate of 300 g of product 06LBCEOL20/2PT / m² of wood. According to EN 141428³, if curative treatment against Lyctus brunneus is demanded, a curative wood preservative "for *Hylotrupes* and *Anobium*" should be applied. The curative efficacy against wood boring beetles is then validated.
- Regarding the curative efficacy claim against termites (*Reticulitermes spp.* and *Heterotermes spp.*), no curative efficacy standard are available against termites. However, the objective of curative products are, as for the preventive treatments against termites (tested following the standard EN 118 + EN73/84), to protect wood against termites and to eliminate termites in the wood. Their function is not to destroy the entire colony (which is not in the wood). Moreover the target stages in the preventive and in the curative efficacy treatments are the same, which means the dose of active substance in both treatments are the same. Then the efficacy demonstrated in the preventive efficacy test can be extrapolated for a curative application.
- Regarding the curative efficacy claim against wood boring beetles, by injection, this treatment is always performed in combination with superficial application. Efficacy demonstrated for superficial treatment is sufficient and no additional data is needed. Curative treatment by injection and in combination with a superficial treatment, at the application rate of 150 g of product 06LBCEOL20/2PT / m² of wood prior a superficial treatment at 300g/m² is validated.

² Durability of wood and wood-based products – Efficacy of preventive wood preservatives as determined by biological tests – Part 1: Specification according to use class.

³ Performance criteria for curative wood preservatives as determined by biological tests (2004)

2.2.7 Risk assessment for human health

2.2.7.1 Assessment of effects on Human Health

2.2.7.1.1 Toxicology of the active substance

The toxicology of the active substance was examined extensively according to standard requirements. The results of this toxicological assessment can be found in the CAR. The threshold limits and labelling regarding human health risks listed in Annex 4 "Toxicology and metabolism" must be taken into consideration.

- Cypermethrin

ADME

Absorption of cypermethrin cis:trans/40:60 from the gastro-intestinal tract of the rat is rapid but incomplete. Urinary and faecal excretion was similar at the low dose (3 mg/Kg bw) for both the cyclopropyl and phenyl ring radiolabels but at the higher dose (50 mg/Kg bw) faecal excretion predominated, especially in the males. This suggests that the absorption of cypermethrin is being saturated at the high dose. At the low dose 51.3 to 52.8% of the dose was absorbed by the male rats and 43.6 to 57.6% in case of the females. At the high dose level, 28.7 to 31.5% of the dose was adsorbed in male rats and 38.4 to 42.7% in the case of the females. For the estimation of oral absorption, a conservative approach is adopted. Different values were adopted for animals and humans, based on the low dose (3 mg/Kg bw) data of the Needham study (2006). For animals, an oral absorption value of 44% is adopted for deriving systemic NOAELs (PODs for the AELs are closer to the low dose rather than the high dose). For the estimation of human systemic exposure, an oral absorption value of **57%** is adopted.

Distribution. Following repeated daily oral dosing of 3 mg [14C-phenyl]-cypermethrin/Kg bw, the levels of radioactivity in inguinal and peri-renal fat rose by 6-7 times in the female rats, and by >10 times in the males. The lowest levels of radioactivity were seen in the brain and spinal cord. The tissue residues were rapidly cleared following the cessation of dosing, with the levels of radioactivity in the plasma falling by approximately 30 times over a 7 day period (for both males and females), and the levels in the fat falling by 2-7 times: in males in peri-renal fat (2-fold), and in females in brown fat (7-fold).

Excretion. The excretion was rapid being virtually complete by 72 h following a single oral dose of [14C-cyclopropyl]- or [14C-phenyl]-cypermethrin at a dose of 3 or 50 mg/Kg bw. Urinary and faecal excretion was similar at the low dose for both radiolabels, but at the higher dose level faecal excretion predominated, especially in the males.

Metabolism. Hydrolytic cleavage of the ester bond and elimination of the cis- and transcyclopropanecarboxylic acid and 3-phenoxybenzyl moieties in the free and conjugated form is known to be a major route of metabolism in mammals, including humans. The cyclopropane carboxylic acid moiety is mainly and rapidly excreted as the glucuronide conjugate, with only limited hydroxylation of the methyl groups attached to the cyclopropane ring. The 3-phenoxybenzyl moiety is mainly converted to 3-phenoxybenzoic acid which is further metabolised to a hydroxyl derivative (3-(4'-hydroxyphenoxy)benzoic acid) and conjugated with glucuronic acid or sulphate. The major route of excretion of metabolites is via the urine. In faeces, most of the radioactivity is unchanged compound. The metabolism of cypermethrin cis:trans/40:60 is stereoselective with a preference for the trans-isomers (human and animal data).

Acute toxicity

The oral toxicity of cypermethrin cis:trans/40:60 varies with the type of vehicle used and the isomer ratio. In general, aqueous suspensions were the least toxic and non-polar solutions the most toxic. The acute toxicity of the racemic mixture is also determined by the isomer ratio, with the cis-isomer found the most toxic (WHO, 1989). Oral LD50 values vary from 250 mg/Kg (in oil) to >5000 mg/Kg (in aqueous solutions). Inhalation LC50 = 3281 mg/m3 (4h, aerosol, rat). Nevertheless, the toxic responses in all species were found to be qualitatively similar. The clinical signs observed after oral and inhalation exposure were indicative for an action on the central nervous system and consisted of salivation, ataxia, splayed gait, hyper-excitability to auditory stimuli, tremors, convulsions, choreoathetosis. These neurotoxic signs, better known as CS-syndrome, appear within 1 hour after dosing and survivors recover within 10-12 days. Transient facial sensory symptoms can appear

<FR>

after cypermethrin exposure. Abnormal facial sensations (burning sensations, tingling, tightness or numbness on the face) are reported in open literature, e.g. in health surveys (workers engaged in packaging cypermethrin), cross sectional surveys (field operators, spraymen). Cypermethrin cis:trans/40:60 was found of low dermal toxicity in the rat with clinical signs characterised by dyspnea, ruffled fur, curved and ventral body position. Dermal LD50 > 2000 mg/Kg bw (rat).

In conclusion, cypermethrin cis:trans/40:60 is of moderate acute oral and inhalation toxicity, but of low dermal toxicity.

Irritation

Cypermethrin cis:trans/40:60 is slightly irritant to the rabbit skin and eye, but does not require classification. Acute toxicity and repeated dose toxicity studies performed with rats revealed that cypermethrin cis:trans/40:60 has a respiratory irritation potential. Respiratory tract irritation caused by cypermethrin is characterised by cough, mild dyspnoea, sneezing, and rhinorrhea. This is confirmed with human data. Case reports reported shortness of breath, dyspnea, wheezing, cough, congestion, nasal discharge, burning eyes, after exposure (inhalation) of cypermethrin with the development of significant pulmonary dysfunction (still complaining of cough, congestion, wheezing) 7 months post-exposure.

Sensitisation

Cypermethrin cis:trans/40:60 was not found to be a skin sensitizer by animal testing (LLNA). However, there are indications, from both animals and humans, that technical cypermethrin may have a mild skin sensitising potential. Results from preliminary experiments performed with technical cypermethrin (50:50) in rats indicated that technical cypermethrin had a weak skin sensitising potential. In addition, skin sensitisation (contact sensitivity and eczema) in humans is occasionally reported.

Short/Medium-term toxicity

The medium-term dermal toxicity of cypermethrin cis:trans/40:60 was studied in a 21-day dermal toxicity study in rabbits. This resulted in irritation of the skin and was associated with systemic effects such as focal liver necrosis. NOAEL = 20 mg/Kg bw/d.

The medium-term oral toxicity of cypermethrin cis:trans/40:60 was studied in rats and dogs. The central nervous system and the liver were detected as the target tissue/organ. Neurotoxicity was characterised by clinical signs including piloerection, nervousness and uncoordinated movements, ataxia, splayed gait and hyperesthesia. In the dog, clinical signs of neurotoxicity were observed at 37.5 mg/Kg bw/d in a 90-day study (NOAEL = 12.5 mg/Kg bw/d). In the rat, clinical signs of neurotoxicity were observed at 80 mg/Kg bw/d in a 90-day study (NOAEL = 20 mg/Kg bw/d). In rats, neurotoxicity was confirmed by histopathology by peripheral nerve damage. (not in dogs). In addition, body weight was reduced, liver weight increased, and rats presented signs of anemia. In the open literature liver toxicity was characterised by inhibition of the rat liver ATPase activity. The oxidative stress induced by cypermethrin cis:trans/40:60 in the cerebral and hepatic tissues was evidenced by enhanced lipid peroxidation. Additionally, a decrease in delayed type hypersensitivity, leucopenia and immunotoxicity were observed when rats were dosed cypermethrin orally for 90 days at doses of 40 mg/Kg bw/d (NOAEL = 10 mg/Kg bw/d.

NOAEL medium-term = NOAEL (90-days, oral, dog) = 12.5 mg/Kg bw/d.

Long-term toxicity

The long-term oral toxicity of cypermethrin cis:trans/40:60 was studied in rats. The effects were in line with those observed in the medium-term studies. The central nervous system, liver, and kidneys were detected as the target tissues/organ. Hepatotoxicity was characterised by increased liver weight associated with microsomal enzyme activity induction, but not associated with histological lesions. Increased kidney weight was associated with an increase in blood urea.

NOAEL long-term = NOAEL (2-year, oral, rat) = 5 mg/Kg bw/d.

Carcinogenicity

Cypermethrin cis:trans/40:60 was tested in a combined chronic toxicity / carcinogenicity study in the rat. The overall results revealed no effect of cypermethrin cis:trans/40:60 treatment (0.05, 0.5, 5, 50 mg/Kg bw/d, orally) on the number and type of tumours.

Genotoxicity

Cypermethrin cis:trans/40:60 was found negative for genotoxic effects in in vitro bacterial and mammalian cell test systems (bacterial reverse gene mutation assay, mammalian gene mutation assay in L5178Y mouse lymphoma cells, mammalian chromosomal aberration study on CHO-cells). In vivo, cypermethrin cis:trans/40:60 did not produce micronuclei in the immature erythrocytes of the mouse bone marrow micronucleus assay (single oral dose), and was, therefore considered negative for mutagenicity.

Overall, the open literature provides inconsistent evidence of genotoxicity in vitro as well as in vivo. The data reported on the genotoxicity of cypermethrin cis:trans/40:60 are rather inconsistent, depending on the genetic system or the assay used. Most of these studies were not performed according to accepted guidelines. Additionally, they lack reliability because of procedural flaws such as deviating route of administration, single versus repeated exposure, other sampling times, no use of positive controls, no 2nd or 3rd confirming experiments, no data about reaching the target organ. Nevertheless, the modest or marginal increases in DNA damage reported in some studies in peripheral lymphocytes or other cells indicate, at least to a limited extent, potential genetic hazards posed by cypermethrin cis:trans/40:60, and emphasize the need and the importance of protective measures and safety regulations to minimize exposure to cypermethrin cis:trans/40:60.

Although the genotoxicity studies on cypermethrin cis:trans/40:60did not exclude a potential for DNA damage, the global weight-of-evidence suggests that cypermethrin cis:trans/40:60 should not be considered a genotoxicant, and thus, no classification as a Category 3 mutagen is warranted. In addition, there was no evidence of carcinogenicity. Also in other repeated-toxicity studies, there was no evidence of proliferative lesions, which would possibly occur if cypermethrin cis:trans/40:60 would display aneuploidogenic or polyploidogenic properties in vivo.

Reproductive and developmental toxicity

The teratogenicity studies involving oral administration of cypermethrin cis:trans/40:60 during organogenesis at dosages up to 70 mg/Kg bw/d in rats and up to 120 mg/Kg bw/d in rabbits were without adverse effects upon the progress and outcome of gestation.

A three-generation study involving administration of the substance in the diet of the rat showed that cypermethrin cis:trans/40:60 exerts no effect on the different reproduction parameters or on the survival of the offspring. NOAELparental= 10 mg/Kg bw/d; NOAELreproductive= 50 mg/Kg bw/d; NOAELdevelopmental= 10 mg/Kg bw/d.

According to the open literature, cypermethrin cis:trans/40:60induced functional impairments at the neurotransmitter receptor levels in neonatal rats. However, since the multi-generation reproduction study in rats was without any indication of persistent effects in the offspring, which were also exposed to cypermethrin cis:trans/40:60 neonatally, it is suggested that receptor binding changes are not predictive or causally related to the behavioural changes. Moreover, the most vulnerable phase for humans during the brain growth spurt is prenatal and not post-natal as in rodents. Therefore, exposure of the human fetus will be limited by maternal pharmacokinetics as well as maternal toxicity. The decreased male fertility seen in the rat and rabbit as demonstrated in the open literature appeared to be an indirect effect as it was caused at cypermethrin cis:trans/40:60 doses inducing clear general toxicity.

Based on the available data, it can be concluded that there is no evidence giving rise to concern for an additional risk for the newborn or young humans that should trigger further investigations.

Neurotoxicity

Cypermethrin has a neurotoxic potential. Repeated oral dosing of adult laying hens with 1000 mg/Kg cypermethrin cis:trans/40:60 produced no immediate or delayed signs of poisoning, nor any histopathological lesions in the nervous system. However, the hen sciatic nerve is not suitable for studying pyrethroid-induced

<FR>

nerve damage. In contrast with hens, rats treated with a single dose of cypermethrin cis:trans/40:60 (60 mg/Kg bw) showed behavioral changes indicating a broad neurological activity of cypermethrin. A NOAEL was observed at 20 mg/Kg bw. The clinical signs observed are characteristic for the acute poisoning with a type II pyrethroid: choreoathetosis accompanied by salivation (CS syndrome). In the rat, cypermethrin cis:trans/40:60 also produces epileptic activity during repeated administration. The neurotoxic effect of cypermethrin cis:trans/40:60 on peripheral nerves (axons, endoneurium) was highly correlated with exposure time. Cypermethrin cis:trans/40:60 exerts its toxicity by opening the voltage-gated sodium channel slowly for extended times, leading to a prolonged sodium current in the target neurons. Furthermore, the decrease in the Na+, K+-ATPase pump activity is involved in the paroxysmal epileptic activity induced by cypermethrin cis:trans/40:60. Cypermethrin cis:trans/40:60 also inhibits GABAA receptors.

Other: Immunotoxicity

Cypermethrin cis:trans/40:60 causes immunosuppression: both the humoral and cell-mediated immune response are impaired by cypermethrin.

Other: Endocrine disruption activity

The estrogenic potential of cypermethrin cis:trans/40:60 based on ER-mediated mechanisms remains equivocal. Contradictory results were revealed in different studies. In summary, the estrogenic and antiandrogenic effect of cypermethrin cis:trans/40:60 (and pyrethroids in general) depend on the assays or cells used. Results indicate that data obtained with high concentrations (> 10 μ M) should be interpreted carefully (solubility of test chemical, cell toxicity). Possibly, cypermethrin cis:trans/40:60 is an oestrogen-like chemical that might act through signalling pathways other than direct ER binding, and as such, might function as an endocrine modulator. However, at present no definite conclusions can be drawn.

The relevant critical endpoints of cypermethrin cis:trans/40:60 in the toxicological studies are identified as the effect on the central nervous system, characterised by clinical signs (CS syndrome) and peripheral nerve damage; a decrease in delayed type hypersensitivity; and the effect on the liver, characterised by increase in organ weight associated with increased microsomal enzyme activity. The NOAELs have been derived from the studies in the most sensitive species showing these effects. It is suggested to consider these effects in the risk assessment. The following AEL were proposed:

Reference dose	Value (mg/kg bw/day)	Study	NOAEL (mg/kg bw/day)	Uncertainty Factor	Oral absorption
Long-term AEL	0.022	2-year rat study	5	100	44%
Medium-term AEL	0.055	90-days dog	12.5	100	44%
Short-term AEL	0.088	Acute delayed neurotoxicity in rat	20	100	44%

- Propiconazole

Propiconazole is moderately toxic with an oral acute LD50 of 1500 mg/kg bw/day and it is as skin sensitizer. Based on the test results propiconazole is a moderate sensitizer according to the potency categorisation described in the Guidance on the Application of the CLP Criteria, 2011.

The liver is the main target organ of propiconazole toxicity. Increased liver weights and slight histopathological changes in the liver were seen already in short term studies. Mice were more sensitive than rats to the liver toxicity elicited by propiconazole; male mice were particularly susceptible to hepatotoxicity. Long-term feeding

studies in mice, including re-examination of tissue samples of the original study and additional testing in male mice only, showed neoplastic changes of the liver in male mice.

Mechanistic studies, including liver enzyme induction and hepatic cell proliferation properties, indicate that propiconazole is only to a certain degree comparable to phenobarbital as a hepatotoxic substance. Propiconazole is a strong inducer of xenobiotic metabolism and a tumour promoter in rodents which probably explains the induction of tumours in male mice. It may be presumed that rodents are more susceptible than humans to the hepatotoxicity of propiconazole. The overall chronic NOAEL in mice, based on hepatoxicity, was 10 mg/kg bw/day. The NOEL for hepatotoxicity in the 2-year rat study was 18 mg/kg bw/day, and the NOAEL was 3.6 mg/kg bw/day, based on changes in body weight and food conversion, changes in hematology and blood glucose, and adrenal weight changes. The overall NOAEL for chronic effects, 3.6 mg/kg bw/day in the 2-year rat study, covers liver toxicity in both rats and mice.

Propiconazole was not genotoxic in vitro or in vivo in the supplied tests.

A slight increase in the incidence of cleft palate was observed in rat teratogenicity studies. The low incidences of this rare malformation were not clearly treatment-related and occurred at dose levels causing marked maternal toxicity. It was therefore concluded that the effect seen in rats is probably occasional. The lowest relevant NOAEL for developmental effects was 30 mg/kg bw/day in rats, based on a slight increase in cleft palate and increased visceral and skeletal variations in a teratology study in rat.

Results of a two-generation study in rats included, in addition to hepatotoxicity in parental animals at low dose levels, slight reproductive effects at a high dose (reduced litter sizes and pup weights, reductions in testes/epididymides weights). The lowest relevant NOAEL in the 2-generation study was 8 mg/kg bw/day, based on liver toxicity in parental animals.

Three reference doses for the systemic toxicity of propiconazole can be defined, with relevance to the assessment of risks associated with exposure to a preservative for polymerized materials. The risks are related to the length of exposure and take into account the most relevant adverse health effects expected on the basis of animal studies.

The reference values are applicable both to primary (direct) exposure in professional and non-professional use, as well as secondary (indirect) exposure with intentional or unintentional exposure to the treated products. The reference values are based on systemic NOAELs from oral dosage studies in experimental animals; factors contributing to the determination of the systemic dose at different exposure routes (e.g. oral, dermal and pulmonary absorption) should therefore be considered at risk assessment. Toxicokinetic studies in rat show that 86% is absorbed within 48 h after oral administration. Correction for bioavailability is therefore not considered necessary.

Reference dose	Value (mg/kg bw/day)	(mg/kg Study		Uncertainty Factor	Relevance for risk assessment
Long-term AEL	0.04	2-year rat study	3.6	100	long-term exposure
Medium-term AEL	0.08	2-generation rat study	8	100	repeated exposure (few weeks per year or frequent exposure)
Short-term AEL	0.3	developmental toxicity study in rat	30	100	acute exposure (single dose or a few days of exposure)

The reference doses and the relevant NOAEL-values from which they are derived are summarised in the following table:

Tebuconazole

The **ADME** studies show that oral administration of tebuconazole is followed by a rapid and extensive absorption in the rat. Thus no correction for incomplete oral absorption is necessary in the risk assessment. The substance is quickly distributed throughout the body tissues with the highest level found in the liver. The majority of the administered dose is excreted in the faeces and enterohepatic circulation is expected. There are no indications of accumulation in any tissue. The metabolic study revealed sex differences for example in the excretion of the toxicologically relevant metabolite 1H-1,2,4-triazole amounting 5% in the urine of the male and 1.5% in that of the female. There are no toxicokinetic studies available in other animal species used in the toxicological studies that is dogs, cats, mice, guinea pigs and rabbits nor studies using the dermal route of exposure.

In a dermal absorption study in the rat around 50% of the test substance was absorbed within 8 hours.

In **acute toxicity studies**, tebuconazole was found to be of rather low toxicity by the oral route and of low toxicity by inhalation and dermal application when the rat is used as the test species.

Tebuconazole has no potential for **skin or eye irritation** and is not **sensitising** to the skin in the Magnusson-Kligmann maximisation test or in the Buehler Patch test.

Several **short-term and long-term tests** were submitted and the dog was again found to be the most sensitive animal tested and the only species showing potential for opacities of the eye lenses. Other effects observed in both rats and dogs were minor effects in the liver in the form of slightly increased weights, enzyme induction and decreased plasma glyceride levels as well as vacuolisation of the *zona fasciculata* cells of the adrenals.

No evidence for **genotoxic** potential as no indication of gene mutations, chromosome anomalies or increases in DNA-repair activity were noted in an adequate battery of *in-vitro* and *in-vivo* assays with various endpoints including both prokaryotes and eukaryotes.

Two 21-months combined chronic toxicity/carcinogenicity studies were conducted in mice. At the highest dose, pronounced liver toxicity and an increased incidence of liver tumours were seen. This tumorigenic potential is not considered relevant to humans as it is only found in a sensitive mouse strain and at very high dose levels above the maximum tolerated dose.

In a two-year combined chronic toxicity/carcinogenicity study in rats there was no evidence for carcinogenicity with relevance to humans.

In the **developmental toxicity studies** foetotoxic effects were revealed in all three animal species tested. The developmental toxicity occurred at doses that are associated with some maternal toxicity, however, the toxicity to the dams could not in all cases be categorised in severity to a degree that would influence the development of the offspring via non-specific secondary mechanisms to effects such as malformations (e.g. peromelia in rabbits).

Impaired spatial cognitive learning was observed during development but no corresponding neuropathology could be found in a developmental neurotoxicity study in rats.

The AOEL was derived from the one-year study in dogs where unspecific effects like histopathological alterations in the adrenal cortex were found. The NOAEL for this effect was 3 mg/kg bw/day. An uncertainty factor of 100 will be applied to the NOAEL for these nonspecific toxicological effects.

Therefore the values that will be used as basis for the risk characterisation is:

NOAEL = 3 mg/kg bw/day and AOEL = 0.03 mg/kg bw/day

<FR>

2.2.7.1.2 Toxicology of the substance(s) of concern

Active substances acting as co-formulants in the product, have been identified in V33 TRAITEMENT MULTI USAGES: 2-methyl-3(2H)-isothiazolone (MIT) and 1,2 benzisothiazol-3(2H)-one (BIT). However, these substances have not been considered SoC since they are present in the biocidal product at a concentration below 0.1% (0.0025% for MIT and BIT).

2.2.7.1.3 Toxicology of the biocidal product

The toxicology of the biocidal product was considered appropriately according to standard requirements. The basis for the health assessment of the biocidal product is laid out in Annex 5 "Toxicology – biocidal product".

2.2.7.1.4 Percutaneous absorption

The ability of cypermethrin, propiconazole and tebuconazole to penetrate the skin was examined *in vitro* with the 06LBCEOL20/2PT formulation (code name for V33 TRAITEMENT MULTI USAGES) containing 14C-cypermethrin at 1.7 g/L, 14C-propiconazole at 1.3g/L and 14C-tebuconazole at 1.4 g/L.

For the three active substances, over 75% of the total absorption (material in the receptor fluid at the end of the study) occurred within half the duration of the total sampling period. Therefore, all tape strips were excluded from absorption calculation.

The mean *in vitro* dermal absorption in the 06LBCEOL20/2PT formulation was $1.7 \pm 0.52\%$, $1.78 \pm 1.09\%$ and $4.7 \pm 1.55\%$ for cypermethrin, propiconazole and tebuconazole respectively.

According to the EFSA guidance on dermal absorption (2012), as the standard deviation is larger than 25% of the mean of the absorption, the dermal absorption value has to be the addition of the mean value to the standard deviation. Therefore, the *in vitro* dermal absorption in the 06LBCEOL20/2PT formulation was 2.2%, 2.87% and 6.25%, rounded to 2%, 3% and 6% (according to EFSA guidance) for cypermethrin, propiconazole and tebuconazole respectively.

Guideline/test method	Species	Route of administration	Endpoint/type of test	Results (dermal absorption)
OECD 428			Dermal absorption of Cypermethrin	2%
<i>In vitro</i> Washing at 8 h /	Human skin	Dermal	Dermal absorption of Propiconazole	3%
Exposure for 24 h			Dermal absorption of Tebuconazole	absorption) 2%

2.2.7.1.4.1 Acute toxicity

No acute toxicity study (oral, dermal or inhalation) has been submitted for the product V33 TRAITEMENT MULTI USAGES. The calculation rules of the Regulation 1272/2008 are applied to set the classification of the product.

Regarding the content of active substances and co-formulants, no classification is required.

2.2.7.1.4.2 Irritation and corrosivity

No skin irritation study has been submitted for the product V33 TRAITEMENT MULTI USAGES. The calculation rules of the Regulation 1272/2008 are applied to set the classification of the product for this endpoint.

An eye irritation study in rabbits has been performed on V33 TRAITEMENT MULTI USAGES according to the OECD Guideline 405.

0.1 mL of the test item was instilled, as supplied, into the conjunctival sac of one eye of three male albino New Zealand rabbit. Ocular examinations were performed on both right and left eyes 1 hour, 24, 48 and 72 hours following treatment.

The conjunctivae ocular reactions observed during the study have been slight to moderate and totally reversible: a slight to moderate redness noted 1 hour after the test item instillation and totally reversible between days 2 and 3, associated with a slight to moderate chemosis noted 1 hour after the test item instillation and totally reversible on day 1.

The individual and mean scores are presented in the following table (see below).

The results obtained, under these experimental conditions, enable to conclude that in accordance with the Regulation EC No. 1272/2008 on classification, labelling and packaging of substances and mixtures, V33 TRAITEMENT MULTI USAGES is not classified for eye irritation.

Animal n°	Time after	CONJUN	CTIVAE	IRIS	CORNEA
Animai n° Weight (kg)	treatment	CHEMOSIS (A) REDNESS (C)		LESION (D)	OPACITY (E)
	24 hours	0	1	0	0
A4106	48 hours	0	1	0	0
	72 hours	0	0	0	0
Start: 2.78	TOTAL	0	2	0	0
End: 2.80	Mean	0.0	0.7	0.0	0.0
	24 hours	0	2	0	0
A4156	48 hours	0	0	0	0
	72 hours	0	0	0	0
Start: 1.91	TOTAL	0	2	0	0
End: 1.95	Mean	0.0	0.7	0.0	0.0
	24 hours	0	1	0	0
A4154	48 hours	0	0	0	0
	72 hours	0	0	0	0
Start: 1.94	TOTAL	0	1	0	0
End: 2.00	Mean	0.0	0.3	0.0	0.0

Table 2.2-3: Individual and mean scores of conjunctivae, iris and cornea

2.2.7.1.4.3 Sensitisation

A skin sensitization study in mice has been performed on V33 TRAITEMENT MULTI USAGES according to the OECD Guideline 442-B (LLNA: BrdU).

The test was performed to assess the skin sensitisation potential of the product in the CBA/J strain mouse following topical applications to the dorsal surface of the ear.

The basic principle underlying the LLNA:BrdU is that sensitizers induce proliferation of lymphocytes in the lymph nodes draining the site of test item application.

Three groups of four animals were treated for three consecutive days (D1, D2, D3) with 50 μ L (25 μ L per ear) of the test item undiluted and diluted in Acetone/Olive Oil (4:1, v/v) at concentrations of 25% and 50%. A further group of four animals was treated with Acetone/Olive Oil (4:1, v/v).

On D5, 0.5 mL of BrdU solution (10 mg/ml) was injected by intra-peritoneally route.

On D6, the proliferation of lymphocytes in the draining auricular lymph nodes was determined by measurement of BrdU content in DNA of lymphocyte with kit ELISA. The experimental protocol was

established according to *the OECD Guideline n°442-B*, and test method B.51 of Council regulation No 640/2012 of 30 May 2012.

No mortality and no signs of systemic toxicity were noted in the test and control animals during the test. No significant increase in ear thickness and in ear weight was noted in animals treated at 25%, 50% and 100%. Therefore, the test item must be considered as not excessively irritant at these concentrations.

The Stimulation Index (SI) calculated by pooled approach was 0.92, 1.43 and 1.07 for the treated groups at 25%, 50% and 100%, respectively. The $EC_{1.6}$ cannot be determined in this study.

Groups	Test item	BrdU-index (mean)	Stimulation Index S.I.	Result	EC _{1.6} value
1	AOO	1.133	n.a	n.a	n.a.
2	25%	1.045	0.92	negative	
3	50%	1.625	1.43	negative	n.a.
4	100%	1.213	1.07	negative	

Table 2.2-4: BrdU index, Stimulation index and calculation of EC_{1.6}

In view of these results, under these experimental conditions, the product V33 TRAITEMENT MULTI USAGES is not classified as a skin sensitizer, in accordance with the Regulation (EC) No. 1272/2008. However, in accordance with the Regulation (EC) No. 1272/2008, the sentence EUH 208: Contains

However, in accordance with the Regulation (EC) No. 1272/2008, the sentence EUH 208: Contains propiconazole and 2-methyl-3(2H)-isothiazolone (MIT). May produce an allergic reaction should be mentioned on labelling.

Moreover, the presence of 1,2-benzisothiazolin-3-one (BIT), skin sensitizer, has been identified in the product at 0.0025%. The threshold value for classification H317 of BIT is 0.05% leading to a threshold value for elicitation at 0.005%. The content of BIT is below this SCL, so no specific labeling is required. However, BIT is a well known skin sensitizer that may induce skin reactions at concentration below the threshold value. Therefore, FR proposes to mention the presence of BIT on the label.

2.2.7.1.4.4 Other studies

No other study has been submitted.

2.2.7.2 Human exposure assessment

The product is a ready-to-use (RTU) water-based wood preservative for both professional and non-professional uses. It contains 0.18% w/w cypermethrin, 0.15% w/w tebuconazole, and 0.14% w/w propiconazole (technical contents are considered for the 3 active substances).

The product is intended to be used for the preventive and curative treatment of interior woods and exterior woods.

These preventive and curative treatments are done by brush application, spray application or injection.

With a density of 1.0 g/mL, the application doses are, respectively, 200 mL/m² (= 200 g/m²) for preventive treatment and 300 mL/m² (= 300 g/m²) for curative treatment. For curative treatment, an application dose of 150 mL/m² can be added by injection, in combination with a superficial treatment (brush or spray).

2.2.7.2.1 Identification of main paths of human exposure towards active substance from its use in biocidal product

For the primary exposure to the product, only professional and non-professional users are in contact with the product during mixing and loading, application (brushing, spraying or injection) and cleaning of the equipment. Dermal and inhalation routes were considered as the main exposure routes during the primary exposure.

For the secondary exposure, consumers and also professionals might be in contact with the product. Exposure may occur soon after application with a short exposure period (acute phase) or exposure may be long-term and repeated (chronic phase).

Table 2.2-5: Summary of main paths of human exposure

Exposure path	Industrial use	Professional use	General public	via the environment
Inhalation	Not appropriate	yes	Yes	Not appropriate
Dermal	Not appropriate	yes	Yes	Not appropriate
Oral	Not appropriate	Not appropriate	yes	Not appropriate

Physico-chemical and toxicological data of cypermethrine, tebuconazole and propiconazole used for the risk assessment are summarized in the following table.

Active Substance	Concentrati on (% w/w)*	Molecula r weight (g/mol)	Vapor Pressur e (Pa)	Log Po w	Inhalation absorptio n	Dermal absorptio n	Oral absorption
Cypermethrin	0.18	416	6*10 ⁻⁷	5.45	100%	2%	57%
Tebuconazole	0.15	308	1.7*10 ⁻⁶	3.49	100%	6%	100%
Propiconazole	0.14	342	5.6*10 ⁻⁵	3.72	100%	3%	100%

* Since the toxicological reference values derived for the active substances are set from animal studies in which animal are exposed to technical contents and not pure active substance; the technical contents of a.s. have been used for exposure calculations.

2.2.7.2.2 Direct exposure as a result of use of the active substance in biocidal product

V33 TRAITEMENT MULTI USAGES is a RTU product that can be applied by brushing or spraying. An application dose of 150 mL/m² is considered for injection, in combination with superficial treatment (brush or spray) in curative treatment. A dermal and inhalation exposure to the product can occur during the mixing and loading, the application and the equipment's cleaning.

The assessment of exposure during curative treatment is presented below. It covers the preventive treatment.

2.2.7.2.2.1 Exposure of professional users

In Annex 6 "Safety for professional operators", the results of the exposure calculations for the active substances for the professional user are laid out.

Brush application

Professional exposure during the application phase has been considered using "*Non-professional application of paints by brushing and rolling*" from the Recommendation no. 10 of the BPC Ad hoc Working Group on Human Exposure⁴. The mixing and loading phase is not considered since the product is a RTU that can be applied directly with a brush.

Exposure during the cleaning of equipment (brush) has been assessed with the exposure model from the Opinion no. 11 of HEEG⁵.

Scenario	Active substance	Inhalation Exposure (mg/kg bw/d)	Dermal Exposure (mg/kg bw/d)	Total Exposure (mg/kg bw/d)				
Brushing 300g/m ² – without PPE ⁶								
M&L		n.a						
Draduat application	Cyperméthrine	2.45 x 10⁻⁴	8.31 x 10⁻⁴	1.08 x 10 ⁻³				
Product application	Propiconazole	1.16 x 10 ⁻³	9.69 x 10⁻⁴	1.16 x 10 ⁻³				
phase	Tébuconazole	2.28 x 10 ⁻³	2.08 x 10 ⁻³	2.28 x 10 ⁻³				
Druch clooping	Cyperméthrine	negligible	3.09 x 10 ⁻⁴	3.09 x 10 ⁻⁴				
Brush cleaning	Propiconazole	negligible	3.22 x 10 ⁻⁴	3.22 x 10 ⁻⁴				
phase	Tébuconazole	negligible	4.23 x 10 ⁻⁴	4.23 x 10 ⁻⁴				
Application	Cyperméthrine	2.45 x 10 ⁻⁴	11.4 x 10 ⁻⁴	1.38 x 10 ⁻³				
Application +	Propiconazole	1.16 x 10 ⁻³	12.91 x 10 ⁻⁴	1.48 x 10 ⁻³				
cleaning	Tébuconazole	2.28 x 10 ⁻³	2.5 x 10 ⁻³	2.7 x 10 ⁻³				

Brush application + injection

No specific model for injection is available.

In a conservative approach, the exposure values set in the "*Non-professional application of paints by brushing and rolling*" from the Recommendation no. 10 of the BPC Ad hoc Working Group on Human Exposure, has been used and multiplied by two in order to simulate an application by brush and injection.

For the cleaning of the equipment, exposure during the cleaning of an equipment spray (as presented for the spray application) has been added to the cleaning of a brush scenario, in order to simulate the cleaning of both apparatus.

Scenario	Active substance	Inhalation Exposure (mg/kg bw/d)	Demal Exposure (mg/kg bw/d)	Total Exposure (mg/kg bw/d)					
	Brushing 300 g/m ² + injection 150 g/m ² – without PPE								
M&L		n.a							
Draduat application	Cyperméthrine	4.89 x 10 ⁻⁴	1.66 x 10 ⁻³	2.15 x 10 ⁻³					
Product application	Propiconazole	3.8 x 10⁻⁴	1.94 x 10 ⁻³	2.32 x 10 ⁻³					
phase	Tébuconazole	4.08 x 10 ⁻⁴	4.15 x 10 ⁻³	4.56 x 10 ⁻³					
	Cyperméthrine	negligible	6.4 x 10 ⁻⁴	6.4 x 10 ⁻⁴					
Cleaning phase	Propiconazole	negligible	7.08 x 10 ⁻⁴	7.08 x 10 ⁻⁴					
	Tébuconazole	negligible	1.25 x 10 ⁻³	1.25 x 10 ⁻³					
	Cyperméthrine	4.89 x 10 ⁻⁴	2.3 x 10 ⁻³	2.79 x 10 ⁻³					
Appli + cleaning	Propiconazole	3.8 x 10 ⁻⁴	2.6 x 10 ⁻³	3.03 x 10 ⁻³					
	Tébuconazole	4.08 x 10 ⁻⁴	5.4 x 10 ⁻³	5.81 x 10 ⁻³					

⁴ "The most appropriate model to used for the scenario of non-professional application of paints by brushing and rolling", agreed at the HH WG III on 26 May 2016.

⁵ HEEG Opinion on Exposure model "Primary exposure scenario – washing out of a brush which has been used to apply a paint", endorsed at TM III 2010.

⁶ PPE : Personal Protective Equipment

Spray application

Professional exposure during the mixing and loading and the application phase has been considered using *"the spraying model 2"* according to the Recommendation no. 6 of the BPC Ad hoc Working Group on Human Exposure⁷.

Exposure during the cleaning of equipment has been assessed with the BEAT scenario "*Cleaning of the spray equipment*" from TNsG second version of 2007⁸.

For PPE, a protection factor of 90% has been applied for gloves and coated coverall as described in HEEG opinion 9⁹.

Scenario	Active substance	Inhalation Exposure (mg/kg bw/d)	Demal Exposure (mg/kg bw/d)	Total Exposure (mg/kg bw/d)			
Spraying 300g/m ² – without PPE							
M&L			the model				
Draduct application	Cyperméthrine	4.28 x 10 ⁻³	2.67 x 10 ⁻²	3.1 x 10 ⁻²			
Product application	Propiconazole	3.33 x 10 ⁻³	3.12 x 10 ⁻²	3.45 x 10 ⁻²			
phase	Tébuconazole	3.56 x 10 ⁻³	6.68 x 10 ⁻²	7.04 x 10 ⁻²			
Cleaning of the	Cyperméthrine	negligible	3.31 x 10 ⁻⁴	3.31 x 10⁻⁴			
Cleaning of the	Propiconazole	negligible	3.86 x 10 ⁻⁴	3.86 x 10⁻⁴			
spray equipment	Tébuconazole	negligible	8.27 x 10 ⁻⁴	8.27 x 10 ⁻⁴			
	Cyperméthrine	4.28 x 10 ⁻³	2.9 x 10 ⁻²	3.36 x 10 ⁻²			
Appli + cleaning	Propiconazole	3.33 x 10 ⁻³	3.4 x 10 ⁻²	3.73 x 10 ⁻²			
	Tébuconazole	3.56 x 10 ⁻³	3.2 x 10 ⁻²	3.59 x 10 ⁻²			
Spraying 300g/m ² –	with PPE during app	lication phase (glove	s 90% and coverall 9	0%)			
M&L		Included in	the model				
Product application	Cyperméthrine	4.28 x 10 ⁻³	2.82 x 10 ⁻³	7.09 x 10 ⁻³			
phase	Propiconazole	3.33 x 10 ⁻³	2.85 x 10 ⁻³	6.17 x 10 ⁻³			
(gloves and coverall)	Tébuconazole	3.56 x 10 ⁻³	6.1 x 10 ⁻³	9.66 x 10 ⁻³			
	Cyperméthrine	negligible	3.31 x 10 ⁻⁴	3.31 x 10⁻⁴			
Cleaning of the	Propiconazole	negligible	3.86 x 10 ⁻⁴	3.86 x 10⁻⁴			
spray equipment	Tébuconazole	negligible	8.27 x 10 ⁻⁴	8.27 x 10 ⁻⁴			
Application (DDD)	Cyperméthrine	4.28 x 10 ⁻³	3.1 x 10 ⁻³	7.42 x 10 ⁻³			
Application (PPE) +	Propiconazole	3.33 x 10 ⁻³	3.2 x 10 ⁻³	6.56 x 10 ⁻³			
cleaning	Tébuconazole	3.56 x 10 ⁻³	6.9 x 10 ⁻³	1.05 x 10 ⁻²			

Spray application + injection

For this scenario, the exposure values of the exposure models (application + cleaning) taken for the spray application have been multiplied by two in order to simulate an application by spray followed by an application by injection.

Scenario	Active substance	Inhalation Exposure (mg/kg bw/d)	Demal Exposure (mg/kg bw/d)	Total Exposure (mg/kg bw/d)	
Spraying 300g/m ² + injection 150g/m2 – with PPE during application (gloves 90% and coverall 90%)					

⁷ "Methods and models to assess exposureto biocidal product in different product types" version 2, June 2016.

⁸ Technical Notes for Guidance Human exposure to biocidal products, january 2008 (adopted during CA meeting of 19-20 june of 2007).

⁹ HEEG opinion 9 on Default protecion factors for preventive clothing and gloves. Agreed at TM I 2010.

M&L	n.a				
Product application	Cyperméthrine	8.55 x 10 ⁻³	5.64 x 10 ⁻³	1.42 x 10 ⁻²	
phase	Propiconazole	6.65 x 10 ⁻³	5.69 x 10 ⁻³	1.23 x 10 ⁻²	
(gloves and coverall)	Tébuconazole	7.13 x 10 ⁻³	1.22 x 10 ⁻²	1.93 x 10 ⁻²	
	Cyperméthrine	negligible	6.62 x 10 ⁻⁴	6.62 x 10 ⁻⁴	
Cleaning phase	Propiconazole	negligible	7.72 x 10 ⁻⁴	7.72 x 10 ⁻⁴	
	Tébuconazole	negligible	1.65 x 10 ⁻³	1.65 x 10 ⁻³	
Application (PPE) +	Cyperméthrine	8.55 x 10 ⁻³	6.2 x 10 ⁻³	1.48 x 10 ⁻²	
cleaning	Propiconazole	6.65 x 10 ⁻³	6.4 x 10 ⁻³	1.31 x 10 ⁻²	
	Tébuconazole	7.13 x 10 ⁻³	1.4 x 10 ⁻²	2.1 x 10 ⁻²	

2.2.7.2.2.2 Exposure of non-professional users

In Annex 7 "Safety for non-professional operators and the general public", the results of the exposure calculations for the active substances for the non-professional user and the general public are laid out.

Brush application

Non-professional exposure during the application phase has been considered using "*Non-professional application of paints by brushing and rolling*" from the Recommendation no. 10 of the BPC Ad hoc Working Group on Human Exposure¹⁰. The mixing and loading phase is not considered since the product is a RTU that can be applied directly with a brush.

Exposure during the cleaning of equipment (brush) has been assessed with the exposure model from the Opinion no. 11 of HEEG¹¹.

Scenario	Active substance	Inhalation Exposure (mg/kg bw/d)	Dermal Exposure (mg/kg bw/d)	Total Exposure (mg/kg bw/d)
Brushing 300g/m ²				
M&L		n	.a	
Draduct explication	Cyperméthrine	2.45 x 10⁻⁴	8.31 x 10 ⁻⁴	1.08 x 10 ⁻³
Product application	Propiconazole	1.16 x 10 ⁻³	9.69 x 10⁻⁴	1.16 x 10 ⁻³
phase	Tébuconazole	2.28 x 10 ⁻³	2.08 x 10 ⁻³	2.28 x 10 ⁻³
Druch clooning	Cyperméthrine	negligible	3.09 x 10 ⁻⁴	3.09 x 10 ⁻⁴
Brush cleaning	Propiconazole	negligible	3.22 x 10 ⁻⁴	3.22 x 10 ⁻⁴
phase	Tébuconazole	negligible	4.23 x 10 ⁻⁴	4.23 x 10 ⁻⁴
Appli + cleaning	Cyperméthrine	2.45 x 10⁻⁴	11.4 x 10 ⁻⁴	1.38 x 10 ⁻³
	Propiconazole	1.16 x 10 ⁻³	12.91 x 10 ⁻⁴	1.48 x 10 ⁻³
	Tébuconazole	2.28 x 10 ⁻³	2.5 x 10 ⁻³	2.7 x 10 ⁻³

Brush application + injection

No specific exposure model for injection is available.

In a conservative approach, the exposure values set in the "*Non-professional application of paints by brushing and rolling*" from the Recommendation no. 10 of the BPC Ad hoc Working Group on Human Exposure, has been used and multiplied by two in order to simulate an application by brush and injection, considering that the task duration is the same for injection and for brushing.

¹⁰ "The most appropriate model to used for the scenario of non-professional application of paints by brushing and rolling", agreed at the HH WG III on 26 May 2016.

¹¹ HEEG Opinion on Exposure model "Primary exposure scenario – washing out of a brush which has been used to apply a paint", endorsed at TM III 2010.

For the cleaning of the equipment, exposure during the cleaning of an equipment spray (as presented for the spray application) has been added to the cleaning of a brush scenario, in order to simulate the cleaning of both apparatus.

Scenario	Active substance	Inhalation Exposure (mg/kg bw/d)	Demal Exposure (mg/kg bw/d)	Total Exposure (mg/kg bw/d)
Brushing 300 g/m ² +	injection 150 g/m ²			
M&L		n	.a	
Dreduct explication	Cyperméthrine	4.89 x 10 ⁻⁴	1.66 x 10 ⁻³	2.15 x 10 ⁻³
Product application	Propiconazole	3.8 x 10 ⁻⁴	1.94 x 10 ⁻³	2.32 x 10 ⁻³
phase	Tébuconazole	4.08 x 10 ⁻⁴	4.15 x 10 ⁻³	4.56 x 10 ⁻³
	Cyperméthrine	negligible	6.4 x 10 ⁻⁴	6.4 x 10 ⁻⁴
Cleaning phase	Propiconazole	negligible	7.08 x 10 ⁻⁴	7.08 x 10 ⁻⁴
	Tébuconazole	negligible	1.25 x 10 ⁻³	1.25 x 10 ⁻³
	Cyperméthrine	4.89 x 10 ⁻⁴	2.3 x 10 ⁻³	2.79 x 10 ⁻³
Appli + cleaning	Propiconazole	3.8 x 10 ⁻⁴	2.6 x 10 ⁻³	3.03 x 10 ⁻³
	Tébuconazole	4.08 x 10 ⁻⁴	5.4 x 10 ⁻³	5.81 x 10 ⁻³

Spray application

Non-professional exposure during the mixing and loading and the application phase has been considered using the "*Consumer spraying and dusting Model 3*" taken from the TNsG second version of 2007. Exposure during the cleaning of equipment has been assessed with the BEAT scenario "*Cleaning of the spray equipment*" from TNsG second version of 2007¹².

Scenario	Active substance	Inhalation Exposure (mg/kg bw/d)	Demal Exposure (mg/kg bw/d)	Total Exposure (mg/kg bw/d)
Spraying 300g/m ² –	without PPE			
M&L		Included in	the model	
Draduct explication	Cyperméthrine	1.63 x 10⁻⁴	5.47 x 10 ⁻³	5.63 x 10 ⁻³
Product application	Propiconazole	1.48 x 10 ⁻³	6.38 x 10 ⁻³	7.86 x 10 ⁻³
phase	Tébuconazole	1.35 x 10⁻⁴	1.37 x 10 ⁻²	1.38 x 10 ⁻²
Cleaning of the	Cyperméthrine	negligible	3.31 x 10 ⁻⁴	3.31 x 10 ⁻⁴
Cleaning of the	Propiconazole	negligible	3.86 x 10⁻⁴	3.86 x 10 ⁻⁴
spray equipment	Tébuconazole	negligible	8.27 x 10 ⁻⁴	8.27 x 10 ⁻⁴
	Cyperméthrine	1.63 x 10⁻⁴	5.8 x 10 ⁻³	5.97 x 10 ⁻³
Appli + cleaning	Propiconazole	1.48 x 10 ⁻³	6.8 x 10 ⁻³	8.25 x 10 ⁻³
	Tébuconazole	1.35 x 10 ⁻⁴	1.45 x 10 ⁻²	1.46 x 10 ⁻²

Spray application + injection

For this scenario, the exposure values of the exposure models (application + cleaning) taken for the spray application have been multiplied by two in order to simulate an application by spray followed by an application by injection.

¹² Technical Notes for Guidance Human exposure to biocidal products, january 2008 (adopted during CA meeting of 19-20 june of 2007).

Scenario	Active substance	Inhalation Exposure (mg/kg bw/d)	Demal Exposure (mg/kg bw/d)	Total Exposure (mg/kg bw/d)
Spraying 300g/m ² +	injection 150g/m2 - v	without PPE		
M&L		n	.a	
Draduct explication	Cyperméthrine	3.25 x 10⁻⁴	1.09 x 10 ⁻²	1.13 x 10 ⁻²
Product application	Propiconazole	2.53 x 10⁻⁴	1.28 x 10 ⁻²	1.30 x 10 ⁻²
phase	Tébuconazole	2.71 x 10 ⁻⁴	2.74x 10 ⁻²	2.76 x 10 ⁻²
	Cyperméthrine	negligible	6.62 x 10 ⁻⁴	6.62 x 10 ⁻⁴
Cleaning phase	Propiconazole	negligible	7.72 x 10 ⁻⁴	7.72 x 10 ⁻⁴
	Tébuconazole	negligible	1.65 x 10 ⁻³	1.65 x 10 ⁻³
	Cyperméthrine	3.25 x 10⁻⁴	1.16 x 10 ⁻¹²	1.19 x 10 ⁻²
Appli + cleaning	Propiconazole	2.53 x 10 ⁻⁴	1.35 x 10 ⁻²	1.38 x 10 ⁻²
	Tébuconazole	2.71 x 10 ⁻⁴	2.91 x 10 ⁻²	2.93 x 10 ⁻²

2.2.7.2.3 Indirect exposure as a result of use of the active substance in biocidal product

For secondary exposure, as described in TNsG for Human Exposure (2002 and 2007), it was considered as occurring soon after application with a short exposure period (acute phase) or with a long-term and repeated exposure (chronic phase). It concerns:

- for acute phase, scenarios of sanding treated wood (adult) and chewing treated wood offcuts (infant),
- for chronic phase the scenarios of professional sanding, cleaning work clothes at home (adult), inhalation of volatilizing residues indoors (adult and infant), of child playing on playground structure outdoors and infant playing on weathered (playground) structure and mouthing.

These scenarios which have to be considered for wood preservative treatments are summarised below.

Secondary	Exposure	Routes of	Exposed	population
scenario	situation	exposure	Adult	Infant/child
Sanding treated wood	Acute	Dermal, inhalation	yes	-
Chewing treated wood offcuts	Acute	Ingestion	-	Yes
Sanding treated wood	Chronic	Dermal, inhalation	yes	-
Inhalation of volatilising residues indoors	Chronic	Inhalation	Yes	Yes
Child playing on playground structure outdoors	Chronic	Dermal	-	Yes
Infant playing on weathered (playground) structure and mouthing	Chronic	Dermal, ingestion	-	Yes

Acute secondary exposure scenario

Two application rates were considered for the treated wood:

- Dose of 450 g/m² corresponding to a curative treatment by injection and brushing or spraying.

- Dose of 300 g/m² corresponding to a superficial curative treatment.

Scenario	Substances	Dermal Exposure (mg/kg bw/d)	Inhalation Exposure (mg/kg bw/d	Oral Exposure (mg/kg bw/d	Total Exposure (mg/kg bw/d)
Adult amateur sanding/process	Cyperméthrine	3.40 x 10 ⁻⁴	2.83 x 10 ⁻⁵	-	3.68 x 10 ⁻⁴
ing of treated wood	Propiconazole	3.97 x 10 ⁻⁴	2.20 x 10 ⁻⁵	-	4.19 x 10 ⁻⁴
composites (450g/m ²)	Tébuconazole	8.51 x 10 ⁻⁴	2.36 x 10 ⁻⁵	-	8.74 x 10 ⁻⁴
Infant chewing	Cyperméthrine	-	-	0.015	0.015
wood	Propiconazole	-	-	0.02	0.02
composites chips (450g/m ²)	Tébuconazole	-	-	0.02	0.02
Infant chewing	Cyperméthrine	-	-	0.015	0.015
wood	Propiconazole	-	-	0.02	0.02
composites chips (300g/m ²)	Tébuconazole	-	-	0.02	0.02

Chronic secondary exposure scenario

Two application rates were considered for the treated wood:

- Dose of 450 g/m² corresponding to a curative treatment by injection and brushing or spraying.
- Dose of 300 g/m² corresponding to a superficial curative treatment

Scenario	Substances	Dermal Exposure (mg/kg bw/d)	Inhalation Exposure (mg/kg bw/d	Oral Exposure (mg/kg bw/d	Total Exposure (mg/kg bw/d)
Adult professional	Cyperméthrine	3.40 x 10 ⁻⁵	1.70 x 10 ⁻⁴	-	2.04 x 10 ⁻⁴
sanding/process ing of treated	Propiconazole	3.97 x 10 ⁻⁵	1.32 x 10 ⁻⁴	-	1.72 x 10 ⁻⁴
wood composites (450g/m ²)	Tébuconazole	8.51 x 10 ⁻⁵	1.41 x 10 ⁻⁴	-	2.26 x 10 ⁻⁴
Inhalation of	Cyperméthrine	-	2.74 x 10 ⁻⁵	-	2.74 x 10 ⁻⁵ 2.1 x 10 ⁻³
volatilizing	Propiconazole	-	2.74 x 10 ⁻⁵ 2.1 x 10 ⁻³	-	2.1 x 10 ⁻³
residues indoors (Adult)	Tébuconazole	-	5.73 x 10 ⁻⁵	-	5.73 x 10 ⁻⁵
Inhalation of	Cyperméthrine	-	5.54 x 10 ⁻⁵	-	5.54 x 10 ⁻⁵
volatilizing	Propiconazole	-	4.25 x 10 ⁻³	-	4.25 x 10 ⁻³
residues indoors (Infant)	Tébuconazole	-	1.16 x 10 ⁻⁴	-	1.16 x 10 ⁻⁴
Child playing on	Cyperméthrine	1.30 x 10 ⁻⁴	-	-	1.30 x 10 ⁻⁴
playground	Propiconazole	1.51 x 10 ⁻⁴	-	-	1.51 x 10 ⁻⁴
structure outdoors	Tébuconazole	3.24 x 10 ⁻⁴	-	-	3.24 x 10 ⁻⁴
Infant playing	Cyperméthrine	1.94 x 10 ⁻⁴	-	1.22 x 10 ⁻²	1.23 x 10 ⁻²
on weathered	Propiconazole	2.27 x 10 ⁻⁴	-	9.45 x 10 ⁻³	9.7 x 10 ⁻³
(playground) structure and mouthing (450	Tébuconazole	4.86 x 10 ⁻⁴	-	1.3 x 10 ⁻²	1.06 x 10 ⁻²

g/m2)					
Infant playing	Cyperméthrine	1.3x 10⁻⁴	-	8.1 x 10 ⁻³	8.23 x 10 ⁻³
on weathered	Propiconazole	1.51 x 10⁻⁴	-	3.6 x 10⁻³	6.45 x 10 ⁻³
(playground) structure and mouthing (300 g/m2)	Tébuconazole	3.24 x 10 ⁻⁴	-	6.75 x 10 ⁻³	7.07 x 10 ⁻³

2.2.7.2.4 Exposure to residues in food

In Annex 8 "Residue behaviour", the results of the residue assessment are laid out.

2.2.7.2.5 Combined exposure

A combined exposure is also considered for an adult (professional exposure + inhalation of volatilizing residues) and an infant (playing on weathered (playground) structure and mouthing + inhalation of volatilizing residues).

These scenarios which have to be considered for wood preservative treatments are summarized below.

Secondary	Exposure	Routes of	Exposed population Non-professionals	
scenario	situation	exposure	Adult	Infant
Combined exposure (pro exposure + inhalation of volatilizing residues)	Chronic	Dermal, inhalation	Yes	-
Combined exposure (Infant playing on weathered structure and mouthing + inhalation of volatilizing residues)	Chronic	Dermal, ingestion, inhalation	-	Yes

Adult combined exposure (chronic exposure scenario)

Scenario	Active substance	Professional exposure (mg/kg bw/d)	Secondary exposure (inhalation of volatilzed residues) (mg/kg bw/d)	Total exposure (mg/kg bw/d)
	Cyperméthrine	1.08 x 10 ⁻³	2.74 x 10 ⁻⁵	1.1 x 10 ⁻³
Brushing	Propiconazole	1.16 x 10 ⁻³	2.10 x 10 ⁻³	3.26 x 10 ⁻³
	Tébuconazole	2.28 x 10 ⁻³	5.73 x 10 ⁻⁵	2.34 x 10 ⁻³
Spraying	Cyperméthrine	7.09 x 10 ⁻³	2.74 x 10 ⁻⁵	7.12 x 10 ⁻³
(gloves + coverall	Propiconazole	6.17 x 10 ⁻³	2.10 x 10 ⁻³	8.27 x 10 ⁻³
20%)	Tébuconazole	9.66 x 10 ⁻³	5.73 x 10 ⁻⁵	9.72 x 10 ⁻³

<V33 TRAITEMENT MULTI USAGES>

<PT8>

Brushing + injecting	Cyperméthrine	2.15 x 10 ⁻³	2.74 x 10 ⁻⁵	2.18 x 10 ⁻³
	Propiconazole	2.32 x 10 ⁻³	2.10 x 10 ⁻³	4.42 x 10 ⁻³
	Tébuconazole	4.56 x 10 ⁻³	5.73 x 10 ⁻⁵	4.62 x 10 ⁻³
	Cyperméthrine	1.42 x 10 ⁻²	2.74 x 10 ⁻⁵	1.42 x 10 ⁻²
Spraying + injecting	Propiconazole	1.23 x 10 ⁻²	2.10 x 10 ⁻³	1.44 x 10 ⁻²
	Tébuconazole	1.93 x 10 ⁻²	5.73 x 10 ⁻⁵	1.94 x 10 ⁻²

Infant combined exposure (chronic exposure scenario)

Active substance	Infant playing on a wood strucure + mouthing (mg/kg bw/d)*	Secondary exposure (inhalation of volatilzed residues) (mg/kg bw/d)	Total exposure (mg/kg bw/d)
Cyperméthrine	6.45 x 10 ⁻³	5.54 x 10 ⁻⁵	8.23 x 10 ⁻³
Propiconazole	4.3 x 10 ⁻³	4.25 x 10 ⁻³	1.07 x 10 ⁻²
Tébuconazole	7.07 x 10 ⁻³	1.16 x 10 ⁻⁴	7.2 x 10 ⁻³

* wood treated by spraying with a dose of 300 g/m²

2.2.7.3 Risk assessment for human health

2.2.7.3.1 Risk for direct exposure

2.2.7.3.1.1 Professional users

The exposure values are compared to long term AEL of each active substance.

	Cyperméthrine	Tébuconazole	Propiconazole
Long term AEL (mg/kg bw/d)	0.022	0.03	0.04

The product contains 3 different active substances; therefore a risk assessment from combined exposure to several active substances should be performed according to the Guidance on the Biocidal Product Regulation, Part B of 2015¹³.

The first step (Tier 1) of this approach is to verify acceptability for each substance used in the product, corresponding to the comparison of the exposure values to the AEL of each substance as stated above and leading to the calculation of Hazard Quotients (HQ), corresponding to estimation of exposure/AEL.

In a Tier 2, additive effects were considered by summing up the HQ of each active substance, leading to the calculation of a HI (Hazard Index).

If HI ≤ 1 the risk related to use of the mixture will be considered acceptable;

If HI > 1 the risk related to use of the mixture will be considered unacceptable; a refinement is needed.

In a Tier 3, the confirmation of concentration (dose) addition in the mixture/product is presented.

As a first step, target organs/mode of action for each substance are listed, corresponding to a Tier 3A. Substances are then grouped related to their common target organs or MoA. When a target organ or MoA is observed for only one substance, there is no need to perform a Tier 3A.

If general AELs are not established on the same organs/MoA, it is necessary to determine specific AELs for each identified target organ/MoA and each active substance. This step corresponds to a Tier 3B.

¹³ Guidance on the Biocidal product Regulation, Volume III Human Health – Part B risk assessment, 2015.

Brush application

Tier 1 (acceptability of each substance)

Scenario	AEL (mg/kg bw/d)	Exposure (mg/kg bw/d)	% AEL	Risk
Brushing 300g/m ² –	without PPE			
M&L		n	.a	
	Cyperméthrine 0.022	1.08 x 10 ⁻³	4.89	Acceptable
Product application phase	Propiconazole : 0.04	1.16 x 10 ⁻³	2.9	Acceptable
	Tébuconazole : 0.03	2.28 x 10 ⁻³	7.60	Acceptable
	Cyperméthrine 0.022	3.09 x 10 ⁻⁴	1.41	Acceptable
Brush cleaning phase	Propiconazole : 0.04	3.22 x 10 ⁻⁴	0.8	Acceptable
	Tébuconazole : 0.03	4.23 x 10 ⁻⁴	1.41	Acceptable
	Cyperméthrine 0.022	1.38 x 10 ⁻³	6.29	Acceptable
Appli + cleaning	Propiconazole : 0.04	1.48 x 10 ⁻³	3.7	Acceptable
	Tébuconazole : 0.03	2.7 x 10 ⁻³	9.01	Acceptable

→ The risk is acceptable for brush application by a professional without PPE.

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	Н	Risk
HQ (Exposure/AEL)			(∑ HQ a.s)	
0.063	0.04	0.09	0.19	Acceptable

 \rightarrow HI < 1, the risk is acceptable for brush application by a professional without PPE.

Spray application

Scenario	AEL	Exposure	% AEL	Risk
	(mg/kg bw/d)	(mg/kg bw/d)		
Spraying 300g/m ² –	no PPE			
M&L		Included in	the model	
	Cyperméthrine 0.022	3.1 x 10 ⁻²	140.93	Unacceptable
Product application phase	Propiconazole : 0.04	3.45 x 10 ⁻²	86.28	Acceptable
	Tébuconazole : 0.03	7.04 x 10 ⁻²	234.63	Unacceptable
Cleaning spray	Cyperméthrine 0.022	3.31 x 10 ⁻⁴	1.5	Acceptable
equipment	Propiconazole :	3.86 x 10 ⁻⁴	0.97	Acceptable

	0.04			
	Tébuconazole : 0.03	8.27 x 10 ⁻⁴	2.76	Acceptable
	Cyperméthrine 0.022	3.36 x 10 ⁻²	152.9	Unacceptable
Appli + cleaning	Propiconazole : 0.04	3.73 x 10 ⁻²	87.25	Acceptable
	Tébuconazole : 0.03	3.59 x 10 ⁻²	252.98	Unacceptable
Spraying 300g/m ² – PPE during application phase (gloves 90% and coverall 90%)			and coverall 90%)	
M&L		Included in	the model	
	Cyperméthrine 0.022	7.09 x 10 ⁻³	32.24	Acceptable
Application phase (gloves + coverall)	Propiconazole : 0.04	6.17 x 10 ⁻³	15.43	Acceptable
	Tébuconazole : 0.03	9.66 x 10 ⁻³	32.21	Acceptable
	Cyperméthrine 0.022	3.31 x 10 ⁻⁴	1.5	Acceptable
Cleaining equipement	Propiconazole : 0.04	3.86 x 10 ⁻⁴	0.97	Acceptable
(no PPE)	Tébuconazole : 0.03	8.27 x 10 ⁻⁴	2.76	Acceptable
	Cyperméthrine 0.022	7.42 x 10 ⁻³	33.75	Acceptable
Appli + cleaning (gloves + coverall	Propiconazole : 0.04	6.56 x 10 ⁻³	16.4	Acceptable
(gloves + coverall during application)	Tébuconazole : 0.03	1.05 x 10 ⁻²	34.96	Acceptable

→ The risk is acceptable for spray application by a professional with PPE (gloves and cotton coverall) during application phase.

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	HI	Risk
HQ (Exposure/AEL)			(∑ HQ a.s)	
0.33	0.16	0.35	0.84	Acceptable

→ HI < 1, the risk is acceptable for spray application by a professional with PPE (gloves and cotton coverall) during application phase.</p>

Brush application + injection

Scenario	AEL	Exposure	% AEL	Risk
	(mg/kg bw/d)	(mg/kg bw/d)		
Brushing 300g/m ² and Injecting 150g/m ² – without PPE				
M&L	n.a			
Application phase	Cyperméthrine 0.022	2.15 x 10 ⁻³	9.78	Acceptable

<V33 TRAITEMENT MULTI USAGES>

	Propiconazole : 0.04	2.32 x 10 ⁻³	5.8	Acceptable
	Tébuconazole : 0.03	4.56 x 10 ⁻³	15.21	Acceptable
	Cyperméthrine 0.022	6.4 x 10 ⁻⁴	2.91	Acceptable
Brush and injector cleaning	Propiconazole : 0.04	7.08 x 10 ⁻⁴	1.77	Acceptable
	Tébuconazole : 0.03	1.25 x 10 ⁻³	4.17	Acceptable
	Cyperméthrine 0.022	2.79 x 10 ⁻³	12.69	Acceptable
Appli + cleaning	Propiconazole : 0.04	3.03 x 10 ⁻³	7.57	Acceptable
	Tébuconazole : 0.03	5.81 x 10 ⁻³	19.37	Acceptable

→ The risk is acceptable for brush + injection application (curative treatment) by a professional without PPE.

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	Н	Risk
HQ (Exposure/AEL)			(∑ HQ a.s)	
0.13	0.08	0.19	0.4	Acceptable

→ HI < 1, the risk is acceptable for brush + injection application (curative treatment) by a professional without PPE.

Spray application + injection

Scenario	AEL	Exposure	% AEL	Risk
	(mg/kg bw/d)	(mg/kg bw/d)		
Spraying 300g/m ² +	injecting 150 mg/m ² -	- PPE during applicat	ion phase (gloves 90 ^e	% and coverall 90%)
M&L		Including in	the model	
	Cyperméthrine 0.022	1.42 x 10 ⁻²	64.49	Acceptable
Application phase (gloves + coverall) Cleaning equipment (no PPE)	Propiconazole : 0.04	1.23 x 10 ⁻²	30.86	Acceptable
	Tébuconazole : 0.03	1.93 x 10 ⁻²	64.41	Acceptable
	Cyperméthrine 0.022	6.62 x 10 ⁻⁴	3.01	Acceptable
	Propiconazole : 0.04	7.72 x 10 ⁻⁴	1.93	Acceptable
	Tébuconazole : 0.03	1.65 x 10 ⁻³	5.52	Acceptable
Appli + cleaning	Cyperméthrine 0.022	1.48 x 10 ⁻²	67.5	Acceptable
(gloves + coverall during application)	Propiconazole : 0.04	1.31 x 10 ⁻²	32.79	Acceptable

Tébuconazol 0.03

→ The risk is acceptable for spray + injection application (curative treatment) by a professional with PPE (gloves and cotton coverall) during the application phase.

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	HI	Risk
	HQ (Exposure/AEL)		(∑ HQ a.s)	
0.7	0.3	0.7	1.7	Unacceptable

 \rightarrow HI > 1, a refinement is needed.

A Tier 3B approach is considered since the 3 active substances have a target organ in common. The liver is a target organ common to cypermethrine, propiconazole and tebuconazole. A specific target organ AEL can be derived for each active substance.

According to the datapackage available in the CAR of Cypermethrin, liver effects are observed in a 3-week rat study. A NOAEL of 31.5 mg/kg bw/d has been set for these effects, corrected by an AF of 100 and the oral absorption of 57%, leading to a specific AEL of 0.18 mg/kg bw/d.

According to the datapackage available in the CAR of Tebuconazole, liver effects are observed in a 2-year mice study. A NOAEL of 5.9 mg/kg bw/d has been set for these effects, corrected by an AF of 100 and the oral absorption of 100%, leading to a specific AEL of 0.06 mg/kg bw/d.

According to the datapackage available in the CAR of Propiconazole, liver effects are observed in a 2generation mice study. A NOAEL of 8 mg/kg bw/d has been set for these effects, corrected by an AF of 100 and the oral absorption of 86%, leading to a specific AEL of 0.08 mg/kg bw/d.

	Cyperméthrine	Tébuconazole	Propiconazole
General long term AEL	0.022	0.03	0.04
Specific AEL: liver	0.18	0.06	0.08

The comparison of the exposure values during the application and the cleaning with the specific liver AELs leads to the following results:

Scenario	AEL _{specific} (mg/kg bw/d)	Exposure (mg/kg bw/d)	% AEL _{specific}	Risk
Spraying 300g/m ² +	injecting 150 mg/m ² -	- PPE during applicat	ion phase (gloves 90 [°]	% and coverall 90%)
	Cyperméthrine 0.18	1.48 x 10 ⁻²	8.25	Acceptable
Appli + cleaning (gloves + coverall during application)	Propiconazole : 0.08	1.31 x 10 ⁻²	16.39	Acceptable
	Tébuconazole : 0.06	2.1 x 10 ⁻²	34.96	Acceptable

Cyperméthrine	Propiconazole	Tébuconazole	н	Diak
HQ (Exposure/AEL)			(∑ HQ a.s)	Risk

0.08 0.16 0.35 0.59 Acceptable					
	0.08	0.16	0.35	0.59	Acceptable

➔ In Tier 3, HI < 1, the risk is then considered acceptable for spray + injection application by a professional with PPE (gloves + coated coverall) during the application phase.</p>

2.2.7.3.1.2 Non-professional users

The exposure values are compared to short term AEL of each active substance.

	Cyperméthrine	Tébuconazole	Propiconazole	
Short term AEL	0.088	0.03	0.3	
(mg/kg bw/d)	(mg/kg bw/d) 0.088		0.5	

As for professional application, a risk for combined exposure to several substances is performed for non-professionals.

Brush application

Tier 1 (acceptability of each substance)

Scenario	AEL (mg/kg bw/d)	Exposure (mg/kg bw/d)	% AEL	Risk
Brushing 300g/m ²				
M&L		n	.a	
Annlingtion shoos	Cyperméthrine 0.088	1.08 x 10 ⁻³	1.22	Acceptable
Application phase Brush cleaning	Propiconazole : 0.3	1.16 x 10 ⁻³	0.39	Acceptable
	Tébuconazole : 0.03	2.28 x 10 ⁻³	7.60	Acceptable
	Cyperméthrine 0.088	3.09 x 10 ⁻⁴	0.35	Acceptable
	Propiconazole : 0.3	3.22 x 10 ⁻⁴	0.11	Acceptable
	Tébuconazole : 0.03	4.23 x 10 ⁻⁴	1.41	Acceptable
Appli + cleaning	Cyperméthrine 0.088	1.38 x 10 ⁻³	1.57	Acceptable
	Propiconazole : 0.3	1.48 x 10 ⁻³	0.5	Acceptable
	Tébuconazole : 0.03	2.7 x 10 ⁻³	9.01	Acceptable

→ The risk is acceptable for brush application by non-professionals.

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	Н	Risk
	HQ (Exposure/AEL)		(∑ HQ a.s)	
0.02	0.005	0.09	0.11	Acceptable

 \rightarrow HI < 1, the risk is acceptable.

Spray application application

Tier 1 (acceptability of each substance)

Scenario	AEL	Exposure	% AEL	Risk
	(mg/kg bw/d)	(mg/kg bw/d)		
Spraying 300g/m ²				
M&L		Included in	the model	
Application phase	Cyperméthrine 0.088	5.63 x 10 ⁻³	6.4	Acceptable
Application phase Cleaning spray equipment	Propiconazole : 0.3	7.86 x 10⁻³	2.62	Acceptable
	Tébuconazole : 0.03	1.38 x 10 ⁻²	46.05	Acceptable
	Cyperméthrine 0.088	3.31 x 10 ⁻⁴	0.38	Acceptable
	Propiconazole : 0.3	3.86 x 10 ⁻⁴	0.13	Acceptable
	Tébuconazole : 0.03	8.27 x 10 ⁻⁴	2.76	Acceptable
	Cyperméthrine 0.088	5.97 x 10 ⁻³	6.78	Acceptable
Appli + cleaning	Propiconazole : 0.3	8.25 x 10 ⁻³	2.75	Acceptable
	Tébuconazole : 0.03	1.46 x 10 ⁻²	48.81	Acceptable

→ The risk is acceptable for spray application by non-professionals.

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	HI	Risk
HQ (Exposure/AEL)			(∑ HQ a.s)	
0.07	0.03	0.5	0.6	Acceptable

 \rightarrow HI < 1, the risk is acceptable.

Brush application + injection

Scenario	AEL	Exposure	% AEL	Risk
	(mg/kg bw/d)	(mg/kg bw/d)		
Brushing 300g/m ² et Injecting 150g/m ²				
M&L		n	.a	
Anglianting place	Cyperméthrine 0,088	2.15 x 10 ⁻³	2.44	Acceptable
Application phase	Propiconazole : 0.3	2.32 x 10 ⁻³	2.9	Acceptable
	Tébuconazole : 0,03	4.56 x 10 ⁻³	15.21	Acceptable
Brush and injector	Cyperméthrine 0,088	6.4 x 10 ⁻⁴	0.77	Acceptable
cleaning	Propiconazole : 0.3	7.08 x 10 ⁻⁴	0.26	Acceptable

<FR>

<V33 TRAITEMENT MULTI USAGES>

	Tébuconazole : 0.03	1.25 x 10 ⁻³	4.17	Acceptable
	Cyperméthrine 0,088	2.79 x 10 ⁻³	3.21	Acceptable
Appli + cleaning	Propiconazole : 0.3	3.03 x 10 ⁻³	3.16	Acceptable
	Tébuconazole : 0.03	5.81 x 10 ⁻³	19.37	Acceptable

→ The risk is acceptable for brush + injection application by non-professionals.

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	HI	Risk
HQ (Exposure/AEL)			(∑ HQ a.s)	
0.03	0.03	0.2	0.26	Acceptable

 \rightarrow HI < 1, the risk is acceptable.

Spray application + injection

Tier 1 (acceptability of each substance)

Scenario	AEL	Exposure	% AEL	Risk
	(mg/kg bw/d)	(mg/kg bw/d)		
Spraying 300g/m ² +	injecting 150 mg/m ²			
M&L		Included in	the model	
Application phase	Cyperméthrine 0,088	1.13 x 10 ⁻²	12.81	Acceptable
Application phase	Propiconazole : 0.3	1.30 x 10 ⁻²	4.34	Acceptable
	Tébuconazole : 0.03	2.76 x 10 ⁻²	92.10	Acceptable
	Cyperméthrine 0.088	6.62 x 10 ⁻⁴	0.75	Acceptable
Cleaning spray	Propiconazole : 0.3	7.72 x 10 ⁻⁴	0.26	Acceptable
equipment	Tébuconazole : 0.03	1.65 x 10 ⁻³	5.52	Acceptable
	Cyperméthrine 0.088	1.19 x 10 ⁻²	13.56	Acceptable
	Propiconazole : 0.3	1.38 x 10 ⁻²	4.6	Acceptable
Appli + cleaning	Tébuconazole : 0.03	2.93 x 10 ⁻²	97.62	Acceptable

→ The risk is acceptable for spray + injection application by non-professionals.

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	HI	Risk
HQ (Exposure/AEL)		(∑ HQ a.s)		

<fr></fr>	<v33 th="" traitemen<=""><th>T MULTI USAGES></th><th><</th><th><pt8></pt8></th></v33>	T MULTI USAGES>	<	<pt8></pt8>
0.13	0.05	0.98	1.16	Unacceptable

 \rightarrow HI > 1, a refinement is needed.

A Tier 3B approach is considered since the 3 active substances have a target organ in common. The liver is a target organ common to cypermethrine, propiconazole and tebuconazole. A specific target organ AEL can be derived for each active substance.

	Cyperméthrine	Tébuconazole	Propiconazole
General short term AEL	0.088	0.03	0.03
Specific AEL: liver	0.18	0.06	0.08

The comparison of the exposure values during the application and the cleaning with the specific liver AELs leads to the following results:

Scenario	AEL (mg/kg bw/d)	Exposure (mg/kg bw/d)	% AEL	Risk
Spraying 300g/m ² + injecting 150 mg/m ²				
	Cyperméthrine 0,18	1.19 x 10 ⁻²	6.63	Acceptable
Appli + cleaning	Propiconazole : 0.08	1.38 x 10 ⁻²	17.24	Acceptable
	Tébuconazole : 0.06	2.93 x 10 ⁻²	48.81	Acceptable

Cyperméthrine	Propiconazole	Tébuconazole	н	Risk
HQ (Exposure/AEL)			(∑ HQ a.s)	
0.07	0.17	0.49	0.73	Acceptable

→ HI < 1, the risk is then acceptable for spray + injection application by non-professionals.

2.2.7.3.2 Risk for indirect exposure

The exposure values are compared to AELs of each active substance.

	Cyperméthrine	Tébuconazole	Propiconazole
Long term AEL (mg/kg bw/d)	0.022	0.03	0.04
Short term AEL (mg/kg bw/d)	0.088	0.03	0.3

Acute Exposure

Scenario	AEL	Exposure	% AEL	Risk
	(mg/kg bw/d)	(mg/kg bw/d)		
Adult amateur	Cyperméthrine	3.68 x 10 ⁻⁴	0.42	Acceptable
sanding/processing	0,088	5.00 X TU	0.42	Acceptable

of treated wood	Propiconazole : 0.3	4.19 x 10 ⁻⁴	0.14	Acceptable
composites (450 g/m²)	Tébuconazole : 0,03	8.74 x 10 ⁻⁴	2.91	Acceptable
Infant chewing wood composites	Cyperméthrine 0,088	0.015	25.18	Acceptable
chips (450 g/m²)	Propiconazole : 0.3	0.02	10.08	Acceptable
	Tébuconazole : 0,03	0.02	108	Unacceptable

→ An unacceptable risk is identified for the scenario "infant chewing wood composites chips" considering a wood treated with a curative treatment (450 g/m²).

With an application dose of 300 g/m^2 for the treated wood, the risk assessment is as follows:

Scenario	AEL (mg/kg bw/d)	Exposure (mg/kg bw/d)	% AEL	Risk
Infant chewing wood composites	Cyperméthrine 0,022	0.015	16.79	Acceptable
chips (300 g/m²)	Propiconazole : 0.08	0.02	6.72	Acceptable
	Tébuconazole : 0.03	0.021	72	Acceptable

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	Н	Risk
HQ (Exposure/AEL)			(∑ HQ a.s)	
0.17	0.07	0.72	0.96	Acceptable

 \rightarrow HI < 1, the risk is then acceptable.

Due to an unacceptable risk observed with wood treated at the application dose intended for curative treatment (450 g/m²), this type of wood treatment should be limited to inaccessible woods (construction wood).

Chronic Exposure

Scenario	AEL (mg/kg bw/d)	Exposure (mg/kg bw/d)	% AEL	Risk
Adult professional	Cyperméthrine 0.022	5.1 x 10 ⁻⁴	2.32	Acceptable
sanding/processing of treated wood	nding/processing Propiconazole :	5.29 x 10 ⁻⁴	1.32	Acceptable
composites	Tébuconazole : 0.03	9.92 x 10 ⁻⁴	3.31	Acceptable
Adulti inholotion of	Cyperméthrine 0.022	2.74 x 10 ⁻⁵	0.12	Acceptable
volatilised residues, indoors	0.04	2.1 x 10 ⁻³	5.25	Acceptable
residues, indoors	Tébuconazole : 0.03	5.73 x 10 ⁻⁵	0.19	Acceptable

<V33 TRAITEMENT MULTI USAGES>

Infant: inhalation of volatilised	Cyperméthrine 0.022	5.54 x 10 ⁻⁵	0.25	Acceptable
	Propiconazole : 0.04	4.25 x 10 ⁻³	10.63	Acceptable
residues, indoors	Tébuconazole : 0.03	1.16 x 10 ⁻⁴	0.39	Acceptable
	Cyperméthrine 0.022	1.30 x 10 ⁻⁴	0.6	Acceptable
Child playing on playground structure outdoors	Propiconazole : 0.04	1.51 x 10 ⁻⁴	0.4	Acceptable
structure outdoors	Tébuconazole : 0.03	3.24 x 10 ⁻⁴	1.1	Acceptable
Infant playing on playground	Cyperméthrine 0.022	8.2 x 10 ⁻³	37.4	Acceptable
structure outdoors and mouthing	Propiconazole : 0.04	6.45 x 10 ⁻³	16.13	Acceptable
(wood treated at 300 g/m2)	Tébuconazole : 0.03	7.07 x 10 ⁻³	23.6	Acceptable

→ The risk is acceptable for chronic exposure scenarios.

Tier 2 (additivity)

<FR>

Cyperméthrine	Propiconazole	Tébuconazole	н	Diak		
	HQ (Exposure/AEL)			Risk		
Adı	ult professional sanding	g/processing of treated	d wood composites			
0.0232	0.01.32	0.0331	0.0695	Acceptable		
	Adult: inhalation of volatilised residues, indoors					
0.0012	0.053	0.0019	0.06	Acceptable		
	Infant: inhalation	of volatilised residues	s, indoors			
0.0025	0.11	0.004	0.11	Acceptable		
	Child playing on	playground structure	outdoors			
0.006	0.004	0.011	0.021	Acceptable		
lı	Infant playing on playground structure outdoors and mouthing					
	(wood	treated at 200 g/m2)				
0.4	0.16	0.24	0.8	Acceptable		

 \rightarrow HI < 1, the risk is acceptable for chronic exposure scenarios

2.2.7.3.3 Risk for consumers via residues

The acute or chronic exposure to residues in food resulting from the intended uses is unlikely to cause a risk to consumers. Regarding consumer health protection, there are no objections against the intended uses. Wood treated with V33 TRAITEMENT MULTI USAGES must contain label restrictions against use in contact with livestock, food and feed.

2.2.7.3.4 Risk for combined exposure

The exposure values are compared to AELs of each active substance.

	Cyperméthrine	Tébuconazole	Propiconazole
Long term AEL (mg/kg bw/d)	0.022	0.03	0.04

Adult combined exposure (chronic exposure scenario)

Tier 1 (acceptability of each substance)

Scenario	AEL	Exposure	% AEL	Risk
	(mg/kg bw/d)	(mg/kg bw/d)		
	Cyperméthrine 0.022	1.1 x 10 ⁻³	5.01	Acceptable
Adult combined expo : Brushing	Propiconazole : 0.04	3.26 x 10 ⁻³	8.15	Acceptable
	Tébuconazole : 0.03	2.34 x 10 ⁻³	7.79	Acceptable
Adult combined	Cyperméthrine 0.022	7.12 x 10 ⁻³	32.37	Acceptable
expo: spraying (gloves +coverall	Propiconazole : 0.04	8.27 x 10 ⁻³	20.68	Acceptable
20%)	Tébuconazole : 0.03	9.72 x 10 ⁻³	32.4	Acceptable
Adult combined	Cyperméthrine 0.022	2.18 x 10 ⁻³	9.9	Acceptable
expo : Brushing + injecting	Propiconazole : 0.04	4.42 x 10 ⁻³	11.04	Acceptable
injecting	Tébuconazole : 0.03	4.62 x 10 ⁻³	15.4	Acceptable
Adult combined	Cyperméthrine 0.022	1.42 x 10 ⁻²	7.9	Acceptable
expo : spraying (gloves +coverall	Propiconazole : 0.04	1.44 x 10 ⁻²	36.10	Acceptable
20%) + injecting	Tébuconazole : 0.03	1.94 x 10 ⁻²	32.3	Acceptable

→ The risk is acceptable for combined chronic exposure scenarios (adult).

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	н	Risk	
	HQ (Exposure/AEL)		(∑ HQ a.s)		
	Adult combined expo : Brushing				
0.05	0.08	0.08	0.21	Acceptable	
	Adult combined e	xpo : spraying (gloves	+coverall)		
0.32	0.2	0.3	0.82	Acceptable	
	Adult combined expo : Brushing + injecting				
0.01	0.12	0.15	0.28	Acceptable	
	Adult combined expo : spraying (gloves +coverall) + injecting				

<fr></fr>	<v33 th="" traitemen<=""><th>IT MULTI USAGES></th><th>~</th><th><pt8></pt8></th></v33>	IT MULTI USAGES>	~	<pt8></pt8>
0.08	0.36	0.3	0.74	Acceptable

→ HI < 1, the risk is acceptable for combined chronic exposure scenarios (adult)

Infant combined exposure (chronic exposure scenario)

Tier 1 (acceptability of each substance)

Scenario	AEL	Exposure	% AEL	Risk
	(mg/kg bw/d)	(mg/kg bw/d)		
Infant combined exposure	Cyperméthrine 0.022	8.23 x 10 ⁻³	37.7	Acceptable
	Propiconazole : 0.04	1.07 x 10 ⁻²	26.75	Acceptable
	Tébuconazole : 0.03	7.2 x 10 ⁻³	24	Acceptable

→ The risk is acceptable for combined chronic exposure scenarios (infant).

Tier 2 (additivity)

Cyperméthrine	Propiconazole	Tébuconazole	Н	Risk
HQ (Exposure/AEL)			(∑ HQ a.s)	
0.38	0.26	0.24	0.88	Acceptable

 \rightarrow HI < 1, the risk is acceptable for combined chronic exposure scenarios (infant).

2.2.7.3.5 Summary of risks characterisation of the product for human health

Risks related to the use of V33 TRAITEMENT MULTI USAGE by professionals and non-professionals are considered acceptable for all the intended uses mentioned above.

Risks related to a secondary exposure to treated wood are considered acceptable except in the case of chewing of a piece of treated wood by an infant, considering a curative treatment (spraying or brushing combined with injection) with an application dose of 450 g/m². Therefore, the curative treatments with the highest application doses and combining a superficial treatment and injection should be restricted to inaccessible woods (construction wood).

2.2.8 Risk assessment for the environment

FR-CA box 1

Please notice that the environmental risk assessment (section 2.2.8) is reported as provided by the applicant. The FR CA position is presented in green evaluation boxes.

According to the composition provided by the applicant and the SDSs, no ingredient with an environmental classification and present at a concentration leading to the classification of the product, or showing a potential hazard for environment are contained in the product.

Nonetheless, the product contains 2 preservatives, both under review as active substance in PT06:

- 2-methyl-2H-isothiazol-3-one (MIT, CAS N°2682-20-4);

- 1,2-benzisothiazol-3(2H)-one (BIT, CAS N°2634-33-5).

These 2 substances should therefore be considered as substances of concern for the mixture toxicity assessment. However, as both active substances are under review as PT06, they cannot be currently taking into account for the risk assessment of the product, without approved PT06-assessment report.

2.2.8.1 Fate and distribution in the environment of the active substance AAA

The environmental fate and behaviour of the product 06LBCEOL20/2PT is presented in IUCLID, in Section 10. Based on the intended uses of the product and on the nature of the substances, on its physico-chemical properties and on the relation structure/function, the main foreseen route of entry in the environment is the soil.

For the assessment of the environmental fate and behaviour of each active substances contained in the biocidal product 06LBCEOL20/2PT, please refer to the chapters on fate and distribution in the environment (see Assessment Reports, cypermethrin *cis:trans* / 40:60 PT08, 12/07/2013; IPBC PT06 27/09/2013, tebuconazole PT10, 27/09/2013; propiconazole PT09, 12/07/2013) and environmental effects assessment of each active substances in Document II-A (see Letter of Access from Agriphar and Lanxess).

A summary of the environmental behaviour of the active substances cypermethrin, tebuconazole and propiconazole and their relevant metabolites is presented below. All the data are coming from Assessment Report of the active substances.

• Environmental behaviour of cypermethrin

Degradation

- Hydrolysis

In acidic conditions and at pH 7, cypermethrin is relatively stable ($DT_{50} > 29$ days at pH 7, 25°C and $DT_{50} > 1$ year and of 4.73 days respectively at pH 4 and 7, 50°C). It is degraded under alkaline conditions at pH 9 (DT_{50} of 1.9 hours at 50°C). The increase in temperature increases the degradation rate of cypermethrin.

At 12°C (environmental conditions), the derived DT_{50} of cypermethrin are > 7630 days, 98.9 days and 39.71 hours at pH 4, 7 and 9 respectively.

- Photolysis In water

Cypermethrin is degraded by photolysis in water. The half-lives for net photolysis were calculated to be 14.7 days for ¹⁴C phenoxy label and 12.4 days for ¹⁴C cyclopropane label. The main photolytic degradates were DCVC acid (18% of

<fr></fr>	<v33 multi="" traitement="" usages=""></v33>	<pt8></pt8>
In soil	Applied Radioactivity, AR), 3-phenoxybenzoic acid (1 phenoxybenzaldehyde (3% of AR). Light accelerates the degradation of cypermethrin on a soli photolysis is a minor route of degradation of the active by data on distribution of radioactivity and DT ₅₀ for cis- and	oil surface. However, e substance as shown
In air	EPIWIN AOP model gives an indirect half-life of 18h for the of cypermethrin.	photolysis in air (OH)
- Biodegradation	Cypermethrin is not readily biodegradable, not inherent ultimately biodegradable.	ly biodegradable, not
In water /sediment	Cypermethrin is degradable in a water/sediment compart cypermethrin was effective in both water-sediment systems were calculated to be between 6.6 and 18.5 days in the wh in the water phase and between 20.7 and 27 days in sedi- metabolites were 3-phenoxybenzoic acid (21% AR in sediment), TDCVC (44% AR in water and 20% in sedime AR in water and 15% in sediment). A further unknown me up to 14% of AR in the units dosed with the cyclopropyl labe The two main degradation products TDCVC and CDCVC H as persistent with typical DT ₅₀ values > 40 days.	At 12°C, DT ₅₀ values ole system, 0.95 days ments. The significant water and 11% in nt) and CDCVC (22% stabolite was identified
In soil	In soil in aerobic conditions, cypermethrin is metabolise metabolites: 3-phenoxybenzoic acid (10.2% AR at day 7), at day 7) and CDCVC (3.9% of AR at day 7). Further metab and/or these metabolites lead to bound residues and min dioxide. The DT ₅₀ values for the degradation of cypermethrin to 24 days following incubation at $20 \pm 2^{\circ}$ C (mean DT ₅₀ = soil PT 102, incubated at 10 $\pm 2^{\circ}$ C, the DT ₅₀ value for cypermethrin is 52 days. The corresponding DT ₅₀ at 12°C is days, based on the geometric mean. Cis cypermethrin degr comparison to trans cypermethrin. In anaerobic conditions, cypermethrin is metabolised metabolites: 3-PBA (max. 35.1% AR), CDCVC (max. 22.8° 31.2% AR) and carbon dioxide (max. 22.8% AR) in the tota The DT ₅₀ is estimated to 46 days at 20°C, corresponding to	TDCVC (13.6% of AR polism of cypermethrin neralisation to carbon in is within the range 6 13.5 days at 20°C). In or the degradation of s calculated to be 17.2 rades at lower rates in to three extractable % AR), TDCVC (max. al flooded soil system.
Distribution - Adsorption desorption	Results of the soil adsorption/desorption study provided ranging from 80 653 to 574 360. K_{oc} for the sediment is min These values are indicative of a strong adsorption to t sediment.	imum 527 972.
- Volatilisation	Due to its low vapour pressure (2.3*10 ⁻⁷ at 20°C), volatilisa not expected.	tion of cypermethrin is
- Bioaccumulation	Cypermethrin tends to bioaccumulate in water organ bioaccumulation factor (fish) of 417 L/kg.	iisms with a typical
Environmenta	al behaviour of tebuconazole	
<u>Degradation</u> - Hydrolysis	Tebuconazole is stable to hydrolysis.	
- Photolysis	Direct photo-degradation of tehuconazole in water is low a	nd the substance main

In water

Direct photo-degradation of tebuconazole in water is low and the substance may

<fr></fr>	<v33 multi="" traitement="" usages=""></v33>	<pt8></pt8>
In soil In air	be considered photolytically stable in water. However, tebuconazole may occur in water. The substance may be considered photolytically stable. The calculated DT_{50} of tebuconazole in air is more the considered persistent in air.	in soil.
- Biodegradation	Based on the modified MITI test, tebuconazole is biodegradable.	considered as not readily
In water /sediment	The biodegradation half-life in surface water is estima However, tebuconazole will be adsorbed to the s dissipation half-life in surface water is estimated to water/sediment study. The dissipation half-life in sediment is one year.	sediment and therefore a
In soil	No major metabolites were found in water/sediment sys Tebuconazole is not metabolized rapidly in soil in labora life for primary degradation is greater than one year. In half-life is 77 days. 1,2,4-triazole is the primary metabolite from the tebuconazole (max. 9% of applied radioactivity). However more rapidly in soil than tebuconazole. The dissipation for aerobic soil is estimated to be about 10 days.	atory experiments; the half- field studies the dissipation e aerobic degradation of ver it appears to breakdown
Distribution - Adsorption desorption	Tebuconazole has a low mobility potential with a K _{oc} = value). The triazole metabolite has a high mobility potentia average 89 L/kg.	
- Volatilisation	Air will not be an environmental compartment of concer wood preservatives because of the very low vapour pre	
- Bioaccumulation	The BCF for fish varies from 31 to 93. However, the metabolites as well. For the risk assessment, a BCF of seems to be the highest reliable value found.	•
Environmenta	I behaviour of propiconazole	
Degradation - Hydrolysis	Propiconazole is hydrolytically stable	
- Photolysis	Propiconazole is photolytically stable	
- Biodegradation In water /sediment	Propiconazole is not readily biodegradable. The dissipation half-life of propiconazole is around 6 degradation half-life in whole water/sediment syste corresponding to 1206 days at 12°C. There is r biodegradation of propiconazole in surface water with due to adsorption onto sediment in the water-sedimer half-life of propiconazole in water has not been determi There was no metabolite accounting > 10% of the act water/sediment key study. In the laboratory studies the geometric mean DT	em is 636 days at 20°C no simulation test of the out sediment available and nt study the biodegradation ined. tive substance found in the

In soil In the laboratory studies the geometric mean DT₅₀ of propiconazole was determined to be 43 days at 20 °C, corresponding to 82 days at 12°C.

<fr></fr>	<fr> <v33 multi="" traitement="" usages=""></v33></fr>	
	From field studies, the maximum dissipation half-life the worst-case in the risk assessment. In the soil laboratory studies there were tw propiconazole accounting for more than 10% 1,2,4-triazole (accounting for 24 - 43% of applied ra (accounting for 22% of applied radioactivity). Both and the parent substance, 1,2,4-triazole having DT_5 CGA 118 245 having DT_{50} of around 1 day at 20 °C.	o degradation products of of the active substance: dioactivity) and CGA 118 245 re degraded in soil faster than ₅₀ of around 9.3 days and
Distribution		
- Adsorption desorption	With an arithmetic mean value of K_{oc} = 944 mL/g, slightly mobile in soil. The two degradation products for more than 10% in the soil degradation studies (more mobile than parent). Arithmetic mean values CGA 118 245 are 69 mL/g and 129 mL/g, respective	s of propiconazole accounting are considered mobile in soil s of K_{oc} for 1,2,4-triazole and
- Volatilisation	Propiconazole is very slightly volatile. With the estime (between 10.2 and 42 hours) in troposphere it is contaminant in the air.	-
- Bioaccumulation	Propiconazole is slightly bioaccumulative to fish depuration half-life of 0.48 days for the whole fish. The estimated BCF for earthworms was 64 (determi this estimation, propiconazole is not bioaccumulative	ned by calculation). Based on

The physico-chemical and fate and behaviour data on the 3 active substances are summarised in the following table:

Table 3-1:	Physical-chemical	and	fate	and	behaviour	data	on	active	substances	and	relevant
metabolites	-										

Physical-chemical and fate and behaviour data	Cypermethrin <i>cis:trans /</i> 40:60 and relevant metabolites	Tebuconazole and relevant metabolites	Propiconazole and relevant metabolites		
Molecular weight [g/mol]	416.3	307.8	342.2		
Melting point [°C]	Onset: 41.2 Peak: 47.3	105	no data		
Boiling point [°C]	Not measurable, decomposes	Not measurable, decomposes	> 250		
Vapour pressure [Pa]	2.3*10 ⁻⁷ at 20°C 6*10 ⁻⁷ at 25°C	1.7*10 ⁻⁶ at 20°C	5.6*10 ⁻⁵ at 25°C		
Henry's law constant [Pa.m ³ .mol ⁻¹]	0.024 at 20°C	1*10 ⁻⁵	9.2*10 ⁻⁵		
Solubility in water [mg/L]	4*10 ⁻³ at 20°C	29 at 20°C, pH = 7	100 at 20°C		
Partition coefficient (log P _{ow})	5.45 at 25°C TDCVC: 2.672 (calculated) CDCVC: 2.672 (calculated)	3.49 at 20°C	3.72 at 25°C		
Hydrolysis DT ₅₀ [d]	12°C, pH 4: DT ₅₀ = 7 631 d 12°C, pH 7: DT ₅₀ = 98.9 d 12°C, pH 9: DT ₅₀ = 1.65 d	Stable at 25°C after 28 days	Stable at 70°C after 28 days		
Photolytic / photo-oxidative	At 20°C, pH 4:	Stable at pH 7	Stable at 25°C after 30		

<FR>

<V33 TRAITEMENT MULTI USAGES>

Physical-chemical and fate and behaviour data	Cypermethrin <i>cis:trans /</i> 40:60 and relevant metabolites	Tebuconazole and relevant metabolites	Propiconazole and relevant metabolites
degradation in water (DT ₅₀) [d]	DT ₅₀ = 12.4 - 14.7 d		days
Degradation in water/sediment (DT ₅₀) [d]	In water: 0.95 d at 12°C In sediment: 20.7 – 27 d at 12°C In whole system: 6.6 - 18.5 d at 12°C 3-PBA: 24.5 d at 12°C (whole system) TDCVC: 152 – 274 d at 12°C (whole system) CDCVC: 118 – 356 d at 12°C (whole system)	 9.95 d at 12°C In sediment: 7 - 27 d at 12°C whole system: - 18.5 d at 12°C A: 24.5 d at 12°C whole system) /C: 152 - 274 d at C (whole system) /C: 118 - 356 d at 	
Degradation in soil (DT ₅₀) [d]	In aerobic conditions: 17.2 at 12°C (geometric mean) In anaerobic conditions: 87.2 at 12°C	Laboratory study: > 365 d at 20°C Field study: 77 d at 12°C (dissipation) 1,2,4-triazole: 10 d (dissipation)	 129 (dissipation) (maximal DT₅₀ in field studies) 1,2,4-triazole: 9.3 d at 20°C CGA 118 245: 1 d at 20°C
Soil photolysis (DT ₅₀) [d]	29.6 (soil photolysis is considered as a minor route of degradation)	Stable	Stable
Photo-oxidative degradation in air (DT_{50})	18 h	> 2 days (3.8 days)	< 2 days
Adsorption / desorption K _{oc} [L/kg]	574 360	992 (arithmetic mean value) 1,2,4-triazole: 89 (source: AR for PT10)	944 (arithmetic mean value) 1,2,4-triazole: 69 (arithmetic mean value) CGA 118 245: 129 (arithmetic mean value)
BCF in fish	417 TDCVC: 37.25 (calculated) CDCVC: 37.25 (calculated)	78	180
Depuration rate constant (fish) [d ⁻¹]	1.58*10 ⁻³ L/h	0.44	0.48
BCF in earthworms	-	28 (estimated)	64 (calculated with TGD, formula 82d)

FR-CA box 2 – Summary of the physico-chemical, environmental fate and behavior parameters for each active substance and their relevant metabolites used by FR-CA for the product-environmental risk assessment according to the list of endpoints validated at EU level

Parameter / Variable	Unit	Cypermethrin	Tebuconazole	Propiconazole	1,2,4-triazole ^(*)			
Molar mass	[g/mol]	416.3	307.8	342.2	69.1			
Vapour pressure - Vp	[Pa]	6.00E-07	1.70E-06	5.6E-05	0.220			
Water solubility – WS	[mg.L ⁻¹]	4.00E-03	29	100	700			
K _{oc}	[L.kg ⁻¹]	575 000	992	944	89			
DT ₅₀ (soil)	[d at 12°C]	17.2	77	82	114.7 (**)			
DT ₅₀ (surface water – degradation + dissipation)	[d at 12°C]	0.95	43	12	n.r.			
DT ₅₀ (aquatic – degradation only)	[d at 12°C]	18.5 (whole system)	198 (degradation in water)	1206 (whole system)	n.r.			
BCF in fish	[L.kg ⁻¹]	417	n.r.	n.r.	n.r.			
BCF in earthworm	[L.kg ⁻¹]	3380	n.r.	n.r.	n.r.			
STP fraction								
F _{STP, water}	[-]	0.091	0.89	0.9	n.r.			
F _{STP, sludge}								
n.r. – Not relevant for	n.r. – Not relevant for the environmental risk assessement of the product ^(*) – Relevant metabolite of tebuconazole and propiconazole in soil with a maximum of 9% and 43.23 % of							

applied radioactivity, respectively.

(**) – Calculated according to the arrennius equation with a DT₅₀ at 20°C of 60.5 days.

2.2.8.2 Effects on environmental organisms for active substance

2.2.8.2.1 Aquatic compartment (including water, sediment and STP)

A summary and evaluation of effect data for the active substances with relevance to the aquatic compartment can be found in Document II-A of the active substance dossier (see Letters of Access from Agriphar and Lanxess).

The relevant ecotoxicological data and the calculated PNECs (see Assessment Report) are summarised in the following Table:

Table 5.1-1: Ecotoxicological	data	on	active	substances	and	relevant	metabolites	for	the	aquatic
<u>compartment</u>										-

Ecotoxicity on aquatic organisms	Cypermethrin <i>cis:trans l</i> 40:60	Tebuconazole and relevant metabolite	Propiconazole
LC ₅₀ fish [mg/L]	<i>Mortality (96 h):</i> 2.83*10 ⁻³	Mortality (96 h): 4.4	Mortality (96 h) 2.6
	2.00 10	1,2,4-triazole: 498	
	Fry survival, body	(21 d semi-static) 0.010	
NOEC fish [mg/L]	length/weight (28 d): 1*10	(83 d ELS, flow-through)	(100 d) 0.068
	5(1)	0.012	
		Immobilisation (48 h): 2.8	
EC ₅₀ aquatic	Immobilisation (48 h):	Mortality (48 h): 4.2	Martality (OG b) 0 E1
invertebrates [mg/L]	4.71*10 ⁻³		<i>Mortality (96 h)</i> 0.51
		1,2,4-triazole: > 100	

NOEC aquatic invertebrates [mg/L]	<i>Immobilisation (21 d):</i> 4*10 ⁻⁵	Immobilisation (21 d): 0.01	Immobilisation (28 d) 0.11
ErC ₅₀ algae [mg/L]	<i>Growth rate (96 h):</i> > 33*10 ⁻³	<i>Growth rate (72 h):</i> 5.3 1,2,4-triazole: > 31	Growth rate (72 h) 9.0
EbC ₅₀ algae [mg/L]	<i>Biomass (96 h):</i> > 33*10 ⁻³	Biomass (72 h): 1.96	no data
NOEC algae [mg/L]	<i>Biomass (96 h):</i> > 33*10 ⁻³	(72h) 0.56	<i>Biomass (72 h)</i> 0.46
PNEC _{water} [mg/L]	1.10 ⁻⁶ (AF = 10)	1*10 ⁻³ (AF=10)	6.8*10 ⁻³ (AF=10)
NOEC Sediment dwelling organism	-	(28 d) 54.5 mg/kg	Emergence (28 d) 5.4 mg/kg_{wwt} (= 25 mg/kg _{dwt}) Development (28 d) 10.8 mg/kg _{wwt} (= 50 mg/kg _{dwt})
PNEC _{sediment} [mg/kg _{wwt}]	0.125 (equilibrium partitioning method ⁽²⁾)	0.55 (AF=100)	0.054 (AF=100)
EC ₅₀ Microorganisms [mg/L]	Respiration inhibition (3 h): 163	Respiration inhibition (30 min): > 32	Respiration inhibition (3 h) > 100
PNEC _{STP} [mg/L]	1.63 (AF = 100)	0.32 (AF=100)	100 ⁽³⁾

⁽¹⁾ A new study has been commissioned by the applicant to further address the chronic toxicity to fish. The result of the new study will be available for the PT18 Annex I inclusion. A conservative approach decided at TM level sets the overall NOEC for the chronic toxicity to fish to 0.01 μ g/L.

⁽²⁾ The PNEC_{sediment} was calculated using the equilibrium partitioning method and a value of K_{oc} of 575 000 (to calculate K_{sup-water}),

⁽³⁾ Water solubility of the active substance without any Assessment Factor.

The values in red are the lowest values used for the determination of PNEC for each compartment.

2.2.8.2.2 Atmosphere

A summary and evaluation of effect data for the active substances with regard to effects in the atmospheric compartment can be found in Document II-A of the active substance dossier (see Letter of Access from Agriphar and Lanxess).

- Data on cypermethrin

The vapour pressure of cypermethrin is such that emissions to air are very limited. The result of EPIWIN model indicates that cypermethrin is photolysed in air and should not tends to accumulate. Therefore, no data are available for cypermethrin.

- Data on tebuconazole

No data is available because based on the Henry's Law constant, no significant volatilisation of tebuconazole is to be expected and air is therefore not a compartment of concern.

- Data on propiconazole

Propiconazole is very slightly volatile. With the estimated half-life less than 2 days (between 10.2 and 42 hours) in troposphere, propiconazole is not regarded as a persistent contaminant in the air.

2.2.8.2.3 Terrestrial compartment

A summary and evaluation of effect data for the active substances with relevance to the terrestrial compartment can be found in Document II-A of the active substance dossier (see Letters of Access from Agriphar and Lanxess).

The relevant ecotoxicological data and the PNEC (see Assessment Report) are presented in the following Table:

Table 5.3-1: Ecotoxicological data on active substances for the terrestrial of	compartment
--	-------------

Ecotoxicity on terrestrial organisms	Cypermethrin <i>cis:trans /</i> 40:60	Tebuconazole	Propiconazole and relevant metabolites			
EC_{50} earthworm		Mortality (14 d):	<i>Mortality (14 d):</i> 205 mg/kg _{wwt} (= 686 mg/kg _{dwt})			
[mg/kg]	<i>(14 d)</i> > 100 mg/kg _{dwt}	470 mg/kg _{dwt}	1,2,4-triazole: > 299 mg/kg _{wwt} (> 1000 mg/kg _{dwt}) CGA 118 245: > 299 mg/kg _{wwt} (> 1000 mg/kg _{dwt})			
	Mortality (56 d): > 100		mg/kg _{wwt} (> 1000 mg/kg _{dwt})			
NOEC earthworm [mg/kg]	mg/kg _{dwt} Biomass (56 d): 30.8 mg/kg _{dwt} Reproduction (56 d): 5.20	Reproduction (56 d): 5.70 mg/kg _{dwt}	Reproduction (56 d): 0.998 mg/kg _{wwt}			
	mg/kg _{dwt}					
LC ₅₀ plants [mg/kg]	Not expected to be phytotoxic	<i>Emergence (14 d):</i> > 100 mg/kg _{dwt}	no data			
EC ₅₀ plants [mg/kg]	Not expected to be phytotoxic	Growth (14 d):	Seedling emergence and			
	Not expected to be	24 mg/kg _{dwt}	survival: 4.32 mg/kg _{wwt} Reproduction: 1.69 mg/kg _{wwt}			
NOEC plants [mg/kg]	phytotoxic	no data	(0.96 mg/kg _{dwt})			
EC ₅₀ Mineralization [mg/kg]	-	Nitrogen and carbon mineralisation (28 d): > 8.30 mg/kg _{dwt}	Nitrogen mineralisation: > 2.16 mg/kg _{wwt} (> 1.67 mg/kg _{dwt}) 1,2,4-triazole: > 0.82			
NOEC Mineralization [mg/kg]	<i>Nitrogen mineralisation:</i> 52 mg/kg _{dwt}	<i>Nitrogen and carbon mineralisation (28 d):</i> 8.30 mg/kg _{dwt}	mg/kg _{wwt} (> 0.33 mg/kg _{dwt}) <i>Nitrogen mineralisation:</i> 2.16 mg/kg _{wwt} (1.67 mg/kg _{dwt}) 1,2,4-triazole: 0.82 mg/kg _{wwt} (0.33 mg/kg _{dwt})			
PNECsoil	0.0918 mg/kg _{wwt} (AF = 50) (0.104 mg/kg _{dwt})	0.1 mg/kg_{wwt} (AF=50) (0.114 mg/kg _{dwt})	0.1 mg/kg _{wwt} (AF=10)			
LD ₅₀ bird [mg/kg b.w.] (acute)	Not determined.	1988	-			
LC ₅₀ bird [mg/kg feed] (dietary)	<i>(5 d)</i> > 5620 mg/kg feed equivalent to > 1376 mg/kg b.w./d	<i>(5 d)</i> > 4816	-			
NOEC bird [mg/kg feed]	<i>(21 d)</i> 1000 mg/kg feed equivalent to 92.0 mg/kg b.w./d	no data	-			
LD ₅₀ mammal [mg/kg b.w.] (acute)	1945	1700 (female) 4000 (male)	-			

The values in red are the lowest values used for the determination of PNEC for each compartment.

2.2.8.2.4 Non compartment specific effect relevant to the food chain

- Data on cypermethrin

As cypermethrin has a log $K_{ow} > 3$ (log $K_{ow} = 5.45$) and a BCF > 100 (BCF in fish = 417 L/kg and BCF in earthworm estimated in EUSES as 3380 L/kg), secondary poisoning may occur *via* the aquatic food chain and *via* the terrestrial food chain.

PNEC_{oral, bird} and PNEC_{oral, small mammal} are not available in the Assessment Report of cypermethrin. These PNEC are therefore calculated based on available toxicity data according to the guidance on BPR, Volume IV, Part B risk assessment (active substances), v1.0, April 2015, section 3.8.3.5.

* A chronic dietary study on birds has been performed and the NOEC reported in the Assessment Report is 1000 mg/kg_{food}. The PNEC_{oral, bird} is then derived from this NOEC according to formula 79 of the guidance:

PNEC_{oral, bird} = NOEC_{bird} / AF_{oral}.

According to the Table 26 of the guidance, the assessment factor (AF_{oral}) is equal to 30 because a chronic study on birds is available.

PNEC_{oral,bird} = 1000 / 30 PNEC_{oral,bird} = 33.3 mg/kg_{food}

* A 2 years study on rats *via* oral route has been performed and the NOAEL reported in the Assessment Report is 5 mg/kg_{bw}/d. This NOAEL is converted in NOEC expressed in mg/kg_{food} according to the formula 78 of the guidance:

NOEC_{mammal} = NOAEL_{mammal, oral} * CONV_{mammal}

where CONV_{mammal} is a conversion factor from NOAEL to NOEC. For rats, when a study of more of 6 weeks is available, the conversion factor is equal to 20 according to the Table 25 of the guidance. NOEC_{mammal} = $5 * 20 = 100 \text{ mg/kg}_{food}$.

Then, the PNEC_{oral, small mammal} is derived from this NOEC according to formula 79 of the guidance:

PNEC_{oral, small mammal} = NOEC_{mammal} / AForal.

According to the Table 26 of the guidance, the assessment factor (AForal) is equal to 30 because a chronic study (2 years) on rats is available.

PNEC_{oral,small mammal} = 100 / 30 PNEC_{oral,small mammal} = 3.33 mg/kg_{food}

- Data on tebuconazole

Tebuconazole showed a low bioconcentration potential in aquatic and terrestrial organisms $(BCF_{fish} < 100)$ and it did not undergo biomagnification through the food chain. Moreover, tebuconazole did not represent a real risk to birds due to the low toxicity of the active substance.

- Data on propiconazole

In the bioaccumulation study the mean steady-state BCF of propiconazole was 180 and depuration half-life 0.48 days for the whole fish. The estimated BCF of propiconazole for bioconcentration to soil dwelling species is 64.

For mammals, a NOAEC of 100 mg a.s./kg feed (lowest average intake 8.0 mg/kg b.w./day) was obtained from a two generation reproduction study with rats. The PNEC_{oral} of 3.33 mg a.s./kg food is derived by dividing the NOAEC by an assessment factor, which is 30 in case of a chronic study with mammals.

Based on the above information from the AR, secondary poisoning is not considered a problem for this product.

FR-CA box 3 – Summary of the PNEC values for each active substance and their relevant metabolites used by FR-CA for the product-environmental risk assessment according to the list of endpoints validated at EU level

PNEC	Unit	Cypermethrin	Tebuconazole	Propiconazole	1,2,4-triazole
PNEC _{STP}	[mg/L]	1.63E+00	3.20E-01	1.00E+02	n.r.
PNEC _{water}	[mg/L]	1.00E-06	1.00E-03	6.80E-03	n.r.
PNEC _{sediment}	[mg/kg _{wwt}]	1.25E-01	5.50E-01	5.40E-02	n.r.
PNEC _{soil}	[mg/kg _{wwt}]	9.18E-02	1.00E-01	1.00E-01	8.2E-03
PNEC oral,bird	[mg/kg _{food}]	3.33E+01	n.r.	n.r.	n.r.
PNEC oral, mammals	[mg/kg _{food}]	3.33E+00	n.r.	n.r.	n.r.
n.r: not relevant					

2.2.8.2.5 PBT and ED Assessment

FR-CA box 4 – PBT and ED assessment

PBT-assessment:

According to the PT07-AR of tebuconazole (2013), tebuconazole does not fulfil the PBT nor the vPvB criteria. Nonetheless, the substance is candidate for substitution, as it fulfils the P and T criteria.

According to the PT07-AR of propiconazole (2013), propiconazole does not fulfil the PBT nor the vPvB criteria. Nonetheless, the substance fulfils the P criteria.

According to the PT08-AR of cypermethrin (2013), cypermethrin does not fulfil the PBT nor the vPvB criteria. Nonetheless, the substance fulfils the T criteria.

ED-assessment:

According to the PT07-AR of tebuconazole (2013), the PT07-AR of propiconazole (2013), the PT08-AR of cypermethrin (2013), no definite conclusions can be drawn concerning the endocrine disruption activity of each active substance.

2.2.8.3 Effects on environmental organisms for biocidal product

FR-CA box 5

No data on ecotoxicity of the product has been provided by the applicant.

2.2.8.4 Environmental exposure assessment

The environmental exposure assessment has been performed in accordance with the revised Emission Scenario Document for wood preservatives, 27/09/2013 (revised ESD for PT08). In addition, recent agreements published in the Technical agreements of Biocides (TAB, September 2015) were also taken into account to calculate emission values.

The product 06LBCEOL20/2PT is intended to be used:

<FR>

- <u>indoors</u> for the preventive treatment of woods by professionals and non-professionals especially in wet situation (beams, frames, wood in cellars, basements and bathrooms, Use Class 2) and for the curative treatment on beams and frames only. The preventive treatment is done by brush or spray application at the dose of 200 g/m². The curative treatment can be done by brushing, spraying and injection. By brushing or spraying, the curative treatment is performed at the dose of 300 g/m². The treatment by injection is performed at 150 g/m² and is always followed by a curative surface application by brushing or spraying at 300 g/m².

- <u>outdoors</u> for the preventive and curative treatment of exterior woods (shutters, doors, siding, fences, gates, awnings, roof overhangs, UC 3.1) by professionals and non-professionals. The preventive treatment is done by brush or spray application at the dose of 200 g/m². The curative treatment can be done by brushing, spraying and injection. By brushing or spraying, the curative treatment is performed at the dose of 300 g/m². The curative treatment by injection is done only for large section woods (*i.e.* beams and frames) and performed at 150 g/m². This treatment is always followed by a surface application by brushing or spraying at 300 g/m².

For treatment of interior woods, the potential emissions to the outer environment during application by brushing, spraying or injection and from treated wood in service are considered negligible, according to the revised ESD for PT08.

For treatment of exterior woods, emissions to the environment may occur during the application phase and during the service life of the treated wood.

Concerning cleaning, maintenance and waste disposal, all the waste wood, protection foil, cleaning solvents, used cans and unused products should be disposed of according to national waste disposal regulations. These scenarios are not considered in the risk assessment.

2.2.8.4.1 Emissions estimation during outdoor application

2.2.8.4.1.1 Emissions into surface water

As the product is only used for treating house pieces such as shutters, doors, siding, fences, gates, awnings, roof overhangs and is not used for treating commodities such as bridge over water bodies, the contamination of the surface water during application by brushing, spraying or injection is considered as negligible.

Indeed, as mentioned in the document Technical Agreement of Biocides, when it is not an intended use, the bridge over pond scenario does not need to be evaluated for the application phase:

"Should the bridge over pond scenario for UC3 be included in the CAR even if this is not proposed as an intended use by the applicant?

(TM V 2007, TM IV 2012, TM I 2013)

The bridge over pond scenario is not used to evaluate the application phase but the use phase, in order to describe the emission pathway into open water bodies, and should therefore be included in the CAR."

FR-CA box 6 – Estimation of emission into surface water during outdoor application.

FR-CA disagrees with the registrant interpretation of the point ENV58 of the TAB (2015), considering that treatments are intended in PT08 without explicitly excluding application near surface water.

As a consequence, the emissions to surface water during the application phase by brushing for preventive and curative treatment has been performed by FR-CA, by applying the scenario "bridge over pond" described in the ESD-PT08 (2013).

According to the ESD-PT08, no scenario is currently available for estimating direct release to surface water from outdoor spraying application. Therefore, the ESD-TP08 scenario "bridge over pond" was adapted by considering the fraction of product lost to water during application as the sum of releases due to run-off ($F_{runoff} = 0.2$) and drift ($F_{drift} = 0.1$) described in the section 4.4.5 of the ESD-PT08 (2013).

According to the intended uses, outdoor injection application is only performed as curative treatment. The treatment by injection is performed at 150 $g.m^{-2}$ of product and is always followed by a curative surface application by brushing or spraying at 300 $g.m^{-2}$ of product.

No scenario is currently described in the PT08-ESD for estimating releases during outdoor application by injection. A worst case approach was considered by FR-CA for estimating releases by applying the scenario used for brushing application by non-professional with an application rate of 150 g.m⁻².

As injection is always followed by a curative surface application by brushing or spraying at 300 $g.m^{-2}$ of product, emissions have been aggregated, accordingly.

Inputs:				
Parameter/variable	Symbol	Value	Unit	Origin
Treated wood area	AREA _{bridge}	10	[m².d ⁻¹]	D
Application rate of the product	Q _{applic.product}	Preventive: 0.2 Curative: 0.3	[L.m ⁻²]	S
Content of the active substance	f _{ai}	Tebuconazole: 0.0015 Propiconazole: 0.0014 Cypermethrine: 0.0018	[-]	S
Density of the product	RHO _{product}	1	[kg.m ⁻³]	S
Fraction of product lost to water during application	F _{water,brush}	Prof: 0.03 Non-prof: 0.05	[-]	D
Water volume under bridge	V _{water}	1000	[m²]	D

Outdoor application by brushing

Outputs:			
	Preventive treatment		
Emission of substance to water after application – E _{water,brush} [kg.d ⁻¹] (eq. 4.41 of PT08-ESD)			
	Professional	Non professional	
Tebuconazole	9.00E-05	1.50E-04	
Propiconazole	8.40E-05	1.40E-04	
Cypermethrine	1.08E-04	1.80E-04	

<u>Outputs:</u>			
	Curative treatment		
Emission of substance to water after	Emission of substance to water after application – E _{water,brush} [kg.d ⁻¹] (eq. 4.41 of PT08-ESD)		
	Professional	Non professional	
Tebuconazole	1.35E-04	2.25E-04	
Propiconazole	1.26E-04	2.10E-04	
Cypermethrine	1.62E-04	2.70E-04	

BRIDGE OVER POND - Outdoor application by spraying

Inputs:				
Parameter/variable	Symbol	Value	Unit	Origin
Treated wood area	AREA _{bridge}	10	[m².d ⁻¹]	D

Application rate of the product	Q _{applic.product}	Preventive: 0.2 Curative: 0.3	[L.m ⁻²]	S
Content of the active substance	f _{ai}	Tebuconazole: 0.0015 Propiconazole: 0.0014 Cypermethrine: 0.0018	[-]	S
Density of the product	RHO _{product}	1	[kg.m ⁻³]	S
Fraction of product lost to water during application by drift and by run-off	F _{water,spray}	0.3	[-]	(D)
Water volume under bridge	V _{water}	1000	[m²]	D

Outputs:			
	Preventive treatment		
Emission of substance to water after application – E _{water,spray} [kg.d ⁻¹] (modified eq. 4.41 of PT08-ESD)			
Tebuconazole	9.00E-04		
Propiconazole	8.40E-04		
Cypermethrine	1.08E-03		

Outputs:			
	Curative treatment		
Emission of substance to water after application – E _{water.sprav} [kg.d ⁻¹] (modified eq. 4.41 of PT08-ESD)			
Tebuconazole	1.35E-03		
Propiconazole	1.26E-03		
Cypermethrine	1.62E-03		

BRIDGE OVER POND - Outdoor application by injection

Inputs:				
Parameter/variable	Symbol	Value	Unit	Origin
Treated wood area	AREA _{bridge}	10	[m².d ⁻¹]	D
Application rate of the product	Q _{applic.product}	0.15	[L.m ⁻²]	S
Content of the active substance	f _{ai}	Tebuconazole: 0.0015 Propiconazole: 0.0014 Cypermethrine: 0.0018	[-]	S
Density of the product	RHO _{product}	1	[kg.m ⁻³]	S
Fraction of product lost to water during application	F _{water,injection}	0.05	[-]	D
Water volume under bridge	V _{water}	1000	[m²]	D

Outputs:		
Injection treatment		
Emission of substance to water after application – E _{water,injection} [kg.d ⁻¹] (modified eq. 4.41 of PT08-ESD)		
Tebuconazole	1.13E-04	

<	FF	<>	
---	----	----	--

<V33 TRAITEMENT MULTI USAGES>

Propiconazole	1.05E-04	
Cypermethrine	1.35E-04	

Outputs:						
Treatmer	<u>Outputs:</u> Treatment by injection followed by curative brushing					
	er application – $E_{water, injection} + E_{water, brus}$					
Professional Non professional						
Tebuconazole	2.48E-04	3.38E-04				
Propiconazole	2.31E-04 3.15E-04					
Cypermethrine	2.97E-04	4.05E-04				
	Outputs:					
Treatment by injection followed by curative spraying						
Emission of substance to water after application – E _{water,injection} + E _{water,spray} [kg.d ⁻¹]						
Tebuconazole	1.46E-03					
Propiconazole 1.37E-03						

2.2.8.4.1.2 Emissions into the soil

Cypermethrine

Emissions into the soil are calculated for application by brushing, spraying and injection.

1.76E-03

Emissions into the soil following application by brushing

During application by brushing, product losses due to spills and drips will end-up in soil, if it is not protected with a plastic foil.

To estimate emissions into the soil following outdoor treatment of UC3.1 woods by brushing, the revised ESD for PT08 describes 2 scenarios: the house and the fence scenarios. The house scenario with amateurs as applicators represents a worst case situation and is therefore used in this risk assessment.

The default values for the size of the receiving soil are: 50 cm distance from the house and a soil depth of 50 cm. This corresponds to a soil volume of 13 m^3 .

The input parameters for calculating the local emission and the concentration into the soil following an application by brushing by amateurs are presented in the following table.

Table 3.3.2.1.2-1: Input parameters for calculating the local emission and concentration into the soil – *in situ* brushing

Parameter	Nomenclature		Value	Unit	Origin
Treated wood area	AREA _{house}		125	[m²/d]	D
Application rate of the	0	preventive treatment	0.2	- [L/m²]	٨
product	Q _{applic,product}	curative treatment	0.3		A
Content of optime	f _{a.i.}	cypermethrin	0.17	[%]	A
Content of active		tebuconazole	0.14		
substance in the product		propiconazole	0.13		
Density of product	RHO product		1	[kg/L] ¹	А
Fraction of product lost to soil during application	F _{soil,brush} (amateur)		0.05	[-]	D
Volume of (wet) soil	V _{soil}		13	[m ³]	D
Bulk density of (wet) soil	RHO _{soil}		1700	[kg _{wwt} /m ³]	D

D = default, A = based on information of applicant

¹ In the revised ESD for PT08, the unit for the density is kg/m³ and in the equation to calculate $E_{soil,brush}$ a factor of 10⁻³ must be used. However, in this case, as the density is expressed as kg/L, the factor of 10⁻³ is not used in the equation 4.37.

The local emission to soil during the day of application is calculated according to the equation 4.37 from the revised ESD PT08 as following:

 $E_{soil,brush} = AREA_{house} * Q_{applic,product} * f_{a.i.} * RHO_{product} * F_{soil,brush}$

The local concentration into the soil at the end of the day of application is calculated according to the equation 4.38 from the revised ESD PT08 as following: $Clocal_{soil,brush} = E_{soil,brush} / (V_{soil} * RHO_{soil})$

The results are presented in the following tables.

Table 3.3.2.1.2-2: Resulting local emissions and concentrations into the soil – *in situ* brushing at 200 g/m²

Active substance	Local emission (Elocal _{soil}) [kg/d]	Local concentration [kg/kg _{wwt}]
Cypermethrin	2.13*10 ⁻³	9.62*10 ⁻⁸
Tebuconazole	1.75*10 ⁻³	7.92*10 ⁻⁸
Propiconazole	1.63*10 ⁻³	7.35*10 ⁻⁸

Table 3.3.2.1.2-3: Resulting local emissions and concentrations into the soil – in	situ brushing at
300 g/m²	

Active substance	Local emission (Elocal _{soil}) [kg/d]	Local concentration [kg/kg _{wwt}]	
Cypermethrin	3.19*10 ⁻³	1.44*10 ⁻⁷	
Tebuconazole	2.63*10 ⁻³	1.19*10 ⁻⁷	
Propiconazole	2.44*10 ⁻³	1.10*10 ⁻⁷	

FR-CA box 7 – Estimation of the emissions into soil during outdoor brushing application.

FR-CA agrees with the registrant's inputs used for the estimation of releases from brush application of the product according to the "house" scenario described in the PT08-ESD, except for the input "content of active substance in the product", expressed in pure active substance (0.14% w/w, 0.13% w/w, 0.17% w/w, for tebuconazole, propiconazole, and cypermethrin, respectively), instead of technical active substance (0.15% w/w, 0.14% w/w, 0.18% w/w, for tebuconazole, propiconazole, and cypermethrin, respectively). Emission calculations have been revised accordingly.

Inputs:						
Parameter/variable	r/variable Symbol Value Unit Origin					
Treated wood area	AREA _{house}	125	[m².d ⁻¹]	D		
Application rate of the product	Q _{applic.product}	Preventive: 0.2 Curative: 0.3	[L.m ⁻²]	S		
Content of the active substance	f _{ai}	Tebuconazole: 0.0015 Propiconazole: 0.0014 Cypermethrine: 0.0018	[-]	S		
Density of the product	RHO _{product}	1	[kg.m ⁻³]	S		
Fraction of product lost to soil during application	F _{soil,brush}	Professional: 0.03 Non-professional: 0.05	[-]	D		
Wet soil volume	V _{soil}	13	[m²]	D		
Bulk density of wet soil	RHO _{soil}	1700	[kg _{wwt} .m ⁻³]	D		

Outputs:				
Preventive treatment				
Emission of substance to soil after application – E _{soil,brush} [kg.d ⁻¹] (eq. 4.37 of PT08-ESD)				
Professional Non professional				
Tebuconazole	1.13E-03	1.88E-03		
Propiconazole	1.05E-03	1.75E-03		
Cypermethrine	1.35E-03	2.25E-03		

Outputs:				
	Curative treatment			
Emission of substance to soil after application – E _{soil,brush} [kg.d ⁻¹] (eq. 4.37 of PT08-ESD)				
Professional Non professional				
Tebuconazole	1.69E-03	2.81E-03		
Propiconazole	1.58E-03	2.63E-03		
Cypermethrine	2.03E-03	3.38E-03		

Emissions into the soil following application by spraying

The *in situ* spraying scenario, corresponding to the house scenario is used in this risk assessment.

During outdoor spraying application, product losses are due to run-off and drift. The main receiving compartment by run-off and spray drift is the soil adjacent to the house, if soil is not protected with a plastic foil. By run-off, the wood preservative can be emitted directly from the house to the adjacent soil compartment. By spray drift, a fraction of the droplets formed will not reach the target area but deposit on the soil after drift.

It is assumed, in a tier-1 assessment that 20% of the applied product will reach the soil due to run-off and 10% will deposit on soil due to spray drift. The affected zone by run-off and spray drift is defined as a zone of 50 cm width and 50 cm depth, resulting in an affected soil volume of 13 m^3 .

A tier-2 assessment is proposed, taking into account the covering of the soil by a plastic sheet assumed to be of 1 m width. In this second tier it is assumed that 0% of applied product will reach the soil due to run-off, since the soil is protected by a plastic foil. It is also assumed that 33% of the total spray drift will deposit on the soil at a distance between 1 m and 1.5 m from house wall, resulting in an affected soil volume of 15 m³.

Releases to the air compartment by drift is considered as negligible since exposure of the air compartment is limited in time and restricted to local scale. Moreover, the estimation of the distribution of the active substances in the different environmental compartments (see Section 10.4 of the IUCLID file) has shown that concentrations of active substances in air compartment represent very small amounts for all the active substances (< 0.5%).

The input parameters for calculating the local emission and concentration into the soil following an application by spraying are presented in the following table.

Table 3.3.2.1.2-4: Input parameters for calculating the local emission and concentration into the soil –
<i>in situ</i> spraying

Parameters	Nomenclature		Value	Unit	Origin
Treated wood area for a house	AREA _{house}		125	[m²/d]	D
		Preventive treatment	0.2	II. (2]	
Application rate of the product	Q _{applic,product}	Curative treatment	0.3	[L/m²]	A
		Cypermethrin	0.17		
Content of substance in the product	f _{ai}	Tebuconazole	0.14	[%]	А
		Propiconazole	0.13		
Density of product	RF	IO _{product}	1	[kg/L] ¹	А
Fraction of product lost to soil during application by run-off (tier 1)	F _{runoff}		0.2	-	D
Fraction of product lost to soil during application by spray drift (tier 1)	F _{drift}		0.1	-	D
Fraction of spray drift depositing to a 0.5 m wide soil band 1-1.5 m distant from the house (tier 2)	F _{dep}		0.33	-	D
Soil volume adjacent to the treated surface to which run-off and drift deposition occur (tier 1)	V _{soil,runoff,drift,tier1}		13	[m ³]	D
Soil volume adjacent to the treated surface to which drift deposition occur (tier 2)	V _{soil,drift,tier2}		15	[m ³]	D
Bulk density of wet soil	RHO _{soil}		1700	[kg _{wwt} /m ³]	D

¹ In the revised ESD for PT08, the unit for the density is kg/m³ and in the equations to calculate the local emissions to soil, a factor of 10^{-3} must be used. However, in this case, as the density is expressed as kg/L, the factor of 10^{-3} is not used in the equations 4.114, 4.115 and 4.116.

The local emissions into the soil following run off and spray drift are calculated according to the equations 4.114, 4.115 and 4.116 from the revised ESD PT08 as following:

 $\begin{array}{l} \mbox{Equation 4.114: } E_{soil, \ runoff} = AREA_{house} * Q_{applic, product} * f_{ai} * RHO_{product} * F_{runoff} \\ \mbox{Equation 4.115: } E_{soil, \ spray \ drift, \ tier1} = AREA_{house} * Q_{applic, product} * f_{ai} * RHO_{product} * F_{drift} \\ \mbox{Equation 4.116: } E_{soil, \ spray \ drift, \ tier2} = AREA_{house} * Q_{applic, product} * f_{ai} * RHO_{product} * F_{drift} * F_{dep} \\ \end{array}$

The resulting local concentrations in the soil are calculated according to the equations 4.117, 4.118, 4.119, 4.120 and 4.121 from the revised ESD PT08 as following:

 $\begin{array}{l} \mbox{Equation 4.117: Clocal_{soil, runoff}} = \mbox{E}_{soil, runoff} / (V_{soil, runoff, drift, tier1} * RHO_{soil}) \\ \mbox{Equation 4.118: Clocal_{soil, spray drift, tier1}} = \mbox{E}_{soil, spray drift, tier1} / (V_{soil, runoff, drift, tier1} * RHO_{soil}) \\ \mbox{Equation 4.119: Clocal_{soil, spray drift, tier2}} = \mbox{E}_{soil, spray drift, tier2} / (V_{soil, drift, tier2} * RHO_{soil}) \\ \mbox{Equation 4.120: Clocal_{soil, tier1}} = \mbox{Clocal_{soil, runoff}} + \mbox{Clocal_{soil, spray drift, tier1}} \\ \mbox{Equation 4.121: Clocal_{soil, tier2}} = \mbox{Clocal_{soil, spray drift, tier2}} \\ \end{array}$

The results are presented in the following tables.

Table 3.3.2.1.2-5: Local emissions into the soil – in situ spraying

Active substance	Local emission due to run-off (tier 1) [kg/d]	Local emission due to spray drift (tier 1) [kg/d]	Local emission due to spray drift (tier 2) [kg/d]		
Application dose = 20	0 g/m² (preventive treatmen	t)			
Cypermethrin	8.50*10 ⁻³	4.25*10 ⁻³	1.40*10 ⁻³		
Tebuconazole	7.00*10 ⁻³	3.50*10 ⁻³	1.16*10 ⁻³		
Propiconazole	6.50*10 ⁻³	3.25*10 ⁻³	1.07*10 ⁻³		
Application dose = 300 g/m ² (curative treatment)					
Cypermethrin	1.28*10 ⁻²	6.38*10 ⁻³	2.10*10 ⁻³		
Tebuconazole	1.05*10 ⁻²	5.25*10 ⁻³	1.73*10 ⁻³		
Propiconazole	9.75*10 ⁻³	4.88*10 ⁻³	1.61*10 ⁻³		

Table 3.3.2.1.2-6: Local concentrations into the soil – *in situ* spraying due to run-off and spray drift (Tier 1 and Tier 2)

Active substance	Local concentration due to run-off (tier 1) [kg/d]	Local concentration due to spray drift (tier 1) [kg/d]	Local concentration due to spray drift (tier 2) [kg/d]			
Application dose = 200 g/m ² (preventive treatment)						
Cypermethrin	3.85*10 ⁻⁷	1.29*10 ⁻⁷	5.50*10 ⁻⁸			
Tebuconazole	3.17*10 ⁻⁷	1.58*10 ⁻⁷	4.53*10 ⁻⁸			
Propiconazole	2.94*10 ⁻⁷	1.47*10 ⁻⁷	4.21*10 ⁻⁸			
Application dose = 30	Application dose = 300 g/m ² (curative treatment)					
Cypermethrin	5.77*10 ⁻⁷	2.88*10 ⁻⁷	8.25*10 ⁻⁸			
Tebuconazole	4.75*10 ⁻⁷	2.38*10 ⁻⁷	6.79*10 ⁻⁸			
Propiconazole	4.41*10 ⁻⁷	2.21*10 ⁻⁷	6.31*10 ⁻⁸			

Active substance	Local concentration into a band of soil of 50 cm width adjacent to the house (tier 1) [kg/kg _{wwt}]	Local concentration into a band of soil of 50 cm width at a distance between 1 m and 1.5 m from the house wall (tier 2) [kg/kg _{wwt}]			
Application dose = 200 g/m ² (preventive treatment)					
Cypermethrin	5.77*10 ⁻⁷	5.50*10 ⁻⁸			
Tebuconazole	4.75*10 ⁻⁷	4.53*10 ⁻⁸			
Propiconazole	4.41*10 ⁻⁷	4.21*10 ⁻⁸			
Application dose = 300 g/m ² (curative treatment)					
Cypermethrin	8.65*10 ⁻⁷	8.25*10 ⁻⁸			
Tebuconazole	7.13*10 ⁻⁷	6.79*10 ⁻⁸			
Propiconazole	6.62*10 ⁻⁷	6.31*10 ⁻⁸			

the sail in situ spraving Table 2.2.2.4.2.7. Deculting L

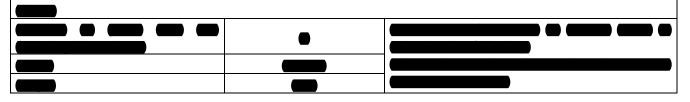
FR-CA box 8 – Estimation of the emissions into soil during outdoor spraying application.

FR-CA agrees with the registrant's inputs used for the estimation of releases from spray application of the product according to the "house" scenario described in the PT08-ESD, except for the input "content of active substance in the product", expressed in pure active substance (0.14% w/w, 0.13% w/w, 0.17% w/w, for tebuconazole, propiconazole, and cypermethrin, respectively), instead of technical active substance (0.15% w/w, 0.14% w/w, 0.18% w/w, for tebuconazole, propiconazole, and cypermethrin, respectively). Emission calculations have been revised accordingly.

Parameter / Variable	meter / Variable Symbol Value				Origin
		Tier 1	Tier 2		
Treated wood area	AREA _{house}	12	5	[m ² .d ⁻¹]	D
Application rate of the product	Q _{applic,product}	Preventive: 0. Curative: 0.3	2	[l.m ⁻ 2]	S
Content of active substance in product	f _{ai}	Tebuconazole Propiconazole Cypermethrin	e: 0.0014	[-]	S
Density of product	RHO _{product}	1		[kg.L ⁻¹]	S
Fraction of product lost to soil during application by spray drift	F _{drift}	0.1	1	[-]	D
Fraction of product lost to soil during application by run-off	F _{run-off}	0.2	2	[-]	D
Fraction of spray drift depositing to a 0.5 m wide soil band $1 - 1.5 \text{ m}$ distant from the house (Tier 2)	F _{dep}		0.33	[-]	D
Run-off: Soil volume adjacent to treated surface Drift: volume to which deposition occurs in Tier1	V _{soil,runoff} , drift- tier1	13		[m ³]	D
Drift: volume to which deposition occurs in Tier 2	V _{soil,drift-tier2}		15	[m ³]	D
Bulk density of wet soil	RHO _{soil}	1700		[kg _{wwt} .m ⁻	D

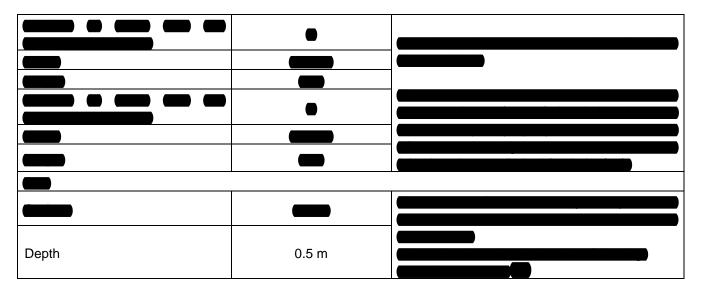
HOUSE - Outdoor application by spraying

<u>Outputs:</u> Preventive treatment					
Emission of substance to soil after application by run-off – E _{soil,spray_runnoff} [kg.d ⁻¹] (Eq. 4.114 of PT08- ESD)					
Tebuconazole	7.50E-03				
Propiconazole	7.00E-03				
Cypermethrine	9.00E-03				
Emission of substan 4.116 of PT08-ESD)	ce to soil a	fter application by s	pray drift - E	soil,spray_drift [kg.d ⁻¹] (Eq. 4.115 and	
		Tier 1		Tier 2	
Tebuconazole		3.75E-03		1.24E-03	
Propiconazole	3.50E-03 1.16E-03		1.16E-03		
Cypermethrine		4.50E-03		1.49E-03	
		-			
		<u>Outputs</u> <u>Curative trea</u>			
Emission of substand ESD)	ce to soil aft	er application by rur	1-off – E _{soil,spra}	_{y_runnoff} [kg.d ⁻¹] (Eq. 4.114 of PT08-	
Tebuconazole	1.13E-02				
Propiconazole	1.05E-02				
Cypermethrine	1.35E-02				
Emission of substance to soil after application by spray drift - E _{soil,spray_drift} [kg.d ⁻¹] (Eq. 4.115 and 4.116 of PT08-ESD)					
		Tier 1		Tier 2	
Tebuconazole	5.63E-03		1.86E-03		
Propiconazole	5.25E-03		1.73E-03		
Cypermethrine	6.75E-03		2.23E-03		


Emissions into the soil following application by injection

During application by injection, product losses due to dripping will end-up in soil, if it is not protected with a plastic foil.

For estimating emissions into the soil following outdoor treatment of UC3.1 woods by injection, the emission scenario for injection presented in the revised ESD for PT08 is for a transmission pole with a treated wood area of 0.8 m² and a soil volume of 2.97 m³. This scenario has thus been adapted for the treatment by injection of houses elements. As no scenario relevant for outdoor injection treatment of houses elements (UC 3.1) is available in the revised ESD for PT08, an adapted scenario is therefore proposed below.


It is considered that only heavy sections of wood (as beams and frames) are treated by injection. The most representative wood construction used outdoors and with large sections is a carport.

¹⁴ <u>http://www.abris-et-jardin.fr/garages-carports-et-charreterie-en-bois/carport-standard/carport-standard-102.html</u> <u>http://www.leroymerlin.fr/v3/p/produits/terrasse-jardin/abri-garage-rangement-et-etendage/garage-et-carport/carport-11308217063</u>

http://www.oogarden.com/cat-728-Carports.html

The input parameters for calculating the local emission and concentration in the soil following an application by injection are presented in the following table.

Table 3.3.2.1.2-8: Input parameters for calculating the local emission and concentration into the soil – *in situ* injection

Parameter	Nomenclature		Value	Unit	Origin	
Treated wood area	AREA _{house, inj}		15	[m²/d]	D	
Application rate of the product	Q _{applic,product}		0.15	[L/m²]	А	
Content of estive substance		cypermethrine	0.17			
Content of active substance	f _{a.i.}	tebuconazole	0.14	[%]	А	
in the product		propiconnazole	0.13			
Density of product	RHO product		1	[kg/L] ¹	А	
Fraction of product lost to soil during application	F _{soil,inj}		0.05	[-]	D	
Volume of (wet) soil	V _{soil, inj}		10	[m ³]	D	
Bulk density of (wet) soil	RHO _{soil}		1700	[kg _{wwt} /m ³]	D	

D = default, A = based on information of applicant

¹ In the revised ESD for PT08, the unit for the density is kg/m³ and in the equation to calculate the local emissions to soil, a factor of 10^{-3} must be used. However, in this case, as the density is expressed as kg/L, the factor of 10^{-3} is not used in the equation 4.88.

The local emission to soil is calculated according to the equation 4.88 from the revised ESD PT08 as following:

E_{soil,inj} = AREA_{house} * Q_{applic,product} * f_{a.i}. * RHO_{product} * F_{soil,inj}

The local concentration into the soil is calculated according to the equation 4.89 from the revised ESD PT08 as following:

Clocal_{soil,inj} = E_{soil,inj} / (V_{soil} * RHO_{soil})

<FR>

The results are presented in the following table.

Table 3.3.2.1.2-9: Res	ulting local emissions and concentrat	tions into the soil – <i>in situ</i> injection

Active substance	Local emission (Elocal _{soil.ini}) [kg/d]	Local concentration (Clocal _{soil,ini}) [kg/kg _{wwt}]
Cypermethrin	1.91-10 ⁻⁴	1.13*10 ⁻⁸
Tebuconazole	1.58*10 ⁻⁴	9.26*10 ⁻⁹
Propiconazole	1.46*10 ⁻⁴	8.60*10 ⁻⁹

FR-CA box 9 – Estimation of the emissions into soil during outdoor injection followed by curative surface application

According to the applicant's intended uses, outdoor injection application is only performed as curative treatment. The treatment by injection at 150 $g.m^{-2}$ of product is always followed by a curative surface application by brushing or spraying at 300 $g.m^{-2}$ of product.

No scenario is currently described in the PT08-ESD for estimating releases during outdoor application by injection in use class 3. The adapted scenario proposed by the applicant was not considered by FR-CA as a worst case. As outdoor injection application is always followed by a curative surface application by brushing or spraying, FR-CA is of the opinion that emissions from injection and surface application has to be cumulated.

A worst case approach was considered for estimating releases from the outdoor application by injection by applying the house scenario used for brushing application by non-professional with an application rate of 150 $g.m^{-2}$.

As injection is always followed by a curative surface application by brushing or spraying at 300 $g.m^{-2}$ of product, emissions have been cumulated, accordingly.

Inputs:				
Parameter/variable	Symbol	Value	Unit	Origin
Treated wood area	AREA _{house}	125	[m².d ⁻¹]	D
Application rate of the product	Q _{applic.product}	Injection: 0.15	[L.m ⁻²]	S
Content of the active substance	f _{ai}	Tebuconazole: 0.0015 Propiconazole: 0.0014 Cypermethrine: 0.0018	[-]	S
Density of the product	RHO _{product}	1	[kg.m ⁻³]	S
Fraction of product lost to soil during application	F _{soil,injection}	0.05	[-]	D
Wet soil volume	V _{soil}	13	[m²]	D
Bulk density of wet soil	RHO _{soil}	1700	[kg _{wwt} .m ⁻³]	D

HOUSE - Outdoor application by injection

Outputs:		
Injection treatment		
Emission of substance to soil during the day of application – E _{soil,injection} [kg.d ⁻¹]		
Tebuconazole	1.41E-03	
Propiconazole	1.32E-03	
Cypermethrine	1.69E-03	

Outputs: Treatment by injection followed by brushing					
Emission of substance to soil during the day of application – E _{soil,injection} + E _{soil,brush} [kg.d ⁻¹]					
Professional Non professional					
Tebuconazole	3.10E-03	4.22E-03			
Propiconazole	2.90E-03	3.95E-03			
Cypermethrine	3.72E-03	5.07E-03			
<u>Outputs:</u> Treatment by injection followed by spraying					
Emission of substance t	o soil during the day of application	on – E _{soil,injection} + Elocal _{soil,spray, Tier 1} [kg.d ⁻¹]			
Run-off + spray drift (Tier1)					
Tebuconazole	1.83E-02				
Propiconazole	1.71E-02				
Cypermethrine	2.19E-02				

2.2.8.4.1.3 Emissions estimation during the service life of UC3.1 treated wood

During service life of UC3.1 treated wood, emission into the environment can occur due to leaching of active substances out of the wood due to rainfall.

The leaching values used in the calculation of emissions are derived from a semi-field study conducted according to NT build 509 guidance with the product 06LBCEOL20/2PT applied by brushing at 200 g/m² without and with a top coat ("Lasure Aqua-Stop" supplied by V33).

As recommended on the label, a top coat is always applied following treatment with the product 06LBCEOL20/2PT. Therefore, only leaching values obtained with top coat are considered in the subsequent calculations.

The product was applied on wood by brushing at the dose of 200 g/m² used for preventive treatment. Panels were treated, assembled and placed outdoors without ground contact and exposed to the normal environmental and ecological factors. The test racks were exposed vertically and oriented to south during 694 days from 28/02/2013 to 21/01/2015. The rainwater was retained and the leachate was monitored by chemical analyses of the 3 active substances 8 times during the whole test period. Emission rates in μ g/m² are calculated from analytical results.

 $Q^*_{leach, time}$ values *i.e.* the cumulative quantities leached out of 1 m² of treated wood over 30 days and over 5 years (default value for the duration of service life following an *in situ* application by brushing or by spraying) are calculated based on the leaching study results.

 $Q^*_{leach, time}$ values are calculated according to the model described in the revised ESD, Appendix 2, *i.e.* by fitting the experimental FLUX (Δt) = f(t) curve using a polynomial regression of second order:

 $logFLUX(t) = a + b*log(t) + c*log(t)^2$

or, if the goodness of the fit is better, by fitting the cumulative quantities leached versus time plot using a first order decay curve:

or a linear regression:

 $Q^*_{leach,time} = a^*ln(t) + b)$

 $Q^*_{leach,time} = a^*t + b$

For each active substance the extrapolation with the best goodness of the fit, (with the r^2 value closest to 1) has been chosen. This stepwise approach was recommended during the 2nd EU leaching Workshop.

As the cumulative rainfall during the test period was 1 830 mm, leaching values were normalized to correspond to 700 mm rainfall per 365 days, which is the average annual precipitation proposed in the Technical Guidance Document (TGD).

 $Q^*_{leach, time}$ values obtained from an application by brushing at 200 g/m² with top coat for the three active substances are presented in the following Tables. As recommended during the 2nd EU leaching workshop on wood preservatives, an assessment factor of 2 is applied on the Q^{*}_{leach, 5 years} values obtained with top coat.

Active substance	Equation used for calculations	Q* _{leach. 30d} (kg/m²)	Q* _{leach, 1825d} (including AF=2) (kg/m²)
Cypermethrin	Q* _{leach} ,time (µg/m²) = 0.248 * ln(t) + 4.58 (r² = 0.648)	5.42*10 ⁻⁹	1.29*10 ⁻⁸
Tebuconazole	Q* _{leach,time} (µg/m²) = 3.20 * t + 340.6 (r² = 0.934)	4.37*10 ⁻⁷	1.24*10 ⁻⁵
Propiconazole	$Q^*_{leach,time} (\mu g/m^2) = 4.31^* t + 237$ (r ² = 0.968)	3.67*10 ⁻⁷	1.62*10 ⁻⁵

The leaching study was performed with an average application rate of 200 g/m². However, the product 06LBCEOL20/2PT can also be applied at the doses of 300 g/m² and 450 g/m². Therefore, Q*leach values for treatments at 300 g/m² and 450 g/m² have to be extrapolated from the data obtained at the dose of 200 g/m². Recommendations regarding extrapolation of leaching data from a low to a higher application rate are presented in the report of the leaching Workshop of 13 and 14/06/2005¹⁵ and are reported hereafter:

"Question 4- issue b. Effect of application rate used (what if this is different to product applied for or efficacy claim?)

There was general agreement that the leaching test should be carried out with the maximum application rate based on information from the efficacy testing and the label claim. The question was raised if it is possible to extrapolate from a low application rate used in the leaching test submitted to the maximum application rate? There was general agreement there will be no linear relationship as this depends on the number of binding sites available in the wood. The following scheme was agreed on:

- If the application rate is 10 times lower than the maximum application rate: a new leaching test should be submitted using the maximum application rate;
- If the application rate is between 2 and 10 times lower than the maximum application rate linear extrapolation and an additional assessment factor shall be applied. The existing information on leaching tests can be used to derive the value for this assessment factor.

• If the application rate is less than 2 times the maximum application rate, linear extrapolation can be used. As an alternative approach it was suggested to use an assessment factor of 10 as a first screening. If the risk assessment shows that the PNEC is exceeded, the applicant can carry out a new leaching test."

Based on these recommendations, Q*leach values for treatment at 300 g/m² are extrapolated from data obtained at the dose of 200 g/m² using a linear extrapolation. Indeed, the application rate of 200 g/m² is less than 2 times the application rate of 300 g/m².

Q*leach values for treatment at 450 g/m² are extrapolated from data obtained at the dose of 200 g/m² using a linear extrapolation and applying an assessment factor of 10. Indeed, the application rate of 200 g/m² is between 2 and 10 times lower than the application rate of 450 g/m².

¹⁵ **REPORT of the LEACHING WORKSHOP (open session)** Arona, Italy, 13 and 14 June 2005. A workshop for technical experts evaluating wood preservatives for the Competent Authorities implementing the Biocidal Products Directive, Directive 98/8/EC, assessing the leaching from treated wood to the environment. Erik van de Plassche and Kirsten Rasmussen.

Q*leach values following treatments at 300 g/m² and 450 g/m² calculated as indicated above are summarised in the following tables.

Table 3.3.2.2-2: Q* _{leach,time} values following treatment at 300 g/m ² with top coat and normalized to 700	
mm/year rainfall	

Active substance	Q* _{leach, 30d} [kg/m²]	Q* _{leach, 1825d} (including AF=2) [kg/m²]
Cypermethrin	8.13*10 ⁻⁹	1.93*10 ⁻⁸
Tebuconazole	6.55*10 ⁻⁷	1.85*10 ⁻⁵
Propiconazole	5.50*10 ⁻⁷	2.43*10 ⁻⁵

Table 3.3.2.2-3: Q* _{leach,time} values following treatment at 450 g/m ² with top coat and normalized to 700
mm/year rainfall

Active substance	Q* _{leach, 30d} [kg/m²]	Q* _{leach, 1825d} (including AF=2) [kg/m²]
Cypermethrin	1.22*10 ⁻⁷	2.90*10 ⁻⁷
Tebuconazole	9.82*10 ⁻⁶	2.78*10 ⁻⁴
Propiconazole	8.25*10 ⁻⁶	3.64*10 ⁻⁴

FR-CA box 10 – Calculation of leaching rates from the semi-field leaching study

The leaching values used in the calculation of emissions are derived from the leaching study results. The results of the semi-field study were recalculated by FR-CA by expressing the leaching in losses per mm rain incident on the panels for the standard rain year, instead of time, as the variability with time is of secondary interest due to the natural variability of rainfall. The results are presented over calendar years and over standard rain years (700 mm rain, in 365 days, *i.e.* 1.92 mm rain per day).

The applicant performed leaching study using the product with and without topcoat. Only results from leaching study with topcoat are presented below, i.e. results used for the environmental risk assessment.

 $Q^*_{leach, time}$ values are calculated by fitting the experimental FLUX (Δmm) = f(mm) curve using a polynomial regression of second order:

$$logFLUX(mm) = a + b*log(mm) + c*log(mm)^{2}$$

where "mm" is the accumulated rain ;

or, if the goodness of the fit is better, by fitting the cumulative quantities leached versus cumulative rain fall plot using a first order decay curve:

 $Q^*_{leach,time} = a^*ln(mm) + b)$

or a linear regression:

$$Q^*_{leach time} = a^*mm + b$$

For each active substance the extrapolation with the best goodness of the fit, (with the r^2 value closest to 1) has been chosen.

Q*_{leach, time} values are calculated for:

- TIME1 = 30 days, equivalent to 30 * 1.92 = 57.53 mm of accumulated rain;
- TIME2 = 5 years, equivalent to 1825 * 1.92 = 3500 mm of accumulated rain.

As Q*_{leach, time} values were obtained from an application with top coat for the three active substances, an

assessment factor of 2 is applied for a service-life of 5 years to cover uncertainties linked to the top coat use.

The leaching values obtained from an application by brushing at 200 g/m² with topcoat and normalized to 700 mm per year of rainfall for each active substance are summarized in the following table:

Leaching values obtained from surface application at 200 g/m ² with topcoat			
		T	
Active substance	Equations used for calculations	Q*leach, TIME1(30d) [mg.m ⁻²]	Q*leach, TIME2 (5y) (including AF=2) [mg.m ⁻²]
Tebuconazole	$\label{eq:log_10} \begin{array}{l} \text{LOG}_{10}(\text{FLUX}_{(\text{mm})}) = 0.9245 + 0.0423 * \\ \text{LOG}_{10}(\text{mm}) - 0.1088 * \text{LOG}_{10}(\text{mm})^2 \\ \hline (r^2 = 0.62) \\ \hline \text{Q*leach} = 702.63\text{E-}03 * \text{Ln}(\text{mm}) - \\ 2592.1\text{E-}03 \\ \hline (r^2 = 0.84) \end{array}$		
	(r = 0.04) Q*leach = 1.6682E-03 * mm + 340.68E- 03 ($r^2 = 0.93$)	4.37E-01	1.24E+01
Propiconazole	$LOG_{10}(FLUX_{(mm)}) = 1.3213 - 0.4781 *$ $LOG_{10}(mm) + 0.039 * LOG_{10}(mm)^{2}$ $(r^{2} = 0.46)$ $Q^{*}leach = 868.33E-03 * Ln(mm) -$ $3321.3E-03$ $(r^{2} = 0.81)$		
	Q*leach = 2.1401E-03 * mm + 242.37E- 03 (r ² = 0.97)	3.65E-01	1.55E+01
Cypermethrine	$\begin{array}{l} \text{LOG}_{10}(\text{FLUX}_{(\text{mm})}) = 3.8123 - 4.4867 * \\ \text{LOG}_{10}(\text{mm}) + 0.8156 * \text{LOG}_{10}(\text{mm})^2 \\ (r^2 = 0.96) \\ \hline \text{Q*leach} = 2.2589\text{E-}03 * \text{Ln}(\text{mm}) - \\ 4.1453\text{E-}03 \\ (r^2 = 0.76) \end{array}$		
	Q*leach = 5.8 * mm + 4.912E-03 (r ² = 0.99)	5.25E-03	5.04E-02

As the product can also be applied at the doses of 300 g/m², Q^{*}leach values for treatment at 300 g/m² are extrapolated from data obtained at the dose of 200 g/m² using a linear extrapolation. Indeed, the application rate of 200 g/m² is less than 2 times the application rate of 300 g/m².

Extrapolated leaching values for a surface application at 300 g/m ² with topcoat			
Active substance	Q*leach, TIME1(30d)	Q*leach, TIME2(5y)	
	[mg.m ⁻²]	(including AF=2)	
		[mg.m ⁻²]	
Tebuconazole	6.56E-01	1.86E+01	
Propiconazole	5.48E-01	2.33E+01	
Cypermethrine	7.88E-03	7.56E-02	

The leaching values for application with topcoat at 450 g/m² were considered by FR-CA as a worst case for estimating releases due to the outdoor injection treatment (150 g/m²) followed by a curative surface treatment (300 g/m²). Q*leach values for treatment at 450 g/m² are extrapolated from data obtained at the dose of 200 g/m² using a linear extrapolation without taking into account an additional assessment factor of 10, in order to not unrealistically overestimate leaching values.

Extrapolated leaching values for a surface application at 450 g/m ² with topcoat				
Active substance	e substance Q*leach, TIME1(30d) Q*leach, TIME2(5y)			
	[mg.m ⁻²]	(including AF=2)		
		[mg.m ⁻²]		
Tebuconazole	9.83E-01	2.79E+01		
Propiconazole	8.21E-01	3.49E+01		
Cypermethrine	1.18E-02	1.13E-01		

For 1,2,4-triazole assessment, when necessary, the Q*leach for TIME1 and TIME2 have been recalculated to consider the emission of this metabolite by both tebuconazole and propiconazole. The assessment of 1,2,4-triazol was proposed only for groundwater and soil at the highest level of environmental exposure during service-life, i.e. injection followed by curative surface treatment. The emission calculation for the metabolite takes into account the maximal level of degradation of the substances in soil (9% and 43.23% for tebuconazole and propiconazole respectively) and the molar mass of each component.

1,2,4-triazole - Extrapolated leaching values for a surface application at 450 g/m ² with topcoat		
	Q*leach, TIME1(30d)	Q*leach, TIME2(5y)
	[mg.m ⁻²]	(including AF=2)
		[mg.m ⁻²]
Equation	(9.83E-01*0.09*69.1/307.8)	(2.79E+01*0.09*69.1/307.8)
	+(8.21E-01*0.4323*69.1/342.2)	+(3.49E+01*0.4323*69.1/342.2)
Value	9.15E-02	3.61E+00

Emissions due to leaching of the active substances out of the wood may occur into the soil, the surface water and, in urban area, into the Sewage Treatment Plant (STP) after run-off. Emissions to soil may subsequently leach and reach the groundwater.

Emissions into the soil are calculated according to the house scenario.

Emissions into the surface water are calculated according to the bridge over pond scenario.

Emissions into the STP are calculated according to the noise barrier scenario.

Quantities of active substances leached out of treated wood depend on the initial quantities of product applied on the wood. Therefore, emissions during service life are calculated following treatments at the dose of:

- 200 g/m² (preventive treatment by brushing or spraying),

- 300 g/m² (curative treatment by brushing or spraying)

- and 450 g/m² (curative treatment by injection at the dose of 150 g/m² followed by a curative treatment by brushing or spraying at the dose of 300 g/m²)

Consequently to the environmental risk assessment performed for the application phase (see section 3.3.2.1 and 3.3.3.3 of this document and Document IIC, section 2.2.3.1), it is recommended on the label to cover the soil during the application by brushing, spraying or injection. Then, no emission into the environment occurs during the application. Therefore, emissions over 30 days and 5 years are based on emissions due to leaching only and emissions during the application are not taken into account.

Emissions during service life following a treatment at the dose of 200 g/m^2 are considered to be covered by emissions following a treatment at the dose of 300 and 450 g/m^2 and are therefore not presented in this document.

2.2.8.4.1.4 Calculations of emissions into the soil according to the house scenario

In the house scenario, the primary receiving compartment is considered to be the soil following leaching due to rainfall. Following surface treatment by brushing or spraying, the default values for the size of the receiving soil are: 50 cm distance from the house and a soil depth of 50 cm. This corresponds to a soil volume of 13 m³. As

explained in section 3.3.2.1.2, following treatment by injection the treated surface is set to 15 m² and the soil volume contaminated is set to 10 m³.

The input parameters for calculating the local emission and concentration into the soil following leaching are presented in the following table.

Table 3.3.2.2.1-1: Input parameters for calculating the local emission and concentration into the soil –
service life, house scenario

Parameter	Nomenc	lature	Va	lue	Unit	Origin
Treated wood area	AREAhouse, brush	n, spray	12	25	[m ²]	D
Treated wood area	AREA _{house, inj}		1	5	[m ²]	А
Cumulative quantity of active substance, leached out of 1 m ² of	Q*leach, time 1		After a treatment at 300 g/m ²	After a treatment at 450 g/m ²	[kg/m²]	А
treated wood over the	leach, time 1	Cyper	8.13*10 ⁻⁹	1.22*10 ⁻⁷	[((g)))]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
initial assessment		TBZ	6.55*10 ⁻⁷	9.82*10 ⁻⁶		
period (30d)		PPZ	5.50*10 ⁻⁷	8.25*10 ⁻⁶		
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the longer assessment period (1825d)	Q^{\star} leach, time 2	Cyper TBZ PPZ	After a treatment at 300 g/m ² 1.93*10 ⁻⁸ 1.85*10 ⁻⁵ 2.43*10 ⁻⁵	After a treatment at 450 g/m ² 2.90*10 ⁻⁷ 2.78*10 ⁻⁴ 3.64*10 ⁻⁴	[kg/m²]	A
Duration of the initial assessment period	TIME1			0	[d]	D
Duration of the long- term assessment period	TIME2		18	25	[d]	D
Volume of (wet) soil	V _{soil, brush, spray} V _{soil, ini}			3 0	[m ³] [m ³]	D A
Bulk density of (wet) soil	RHO _{soil}		17	00	[kg _{wwt} /m ³]	D

D = default, A = based on information of applicant

The local emissions into the soil (*i.e.* the cumulative quantity of substance leached over 30 days and 5 years, $Q_{\text{leach,time}}$) are calculated according to the equations 4.43 and 4.44 from the revised ESD PT08 as following:

Equation 4.43: Q_{leach, time1} = AREA_{house} * Q*_{leach, time1} Equation 4.44: Q_{leach, time2} = AREA_{house} * Q*_{leach, time2}

The local concentrations into the soil are calculated according to the equations 4.45 and 4.46 from the revised ESD PT08 as following:

Equation 4.45: $Clocal_{soil,leach, time1} = Q_{leach, time1} / (V_{soil} * RHO_{soil})$ Equation 4.46: $Clocal_{soil,leach, time2} = Q_{leach, time2} / (V_{soil} * RHO_{soil})$

The results are presented in the following tables.

Table 3.3.2.2.1-2: Local emissions into the soil – service life, house scenar	rio
---	-----

Active substance	Local emission in soil due to leaching after 30 days [kg]	Local emission in soil due to leaching after 5 years [kg]		
Application dose = 300 g/m ² (curative treatment by brushing or spraying)				
Cypermethrin	1.02*10 ⁻⁶	2.41*10 ⁻⁶		
Tebuconazole	8.19*10 ⁻⁵	2.31*10 ⁻³		

Propiconazole	6.88*10 ⁻⁵	3.04*10 ⁻³
Application dose = 45	0 g/m² (curative treatment by injection an	nd by brushing or spraying)
Cypermethrin	1.83*10 ⁻⁶	4.35*10 ⁻⁶
Tebuconazole	1.47*10 ⁻⁴	4.17*10 ⁻³
Propiconazole	1.24*10 ⁻⁴	5.46*10 ⁻³

Table 3.3.2.2.1-3: Resulting concentrations into the soil – service life, house scenario

Active substance	Local concentration in soil after 30 days [kg/kg _{wwt}]	Local concentration in soil after 5 years [kg/kg _{wwt}]	
Application dose = 300) g/m² (curative treatment by brushing o	or spraying)	
Cypermethrin	4.60*10 ⁻¹¹	1.09*10 ⁻¹⁰	
Tebuconazole	3.70*10 ⁻⁹	1.05*10 ⁻⁷	
Propiconazole	3.11*10 ⁻⁹	1.37*10 ⁻⁷	
Application dose = 450) g/m² (curative treatment by injection a	nd by brushing or spraying)	
Cypermethrin	1.08*10 ⁻¹⁰	2.56*10 ⁻¹⁰	
Tebuconazole 8.66*10 ⁻⁹		2.45*10 ⁻⁷	
Propiconazole	7.28*10 ⁻⁹ 3.21*10 ⁻⁷		

FR-CA box 11 - Calculations of emissions into the soil according to the house scenario during service life of UC-3 wood

According to the intended uses and considering the section 4.3 of the PT18-ESD on the emission estimation for treated wood in service, the house scenario has been applied to calculate the emissions into the soil for each active substance by considering emissions due to:

- Preventive treatment (200 g product/m²);
- Curative treatment (300 g product/m²);
- Injection treatment (150 g product/m²) followed by a curative surface treatment (300 g product/m²), which is equivalent as a worst case to a surface application of 450 g.m⁻².

HOUSE - Preventive treatment (200 g.m⁻²) – treated wood in service only

Inputs:						
Parameter/variable	Symbol	Value	Unit	Origin		
Leachable wood area	AREA _{house}	125	[m²]	D		
Duration of the initial assessment period	TIME1	30	[d]	D		
Duration of the long term assessment period	TIME2	1825	[d]	D		
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the initial assessment period	Q [*] leach,TIME1	Tebuconazole: 4.37E-01 Propiconazole: 3.65E-01 Cypermethrin: 5.25E-03	[mg.m ⁻²]	S – <i>c.f.</i> <u>FR-CA box</u> <u>10</u>		
Cumulative quantity of active substance, leached out of 1 m ² of	Q [*] leach,TIME2	Tebuconazole: 1.24E+01 Propiconazole:	[mg.m ⁻²]	S – <i>c.f.</i> <u>FR-CA box</u> <u>10</u>		

Cumulative quantity of

substance, leached over a

longer assessment period

 $Q_{\text{leach},\text{TIME2}}$

[mg]

treated wood over the longer assessment period		1.55E+01 Cypermethrin: 5.04E-02					
	Outputs:						
Parameter/variable	Symbol	Value		Unit			
Cumulative quantity of substance, leached over the initial assessment period	Q _{leach} ,TIME1	5.46E Propic 4.56E	conazole:	[mg]			

	Cypermethrin: 6.30E+00	

6.56E-01

1.55E+03

Tebuconazole:

Propiconazole: 1.94E+03

HOUSE - Curative treatment (300 g.m⁻²) – treated wood in service only

	Inputs:					
Parameter/variable	Symbol	Value	Unit	Origin		
Leachable wood area	AREA _{house}	125	[m²]	D		
Duration of the initial assessment period	TIME1	30	[d]	D		
Duration of the long term assessment period	TIME2	1825	[d]	D		
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the initial assessment period	Q*leach,TIME1	Tebuconazole: 6.56E-01 Propiconazole: 5.48E-01 Cypermethrin: 7.88E-03	[mg.m ⁻²]	S – <i>c.f.</i> FR-CA box 10		
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the longer assessment period	Q*leach,TIME2	Tebuconazole: 1.86E+01 Propiconazole: 2.33E+01 Cypermethrin: 7.56E-02	[mg.m ⁻²]	S – <i>c.f.</i> FR-CA box 10		

	Outputs:					
Parameter/variable	Symbol	Value	Unit			
Cumulative quantity of	Q _{leach} ,TIME1	Tebuconazole:	[mg]			
substance, leached over		8.20E+01				
the initial assessment		Propiconazole:				
period		6.85E+01				
		Cypermethrin:				
		9.85E-01				
Cumulative quantity of	Q _{leach.TIME2}	Tebuconazole:	[mg]			

substance, leached over a	2.33E+03	
longer assessment period	Propiconazole:	
	2.91E+03	
	Cypermethrin:	
	9.45E+00	

HOUSE - Injection treatment (eq. to 450 g.m⁻²) – treated wood in service only

Inputs:					
Parameter/variable	Symbol	Value	Unit	Origin	
Leachable wood area	AREA _{house}	125	[m²]	D	
Duration of the initial assessment period	TIME1	30	[d]	D	
Duration of the long term assessment period	TIME2	1825	[d]	D	
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the initial assessment period	Q [*] leach,TIME1	Tebuconazole: 9.83E-01 Propiconazole: 8.21E-01 Cypermethrin: 1.18E-02	[mg.m ⁻²]	S – <i>c.f.</i> FR-CA box 10	
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the longer assessment period	Q [*] leach,TIME2	Tebuconazole: 2.79E+01 Propiconazole: 3.49E+01 Cypermethrin: 1.13E-01	[mg.m ⁻²]	S – <i>c.f.</i> <u>FR-CA box</u> <u>10</u>	

	Outputs:			
Parameter/variable	Symbol	Value	Unit	
Cumulative quantity of substance, leached over the initial assessment period	Q _{leach,TIME1}	Tebuconazole: 1.23E+02 Propiconazole: 1.03E+02 Cypermethrin: 1.48E+00	[mg]	
Cumulative quantity of substance, leached over a longer assessment period	Q _{leach,TIME2}	Tebuconazole: 3.49E+03 Propiconazole: 4.36E+03 Cypermethrin: 1.41E+01	[mg]	

2.2.8.4.1.5 Calculations of emissions into surface water according to the bridge over pond scenario

The bridge over pond scenario describes a wooden bridge which is located over a pond. It is assumed that the emissions of active substance following leaching due to rainfall end up directly in the adjacent static surface water (*i.e.* the pond). The default value for the size of the receiving water body is set to 1000 m³.

The input parameters for calculating the local emission and concentration into the surface water following leaching are presented in the following table.

Parameter	Nomenclature		Va	lue	Unit	Origin
Leachable wood area	AREA _{bridge}		1	0	[m ²]	D
Cumulative quantity of active substance, leached out of 1 m ² of	Q*leach, time 1	0	After a treatment at 300 g/m ²	After a treatment at 450 g/m ²	[kg/m²]	А
treated wood over the initial assessment		Cyper TBZ	8.13*10 ⁻⁹ 6.55*10 ⁻⁷	1.22*10 ⁻⁷ 9.82*10 ⁻⁶	[9,]	
period (30d)		PPZ	5.50*10 ⁻⁷	8.25*10 ⁻⁶		
Cumulative quantity of active substance, leached out of 1 m ² of			After aAfter atreatment attreatment at300 g/m²450 g/m²			
treated wood over the	Q*leach, time 2	Cyper	1.93*10 ⁻⁸	2.90*10 ⁻⁷	[kg/m²]	A
longer assessment		TBZ	1.85*10 ⁻⁵	2.78*10 ⁻⁴		
period (1825d)		PPZ	2.43*10 ⁻⁵	3.64*10 ⁻⁴		
Duration of the initial assessment period	TIME1		3	0	[d]	D
Duration of the long- term assessment period	TIME2		18	25	[d]	D
Water volume under bridge	V _{water}		10	00	[m ³]	D

Table 3.3.2.2.2-1: Input parameters for calculating the local emission and concentration into the surface water – service life, bridge over pond scenario

D = default, A = based on information of applicant

The local emissions into surface water (*i.e.* the cumulative quantity of substance leached over 30 days and 5 years, $Q_{\text{leach,time}}$) are calculated according to the equations 4.61 and 4.62 from the revised ESD PT08 as following:

Equation 4.61: $Q_{\text{leach, time1}} = AREA_{\text{bridge}} * Q^*_{\text{leach, time1}}$ Equation 4.62: $Q_{\text{leach, time2}} = AREA_{\text{bridge}} * Q^*_{\text{leach, time2}}$

The local concentrations into surface water are calculated according to the equations 4.63 and 4.64 from the revised ESD PT08 as following:

Equation 4.63: Clocal_{water,leach, time1} = $Q_{leach, time1}/V_{water}$ Equation 4.64: Clocal_{water,leach, time2} = $Q_{leach, time2}/V_{water}$

The results are presented in the following tables.

Active substance	Local emission into surface water due to leaching after 30 days [kg]	Local emission into surface water due to leaching after 5 years [kg]				
Application dose = 300 g/m ² (curative treatment by brushing or spraying)						
Cypermethrin	8.13*10 ⁻⁸	1.93*10 ⁻⁷				
Tebuconazole	6.55*10 ⁻⁶	1.85*10 ⁻⁴				
Propiconazole	5.50*10 ⁻⁶	2.43*10 ⁻⁴				
Application dose = 45	Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)					
Cypermethrin	1.22*10 ⁻⁶	2.90*10 ⁻⁶				
Tebuconazole	9.82*10 ⁻⁵	2.78*10 ⁻³				

Propiconazole	8.25*10 ⁻⁵	3.64*10 ⁻³

Table 3.3.2.2.2-3: Resulting concentrations into surface water - service life, bridge over pond scenario

Active substance	Local concentration into surface water after 30 days [mg/L]	Local concentration into surface water after 5 years [mg/L]				
Application dose = 300 g/m ² (curative treatment by brushing or spraying)						
Cypermethrin	8.13*10 ⁻⁸	1.93*10 ⁻⁷				
Tebuconazole	6.55*10 ⁻⁶	1.85*10 ⁻⁴				
Propiconazole	5.50*10 ⁻⁶	2.43*10 ⁻⁴				
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)						
Cypermethrin	1.22*10 ⁻⁶	2.90*10 ⁻⁶				
Tebuconazole	9.82*10 ⁻⁵	2.78*10 ⁻³				
Propiconazole	8.25*10 ⁻⁵	3.64*10 ⁻³				

FR-CA box 12 - Calculations of emissions into the surface water according to the bridge scenario during service life of UC-3 wood

According to the intended uses and considering the section 4.3 of the PT18-ESD on the emission estimation for treated wood in service, the bridge over pond scenario has been applied to calculate the emissions into the water for each active substance by considering emissions due to:

- Preventive treatment (200 g product/m²) during the wood in service period only;
- Curative treatment (300 g product/m²) during the wood in service period only;
- Injection treatment (150 g product/m²) followed by a curative surface treatment (300 g product/m²) during the wood in service period only, which is equivalent as a worst case to a surface application of 450 g.m⁻².

BRIDGE - Preventive treatment (200 g.m⁻²) – treated wood in service only

Inputs:					
Parameter/variable	Symbol	Value	Unit	Origin	
Leachable wood area	AREA _{bridge}	10	[m²]	D	
Duration of the initial assessment period	TIME1	30	[d]	D	
Duration of the long term assessment period	TIME2	1825	[d]	D	
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the initial assessment period	Q*leach,TIME1	Tebuconazole: 4.37E-01 Propiconazole: 3.65E-01 Cypermethrin: 5.25E-03	[mg.m ⁻²]	S – <i>c.f.</i> FR-CA box 10	
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the longer assessment period	Q*leach,TIME2	Tebuconazole: 1.24E+01 Propiconazole: 1.55E+01 Cypermethrin: 5.04E-02	[mg.m ⁻²]	S – <i>c.f.</i> FR-CA box 10	

Outputs:				
Parameter/variable	Symbol	Value	u Ur	nit
Cumulative quantity of substance, leached over the initial assessment period	Q _{leach} , TIME1	4.37E Propio 3.65E	conazole: +00 methrin:	lð]
Cumulative quantity of substance, leached over a longer assessment period	Q _{leach} , TIME2	1.24E Propio 1.55E	conazole: +02 methrin:	ıg]

BRIDGE - Curative treatment (300 g.m⁻²) – treated wood in service only

Inputs:							
Parameter/variable							
Leachable wood area	AREA _{bridge}	10	[m²]	D			
Duration of the initial	TIME1	30	[d]	D			
assessment period							
Duration of the long	TIME2	1825	[d]	D			
term assessment							
period			2				
Cumulative quantity	Q* _{leach,TIME1}	Tebuconazole:	[mg.m ⁻²]	S – <i>c.f.</i> FR-CA box			
of active substance,		6.56E-01		10			
leached out of 1 m ² of		Propiconazole:					
treated wood over the		5.48E-01					
initial assessment		Cypermethrin:					
period		7.88E-03					
Cumulative quantity	Q*leach,TIME2	Tebuconazole:	[mg.m ⁻²]	S – <i>c.f.</i> FR-CA box			
of active substance,		1.86E+01		10			
leached out of 1 m ² of		Propiconazole:					
treated wood over the		2.33E+01					
longer assessment		Cypermethrin:					
period		7.56E-02					

	Outputs:					
Parameter/variable Symbol Value Unit						
Cumulative quantity of substance, leached over the initial assessment period	Q _{leach,TIME1}	Tebuconazole: 6.56E+00 Propiconazole: 5.48E+00 Cypermethrin: 7.88E-02	[mg]			
Cumulative quantity of substance, leached over a longer assessment period	Q _{leach,TIME2}	Tebuconazole: 1.86E+02 Propiconazole: 2.33E+02	[mg]			

initial

assessment

quantity

substance, leached over a

longer assessment period

of

Qleach, TIME2

the

period

Cumulative

				methrin:	
			7.56E-	-01	
BRIDGE -	Injection t	reatment (eq. to 450 g	.m ⁻²) – tr	eated wood in se	ervice only
		<u>Inputs</u>			
Parameter/variable	Symbol	Value		Unit	Origin
Leachable wood area	AREA _{bridg}			[m²]	D
Duration of the initial assessment period	TIME1	30		[d]	D
Duration of the long term assessment period	TIME2	1825		[d]	D
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the initial assessment period	Q* _{leach,TIM}	Tebuconazol 9.83E-01 Propiconazol 8.21E-01 Cypermethrii 1.18E-02		[mg.m ⁻²]	S – <i>c.f.</i> FR-CA box 10
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the longer assessment period	Q* _{leach,TIM}			[mg.m ⁻²]	S – <i>c.f.</i> FR-CA box 10
		Output			
Parameter/variable	Sym	<u>Outputs</u>	Value		Unit
Cumulative quantity				onazole:	[mg]
substance, leached o	1000			+00	[mg]

Propiconazole:

Cypermethrin: 1.18E-01

Tebuconazole:

Propiconazole: 3.49E+02 Cypermethrin: 1.13E+00 [mg]

8.21E+00

2.79E+02

2.2.8.4.1.6	Calculations of emissions into the STP according to the noise barrier scenario
-------------	--

The noise barrier scenario describes a noise barrier that is made of poles with planks in between. The medium size of a noise barrier in an urbanised area is assumed to be 1000 m long and 3 m high. It is assumed that 30% of the emissions of active substances due to leaching end up directly in the adjacent soil and 70% of the emissions are collected in the gutter and sewer, and finally enter a municipal STP. As emissions into the soil have already been assessed in the house scenario, which represents a worst case regarding the soil compartment, only emissions into the STP are calculated here.

The input parameters for calculating the local emission into the STP following leaching are presented in the following table.

Parameter	Nomenclature		Value		Unit	Origin
Leachable wood area	AREA _{noise-barrier}		30	00	[m ²]	D
Cumulative quantity of active substance, leached out of 1 m ² of	Q*leach, time 1		After a treatment at <u>300 g/m²</u> 8.13*10 ⁻⁹	After a treatment at <u>450 g/m²</u> 1.22*10 ⁻⁷	[kg/m²]	А
treated wood over the initial assessment period		Cyper TBZ	8.13*10 6.55*10 ⁻⁷	9.82*10 ⁻⁶	[9,]	
(30d)		PPZ	5.50*10 ⁻⁷	8.25*10 ⁻⁶		
Cumulative quantity of active substance, leached out of 1 m ² of treated wood over the longer assessment period (1825d)	Q*leach, time 2	Cyper TBZ PPZ	After a treatment at 300 g/m ² 1.93*10 ⁻⁸ 1.85*10 ⁻⁵ 2.43*10 ⁻⁵	After a treatment at 450 g/m ² 2.90*10 ⁻⁷ 2.78*10 ⁻⁴ 3.64*10 ⁻⁴	[kg/m²]	A
Duration of the initial assessment period	TIME1		3	0	[d]	D
Duration of the long- term assessment period	TIME2		18	25	[d]	D
Fraction released to the STP	F _{STP}		0	.7	[-]	D

Table 3.3.2.2.3-1: Input parameters for calculating the local emission into the STP – Service life, noise barrier scenario

D = default, A = based on information of applicant

The local daily emissions into the STP are calculated according to the equations 4.55 and 4.56 from the revised ESD PT08 as following:

Equation 4.55: $E_{STP, time1} = (AREA_{noise-barrier} * F_{STP} * Q^*_{leach, time1}) / TIME1$ Equation 4.56: $E_{STP, time2} = (AREA_{noise-barrier} * F_{STP} * Q^*_{leach, time2}) / TIME2$

The results are presented in the following tables.

Table 3.3.2.2.3-2: Local emissions into the STP – service life, noise barrier scenario

Active substance	Local emission into STP due to leaching during the first 30 days [kg/d]	Local emission into STP due to leaching during 5 years [kg/d]				
Application dose = 300 g/m ² (curative treatment by brushing or spraying)						
Cypermethrin	5.69*10 ⁻⁷	2.22*10 ⁻⁸				
Tebuconazole	4.59*10 ⁻⁵	2.13*10 ⁻⁵				
Propiconazole	3.85*10 ⁻⁵	2.80*10 ⁻⁵				
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)						
Cypermethrin	8.54*10 ⁻⁶	3.34*10 ⁻⁷				
Tebuconazole	6.87*10 ⁻⁴	3.20*10 ⁻⁴				
Propiconazole	5.78*10 ⁻⁴	4.19*10 ⁻⁴				

FR-CA box 13 - Calculations of emissions into the STP according to the noise barrier scenario during service life of UC-3 wood

FR-CA recalculate the local emissions into the STP using the noise barrier scenario during service life by modifying the inputs $Q^*_{Leach,TIME1}$ and $Q^*_{leach,TIME2}$ according to <u>FR-CA box 10</u>, for the following uses:

- Preventive treatment (200 g product/m²);
- Curative treatment (300 g product/m²);
- Injection treatment (150 g product/m²) followed by a curative surface treatment (300 g product/m²), which is equivalent as a worst case to a surface application of 450 g.m⁻².

NOISE BARRIER - Preventive treatment (200 g.m⁻²) – treated wood in service only

Inputs for preventive treatment – 200 g product/m²: Leachable wood area AREA.roote-barrier 3000 [m²] D Duration of the initial TIME1 30 [d] D assessment period TIME2 1825 [d] D Duration of the initial assessment period TIME2 1825 [d] D Cumulative quantity of substance leached wood over the initial assessment period Q* _{leach,TIME1} Tebuconazole: 3.65E-01 [mg.m ⁻²] S - c.f. FR-CA box 10 Cumulative quantity of substance leached out of 1m ² of treated wood over a longer assessment period Q* _{leach,TIME2} Tebuconazole: 1.24E+01 [mg.m ⁻²] S - c.f. FR-CA box 10 Fraction released to the STP FsTP 0.7 [-] D D Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - Estrement is 0.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - Estrement is 0.68E-07 Ucal daily emission rate to the STP following leaching from treated wood during a longer assessment period - Estrement is 0.48E-05 T Cypermethrin 3.68E-07 Ucal daily emission rate to the STP following l	Parameter/Variable	Symbol	Value	Unit	Origin	
Leachable wood area AREA _{noise-barrier} 3000 [m²] D Duration of the initial assessment period TIME1 30 [d] D Duration of the long- term assessment period TIME2 1825 [d] D Cumulative quantity of substance leached out of 1m² of treated Q* _{leach,TIME1} Tebuconazole: 3.65E-01 [mg.m²] S - c.f. FR-CA box 10 Cumulative quantity of substance leached out of 1 m² of treated Q* _{leach,TIME2} Tebuconazole: 1.24E+01 [mg.m²] S - c.f. FR-CA box 10 Cumulative quantity of substance leached out of 1 m² of treated Q* _{leach,TIME2} Tebuconazole: 1.25E+01 [mg.m²] S - c.f. FR-CA box 10 wood over a longer assessment period Q* _{leach,TIME2} Tebuconazole: 1.55E+01 [mg.m²] S - c.f. ER-CA box 10 Fraction released to the STP FsTP 0.7 [-] D D the STP 3.06E-05 - - - - period - E_STP.TIME1 [kg.d ⁻¹] 3.68E-07 - - - Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E_STP.TIME2 [kg.d ⁻¹]						
Duration of the inititial assessment period TIME1 30 [d] D Duration of the inititial assessment period TIME2 1825 [d] D Duration of the long-term assessment period TIME2 1825 [d] D Cumulative quantity of substance leached out of 1m² of treated wood over the initial assessment period Q*teach,TIME1 Tebuconazole: (mg.m²] S - c.f. FR-CA box 10 Cumulative quantity of substance leached out of 1m² of treated wood over a longer assessment period Q*teach,TIME2 Tebuconazole: (mg.m²] S - c.f. FR-CA box 10 Cumulative quantity of substance leached out of 1 m² of treated wood over a longer assessment period Q*teach,TIME2 Tebuconazole: (mg.m²] S - c.f. FR-CA box 10 Fraction released to the STP FSTP 0.7 [-] D Fraction released to the STP following leaching from treated wood during the initial assessment period 3.06E-05						
assessment period Image: term assessment Image: term Image: term Image: term assessment Image: term						
Duration of the long- term assessment period TIME2 1825 [d] D Cumulative quantity of substance leached out of 1m² of treated wood over the initial assessment period Q* _{leach,TIME1} Tebuconazole: 3.65E-01 [mg.m²] S - c.f. FR-CA box 10 Cumulative quantity of substance leached out of 1 m² of treated wood over a longer assessment period Q* _{leach,TIME2} Tebuconazole: 1.24E+01 [mg.m²] S - c.f. FR-CA box 10 Cumulative quantity of substance leached out of 1 m² of treated wood over a longer assessment period Q* _{leach,TIME2} Tebuconazole: 1.55E+01 [mg.m²] S - c.f. FR-CA box 10 Fraction released to the STP FsrP 0.7 [-] D Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - Estre.Time1 [kg.d ⁻¹] JoE-05 Propiconazole 3.06E-05		TIME1	30	[d]	D	
term assessment period Cumulative quantity of substance leached out of 1m ² of treated wood over the initial assessment period Cumulative quantity of substance leached out of 1m ² of treated wood over the initial assessment period Q* _{leach,TIME1} Tebuconazole: (mg.m ²] S - c.f. FR-CA box 10 S - c.f. Pr-CA box 10 S - c.f. Pr-CA	· · · · · · · · · · · · · · · · · · ·					
period Q*leach,TIME1 Tebuconazole: [mg.m ⁻²] S - c.f. FR-CA out of 1m ² of treated Propiconazole: 4.37E-01 box 10 wood over the initial assessment period 3.65E-01 box 10 10 Cumulative quantity of substance leached Q*leach,TIME1 Tebuconazole: [mg.m ⁻²] S - c.f. FR-CA wood over the initial assessment period 3.65E-01 Cypermethrin: 5.25E-03 5 - Cumulative quantity of substance leached Q*leach,TIME2 Tebuconazole: [mg.m ⁻²] S - c.f. FR-CA box 10 out of 1 m ² of treated Q*leach,TIME2 Tebuconazole: [mg.m ⁻²] S - c.f. FR-CA box 10 out of 1 m ² of treated Q*leach,TIME2 Tebuconazole: [mg.m ⁻²] S - c.f. FR-CA wood over a longer 1.55E+01 Eventhin: 5.04E-02 D D Fraction released to the STP Fsrp 0.7 [-] D D Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - Esrp,Time1 [kg.d ⁻¹] Tebuconazole 3.06E-05 Propiconazole 2.56E-05 Cypermethrin 3.68E-07		TIME2	1825	[d]	D	
Cumulative quantity of substance leached out of 1m² of treated wood over the initial assessment period Q* _{leach,TIME1} Tebuconazole: 3.65E-01 [mg.m²] S - c.f. <u>ER-CA</u> Cumulative quantity of substance leached out of 1 m² of treated wood over a longer assessment period Q* _{leach,TIME2} Tebuconazole: 1.24E+01 [mg.m²] S - c.f. <u>ER-CA</u> Cumulative quantity of substance leached out of 1 m² of treated wood over a longer assessment period Q* _{leach,TIME2} Tebuconazole: 1.55E+01 [mg.m²] S - c.f. <u>ER-CA</u> Fraction released to the STP Propiconazole: 1.55E+01 [mg.m²] S - c.f. <u>ER-CA</u> <i>Dox</i> 10 Propiconazole: 1.55E+01 Dox 10 D D Fraction released to the STP F _{STP} 0.7 [-] D D Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] J.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP,TIME2} [kg.d ⁻¹] J.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP,TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole						
of substance leached out of 1m² of treated wood over the initial assessment period 4.37E-01 Propiconazole: 3.65E-01 Cypermethrin: 5.25E-03 box 10 Cumulative quantity of substance leached out of 1 m² of treated wood over a longer assessment period Q* _{leach,TIME2} Tebuconazole: 1.24E+01 Propiconazole: 1.55E+01 Cypermethrin: 5.04E-02 [mg.m²] S - c.f. FR-CA box 10 Fraction released to the STP F _{STP} 0.7 [-] D Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole 2.56E-05 Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP,TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.43E-05 Propiconazole 1.43E-05						
out of 1m² of treated wood over the initial assessment periodPropiconazole: 3.65E-01 Cypermethrin: 5.25E-03Propiconazole: (Cypermethrin: 5.25E-03S - c.f. FR-CA box 10Cumulative quantity of substance leached out of 1 m² of treated wood over a longer assessment periodQ*leach,TIME2Tebuconazole: 1.24E+01 Propiconazole: S.04E-02[mg.m²]S - c.f. FR-CA box 10Fraction released to the STPFsTP0.7[-]DDutputs for preventive treatment - 200 g product/m²:Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E_STP.TIME1 [kg.d¹]Tebuconazole Cypermethrin 3.68E-073.68E-07Jose - State - St		Q* _{leach,TIME1}		[mg.m ⁻²]	S – <i>c.f.</i> <u>FR-CA</u>	
wood over the initial assessment period3.65E-01 Cypermethrin: 5.25E-03Sc.f.FR-CA box 10Cumulative quantity of substance leached out of 1 m² of treated wood over a longer assessment periodQ*leach,TIME2Tebuconazole: 1.24E+01 Propiconazole: 5.04E-02[mg.m²]S-c.f.FR-CA box 10Fraction released to the STPFsTP0.7[-]D-Outputs for preventive treatment - 200 g product/m²:Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E_STP,TIME1 [kg.d ⁻¹]Tebuconazole3.06E-05Cypermethrin 5.04E-023.68E-07Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E_STP,TIME1 [kg.d ⁻¹]Tebuconazole1.43E-05Propiconazole1.43E-05Propiconazole1.43E-05					<u>box 10</u>	
assessment period Cypermethrin: 5.25E-03 [mg.m ⁻²] S - c.f. FR-CA box 10 Cumulative quantity of substance leached out of 1 m ² of treated wood over a longer assessment period Q* _{leach,TIME2} Tebuconazole: 1.24E+01 box 10 Propiconazole: wood over a longer assessment period 1.55E+01 box 10 Fraction released to the STP F _{STP} 0.7 [-] D Outputs for preventive treatment – 200 g product/m ² : Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole 3.06E-05						
Substance5.25E-03CumulativequantityQ* leach,TIME2Tebuconazole: 1.24E+01[mg.m ⁻²]S- c.f.FR-CA box 10out of 1 m² of treatedPropiconazole: 1.55E+01Dox 10Dox 10wood over a longer assessment period1.55E+01 5.04E-02Dox 10Fraction released to the STPFsTP0.7[-]DDutputs for preventive treatment – 200 g product/m2:Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - EstP,TIME1 [kg.d ⁻¹]Tebuconazole3.06E-05						
Cumulative quantity of substance leached out of 1 m² of treated wood over a longer assessment period Q*teach,TIME2 Tebuconazole: 1.24E+01 Propiconazole: 1.55E+01 Cypermethrin: 5.04E-02 box 10 Fraction released to the STP FsTP 0.7 [-] D Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - EstP.TIME1 [kg.d ⁻¹] Tebuconazole 3.06E-05 Propiconazole 2.56E-05 Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - EstP.TIME2 [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.43E-05	assessment period					
of substance leached out of 1 m² of treated wood over a longer assessment period 1.24E+01 Propiconazole: 1.55E+01 Cypermethrin: 5.04E-02 box 10 Fraction released to the STP FSTP 0.7 [-] D Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment Propiconazole 2.56E-05 Cypermethrin Jaca Jaca Jaca Jaca Jaca Jaca Jaca Jaca						
out of 1 m² of treated wood over a longer assessment periodPropiconazole: 1.55E+01 Cypermethrin: 5.04E-02Image: Cypermethrin: 5.04E-02Fraction released to the STPFSTP0.7[-]DDutputs for preventive treatment – 200 g product/m²:Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - ESTP,TIME1 [kg.d ⁻¹]Tebuconazole3.06E-05Cypermethrin3.68E-07Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - ESTP,TIME2 [kg.d ⁻¹]Tebuconazole1.43E-05Propiconazole1.78E-05		Q [*] leach,TIME2		[mg.m ⁻²]		
wood over a longer assessment period1.5E+01 Cypermethrin: 5.04E-02Image: Second se			-		<u>box 10</u>	
assessment periodCypermethrin: 5.04E-02DFraction released to the STPFSTP0.7[-]DOutputs for preventive treatment – 200 g product/m²:Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - ESTP,TIME1 [kg.d ⁻¹]Tebuconazole3.06E-05Propiconazole2.56E-05Cypermethrin3.68E-07Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - ESTP,TIME2 [kg.d ⁻¹]Tebuconazole1.43E-05Propiconazole1.43E-05Propiconazole1.78E-05			•			
Fraction released to the STPFSTP0.7[-]DOutputs for preventive treatment - 200 g product/m²:Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - ESTP,TIME1 [kg.d ⁻¹]Tebuconazole3.06E-05Propiconazole2.56E-05Cypermethrin3.68E-07Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - ESTP,TIME2 [kg.d ⁻¹]Tebuconazole1.43E-05Propiconazole1.78E-05	-					
Fraction released to the STP 0.7 [-] D Outputs for preventive treatment – 200 g product/m ² : Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole 3.06E-05 Propiconazole 2.56E-05 Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP,TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05	assessment period					
the STP Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole 3.06E-05 Propiconazole 2.56E-05 Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP,TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05						
Outputs for preventive treatment – 200 g product/m²: Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole 3.06E-05 Propiconazole 2.56E-05 Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP,TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05		F _{STP}	0.7	[-]	D	
Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole 3.06E-05 Propiconazole 2.56E-05 Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP,TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05	the STP					
Local daily emission rate to the STP following leaching from treated wood during the initial assessment period - E _{STP,TIME1} [kg.d ⁻¹]Tebuconazole3.06E-05Propiconazole2.56E-05Cypermethrin3.68E-07Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP,TIME2} [kg.d ⁻¹]Tebuconazole1.43E-05Propiconazole1.78E-05		• • • •		•• • • •		
period - E _{STP,TIME1} [kg.d ⁻¹] Tebuconazole 3.06E-05 Propiconazole 2.56E-05 Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP,TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05						
Tebuconazole 3.06E-05 Propiconazole 2.56E-05 Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP.TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05	-		ing leaching from ti	reated wood during th	ne initial assessment	
Propiconazole 2.56E-05 Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP.TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05						
Cypermethrin 3.68E-07 Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP.TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05	-					
Local daily emission rate to the STP following leaching from treated wood during a longer assessment period - E _{STP.TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05	· · · · · · · · · · · · · · · · · · ·					
period - E _{STP,TIME2} [kg.d ⁻¹] Tebuconazole 1.43E-05 Propiconazole 1.78E-05						
Tebuconazole1.43E-05Propiconazole1.78E-05						
Propiconazole 1.78E-05						
Cypermethrin 5.80E-08						
	Cypermethrin	5.80E-08				

NOISE BARRIER - Curative treatment (300 g.m ⁻²) – treated wood in service only				
Parameter/Variable	Symbol	Value	Unit	Origin
	Inputs for curat	ive treatment – 300	a product/m²:	
Leachable wood area	AREA _{noise-barrier}	3000	[m ²]	D
Duration of the intitial	TIME1	30	[d]	D
assessment period				
Duration of the long-	TIME2	1825	[d]	D
term assessment				
period				
Cumulative quantity	Q [*] leach,TIME1	Tebuconazole:	[mg.m ⁻²]	S – <i>c.f.</i> <u>FR-CA</u>
of substance leached		6.56E-01		<u>box 10</u>
out of 1m ² of treated		Propiconazole:		
wood over the initial		5.48E-01		
assessment period		Cypermethrin:		
Cumulative dist	0*	7.88E-03	[m a m ⁻²]	
Cumulative quantity	Q* _{leach,TIME2}	Tebuconazole: 1.86E+01	[mg.m ⁻²]	S – <i>c.f.</i> <u>FR-CA</u>
of substance leached out of 1 m ² of treated		Propiconazole:		<u>box 10</u>
wood over a longer		2.33E+01		
assessment period		Cypermethrin:		
		7.56E-02		
Fraction released to	F _{STP}	0.7	[-]	D
the STP				
		tive treatment – 300		
Local daily emission ra		ring leaching from tre	eated wood during th	e initial assessment
period - E _{STP,TIME1} [kg.d				
Tebuconazole	4.59E-05			
Propiconazole	3.84E-05			
Cypermethrin	5.52E-07	ving loophing from tr	acted wood during a	longer esseement
Local daily emission ra period - E _{STP,TIME2} [kg.d ⁻			eated wood during a	longer assessment
Tebuconazole	2.14E-05			
Propiconazole	2.68E-05	2.68E-05		
Cypermethrin	8.70E-08			
NOISE BARRIE	ER - Injection treatm	<u>ent (eq. to 450 g.m⁻¹</u>	²) – treated wood in s	service only
Parameter/Variable	Symbol	Value	Unit	Origin
Inputs for injection followed by a curative surface treatment– eq. to 450 g product/m ² :				
Leachable wood area	AREA _{noise-barrier}	3000	[m ²]	D
Duration of the intitial	TIME1	30	[d]	D
assessment period				
Duration of the long-	TIME2	1825	[d]	D
term assessment				
period				
Cumulative quantity	Q*leach,TIME1	Tebuconazole:	[mg.m ⁻²]	S – <i>c.f.</i> <u>FR-CA</u>
of substance leached		9.83E-01		<u>box 10</u>
out of 1m ² of treated		Propiconazole:		
wood over the initial		8.21E-01		
assessment period		Cypermethrin:		108

	1.18E-02			
Q*leach,TIME2	Tebuconazole:	[mg.m ⁻²]	S – <i>c.f.</i> <u>FR-CA</u>	
	2.79E+01		<u>box 10</u>	
	Propiconazole:			
	3.49E+01			
	Cypermethrin:			
	1.13E-01			
F _{STP}	0.7	[-]	D	
Outputs for injection followed by a curative surface treatment, eq. to 450 g product/m ² :				
]	ng loaoning norr ac			
Cypermethrin 8.26E-07				
	F _{STP} Etion followed by a content of the state of the st	$\begin{array}{c} R^{*}_{leach,TIME2} & Tebuconazole: \\ 2.79E+01 \\ Propiconazole: \\ 3.49E+01 \\ Cypermethrin: \\ 1.13E-01 \\ F_{STP} & 0.7 \\ \end{array}$	Q* _{leach,TIME2} Tebuconazole: 2.79E+01 Propiconazole: 3.49E+01 Cypermethrin: 1.13E-01 [mg.m ⁻²] F _{STP} 0.7 [-] eto the STP following leaching from treated wood during the 6.88E-05 5.75E-05 [-]	

 Local daily emission rate to the STP following leaching from treated wood during a longer assessment

 period - E_{STP,TIME2} [kg.d⁻¹]

 Tebuconazole
 3.21E-05

 Propiconazole
 4.02E-05

 Cypermethrin
 1.30E-07

2.2.8.5 Local PECs

2.2.8.5.1 **PEC**s in STP

* Consequently to the environmental risk assessment performed for the soil for the application phase (see sections 3.3.2.1 and 3.3.3.3 of this document and Document IIC, section 2.2.3.1), it is recommended on the label to cover the soil during the application by brushing, spraying or injection. Then, no emissions into the STP can occur during the application.

* Emissions of active substances into the STP may occur during service life of the treated wood following leaching due to rainfall. Daily emissions have been calculated according to the noise barrier scenario and results are reported in the Table 3.3.2.2.3-2. Daily emissions during the first 30 days assessment period are higher than daily emissions during the second assessment period of 5 years. Daily emissions during the 30 days assessment period are therefore used as worst case for calculating the PEC in the STP in EUSES v2.1.2

Results are reported in the following table.

Table 3.3.3.1-1: Predicted concentrations in the STP – service life, noise barrier sc	enario
---	--------

Active substance	PEC in STP [mg/L]	
Application dose = 300 g/m ² (curative treatment by brushing or spraying)		
Cypermethrin	2.60*10 ⁻⁸	
Tebuconazole	2.04*10 ⁻⁵	
Propiconazole	1.72*10 ⁻⁵	
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)		
Cypermethrin	3.91*10 ⁻⁷	
Tebuconazole	3.06*10 ⁻⁴	
Propiconazole	2.59*10 ⁻⁴	

FR-CA box 14 – Calulcation of PEC_{STP} (noise barrier scenario)

The PECSTP was recalculated by FR-CA, considering the noise barrier scenario and the local daily emission rates to the STP following leaching from treated wood calculated in FR-CA box 13 according to the equations 32, 33, and 38 of the ECHA guidance, vol.IV, part B (2015).

Fraction of emission directed to water by STP – F _{STP,water}					
Tebuconazole	8.9E-01				S – c.f. FR-CA box
Propiconazole	9.0E-01			[-]	
Cypermethrin	9.1E-02				2
Outputs:					
	Preventive Curative (150 g.m ⁻²) treatment (200 g.m ⁻²) (300 g.m ⁻²) by curative (300 g.m ⁻²)				
PEC _{STP,TIME1}					
Tebuconazole	1.36E-05	2.05E-05	3.07E-05		
Propiconazole	1.15E-05	1.73E-05	2.59E-05	[mg.L ⁻¹]	0
Cypermethrin	1.68E-08	2.52E-08	3.78E-08		
PEC _{STP,TIME2}					
Tebuconazole	6.36E-06	9.53E-06	1.43E-05		
Propiconazole	8.03E-06	1.21E-05	1.81E-05	[mg.L ⁻¹] O	0
Cypermethrin	2.65E-09	3.98E-09	5.95E-09		

2.2.8.5.2 PECs in surface water and sediment

* As the product is only used to treat house pieces such as shutters, doors, siding, fences, gates, awnings, roof overhangs and is not used to treat commodities such as bridge over water bodies, the contamination of the surface water during application by brushing, spraying or injection is considered as negligible.

Indeed, as mentioned in the document Technical Agreement of Biocides, when it is not an intended use, the bridge over pond scenario does not need to be evaluated for the application phase:

"Should the bridge over pond scenario for UC3 be included in the CAR even if this is not proposed as an intended use by the applicant?

(TM V 2007, TM IV 2012, TM I 2013)

The bridge over pond scenario **is not used to evaluate the application phase** but the use phase, in order to describe the emission pathway into open water bodies, and should therefore be included in the CAR".

Surface water and sediment may be contaminated during the service life of the treated wood due to leaching of the active substances out of the wood. Surface water may be contaminated directly or indirectly *via* STP effluents.

* <u>Direct emissions</u> and resulting local concentrations are calculated according to the bridge over pond scenario in the section 3.3.2.2.2. These calculations don't take into account the degradation processes.

In a second tier, surface water concentrations taking into account the degradation of active substances are calculated using equations 3.16 and 3.17 described in section 3.4.2.1 of the revised ESD. It has to be pointed out that these equations do not take into account removal from the water column due to adsorption onto suspended matter and onto sediment. The resulting calculated concentrations can therefore be considered as a worst case.

<FR>

For each active substance, the $DT50_{water}$ at 12°C is used to calculate the rate constant for removal from water (k) according to the following equation: $k = ln2 / DT50_{water}$. The following values of $DT50_{water}$ and k are used for the calculations:

Table 3.3.3.2-1: DT50 _{water} and rate constant for removal from water values
--

Active substance	DT50 _{water} at 12°C [d]	k [d ⁻¹]
Cypermethrin	18.5	0.0375
Tebuconazole	198	3.50*10 ⁻³
Propiconazole	1206	5.75*10 ⁻⁴

The concentrations in surface water taking into account degradation are reported in the following table.

Table 3.3.3.2-2: Predicted concentrations in surface water – service life, bridge over pond scenario,
with degradation

Active substance	PEC in surface water, with degradation, over 30 days [mg/L]	PEC in surface water, with degradation, over 5 years [mg/L]	
Application dose = 30	0 g/m² (curative treatment by brushing or	spraying)	
Cypermethrin	2.89*10 ⁻⁸	2.78*10 ⁻⁹	
Tebuconazole	3.16*10 ⁻⁶	2.44*10 ⁻⁵	
Propiconazole	2.73*10 ⁻⁶	8.82*10 ⁻⁵	
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)			
Cypermethrin	4.34*10 ⁻⁷	4.18*10 ⁻⁸	
Tebuconazole	4.74*10 ⁻⁵	3.67*10 ⁻⁴	
Propiconazole	4.10*10 ⁻⁵	1.32*10 ⁻³	

The concentrations in sediment (PEC_{sediment}) are calculated according to the equilibrium partitioning method (equation 50 of the Guidance on the BPR, Volume IV Environment – Part B Risk assessment (active substances), April 2015, version 1.0) based on PEC_{water} calculated according to equations 3.16 and 3.17 of the revised ESD (*i.e.* taking into account degradation).

PEC_{sediment} = K_{susp-water} / RHO_{susp} * PEC_{water} * 1000

where:	
PEC _{sediment} :	Predicted Environmental Concentration in sediment [mg/kgwwt]
K _{susp-water} :	Partition coefficient suspended matter-water. Calculated according to equations 23 and 24 of the Guidance on the BPR, Volume IV Environment – Part B Risk assessment (active substances), April 2015, version 1.0, see detailed calculation below.
RHO _{susp} : PEC _{water:}	Bulk density of wet suspended matter [1150 kg/m ³] Predicted environmental concentration in water [mg/L]

Detailed calculation of K_{susp-water}:

- Equation 24 of the Guidance on the BPR, Volume IV Environment – Part B Risk assessment (active substances), April 2015, version 1.0:

K _{susp-water} = Fwa where:	ter _{susp} + [Fsolid _{susp} * (Kp _{susp} /1000) * RHOsolid]
K _{susp-water} :	suspended matter-water partitioning coefficient [m ³ .m ⁻³]
Fwater _{susp} :	fraction water in suspended matter [0.9 m ³ .m ⁻³]
Fsolid _{susp} :	fraction solids in suspended matter [0.1 m ³ .m ⁻³]

<fr></fr>	<v33 multi="" traitement="" usages=""></v33>	<pt8></pt8>
Kp _{susp} :	solids-water partitioning coefficient in suspended matter equation 23)	[L.kg ⁻¹] (calculated according to
RHOsolid:	density of the solid phase [2500 kg.m ⁻³]	
	of the Guidance on the BPR, Volume IV Environment – pril 2015, version 1.0: ,* K_{oc}	Part B Risk assessment (active
Kp _{susp} : Foc _{susp} : K _{oc} :	solids-water partitioning coefficient in suspended ma weight fraction of organic carbon in suspended matte partition coefficient organic carbon-water [L.kg ⁻¹]	

 K_{oc} values used for the calculations and resulting $K_{susp-water}$ are reported for the 3 active substances in the following table.

Table 3.3.3.2-3: Koc values and resulting Ksusp-water used for the calculations of the PECsediment

Active substance	K _{oc} [L/kg]	K _{susp-water}
Cypermethrin	574 360	14 360
Tebuconazole	992	25.7
Propiconazole	944	24.5

The concentrations in sediment taking into account degradation calculated as described above are reported in the following table.

Table 3.3.3.2-4: Predicted concentrations in sediment – service life, bridge over pond scenario, with
degradation

Active substance	PEC in sediment, with degradation, over 30 days [mg/kg _{wwt}]	PEC in sediment, with degradation, over 5 years [mg/kg _{wwt}]	
Application dose = 300) g/m² (curative treatment by brushing or	spraying)	
Cypermethrin	3.61*10 ⁻⁴	3.47*10 ⁻⁵	
Tebuconazole	7.07*10 ⁻⁵	5.46*10 ⁻⁴	
Propiconazole	5.83*10 ⁻⁵	1.88*10 ⁻³	
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)			
Cypermethrin	5.41*10 ⁻³	5.22*10 ⁻⁴	
Tebuconazole	1.06*10 ⁻³	8.20*10 ⁻³	
Propiconazole	8.74*10 ⁻⁴	2.81*10 ⁻²	

* Indirect emissions via STP effluents and resulting concentrations in surface water and sediment are calculated in EUSES v2.1.2 using the daily quantities of active substances emitted in the STP calculated in section 3.3.2.2.3 according to the noise barrier scenario. Daily emissions during the first 30 days assessment period are higher than daily emissions during the second assessment period of 5 years. Daily emissions during the 30 days assessment period are therefore used as worst case for calculating the PEC in the surface water and sediment.

The concentrations in surface water and sediment calculated in EUSES v2.1.2 are reported in the following tables.

Table 3.3.3.2-5: Predicted concentrations in surface water – service life, noise barrier scenario

Active substance	PEC in surface water over 30 days [mg/L]		
Application dose = 300 g/m ² (curative treatment by brushing or spraying)			
Cypermethrin	1.40*10 ⁻⁹		
Tebuconazole	2.04*10 ⁻⁶		
Propiconazole	1.72*10 ⁻⁶		
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)			
Cypermethrin	2.10*10 ⁻⁸		
Tebuconazole	3.06*10 ⁻⁵		
Propiconazole	2.58*10 ⁻⁵		

Table 3.3.3.2-6: Predicted concentrations in sediment – service life, noise barrier scenario

Active substance	PEC in sediment over 30 days [mg/kg _{wwt}]	
Application dose = 300 g/m ² (curative treatment by brushing or spraying)		
Cypermethrin	1.75*10 ⁻⁵	
Tebuconazole	4.56*10 ⁻⁵	
Propiconazole	3.67*10 ⁻⁵	
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)		
Cypermethrin	2.62*10 ⁻⁴	
Tebuconazole	6.83*10 ⁻⁴	
Propiconazole	5.50*10 ⁻⁴	

FR-CA box 15 – Calculation of PEC_{water} and PEC_{sediment}.

1. Direct emission to the aquatic compartment - Bridge over the pond scenario

The emissions in local water were calculated as described in FR-CA box 6 for the outdoor application phase, and in FR-CA box 12 for the service life of treated wood phase.

The initial concentrations in water were defined on the day of application for the application phase (PT08-ESD eq. 4.42). For service-life, concentrations were calculated over the assessment periods (*i.e.* 30 days for TIME1 and 1825 days for the TIME2), with the dissipation half-life from water (DT50_{water}) of each active substance in order to take into account degradation and adsorption processes (*c.f.* FR-CA box 2) using equations 3.16 and 3.17 for static water bodies. Application and service-life were calculated separately.

The concentrations in sediment were calculated using the equation 50 of the ECHA GUIDANCE vol.IV,Part B (2015). For service-life, concentrations in local water were calculated using the degradation half-life of each active substances (eq. 3.16 and 3.17) in the whole water-sediment system (DT50_{whole system}) or for degradation only in surface water (tebuconazole), and the partition coefficient organic carbon-water (K_{oc}) mentioned in the FR-CA box 2 were used.

Direct emissions during outdoor application:

Application - Bridge over the pond - Preventive treatment by brushing (200 g.m ⁻²)		
Initial concentration in local water after application [µg.L ⁻¹]		
Professional Non-professional		

<FR>

Tebuconazole	9.00E-02	1.50E-01
Propiconazole	8.40E-02	1.40E-01
Cypermethrin	1.08E-01	1.80E-01
Initial concentration in local sediment after application [mg.kg ⁻¹ _{wwt}]		
Tebuconazole	2.01E-03	3.35E-03
Propiconazole	1.79E-03	2.98E-03
Cypermethrin	1.35E+00	2.25E+00

Application - Bridge over the pond - Preventive treatment by spraying (200 g.m ⁻²)		
Initial concentration in local water after application [µg.L ⁻¹]		
Tebuconazole	9.00E-01	
Propiconazole	8.40E-01	
Cypermethrin	1.08E+00	
Initial concentration in local sediment after application [mg.kg ⁻¹ wwt]		
Tebuconazole	2.01E-02	
Propiconazole	1.79E-02	
Cypermethrin	1.35E+01	

Application - Bridge over the pond - Curative treatment by brushing (300 g.m ⁻²)		
Initial concentration in local water after application [µg.L ⁻¹]		
Professional	Non-professional	
1.35E-01	2.25E-01	
1.26E-01	2.10E-01	
1.62E-01	2.70E-01	
Initial concentration in local sediment after application [mg.kg ⁻¹ wwt]		
3.02E-03	5.03E-03	
2.68E-03	4.47E-03	
2.03E+00	3.38E+00	
	fter application [µg.L ⁻¹] Professional 1.35E-01 1.26E-01 1.62E-01 nt after application [mg.kg ⁻¹ wwt] 3.02E-03 2.68E-03	

Application - Bridge over the pond - Curative treatment by spraying (300 g.m ⁻²)			
Initial concentration in local water after application [µg.L ⁻¹]			
Tebuconazole	1.35E+00		
Propiconazole	1.26E+00		
Cypermethrin	1.62E+00		
Initial concentration in local sediment after application [mg.kg ⁻¹ wwt]			
Tebuconazole	3.02E-02		
Propiconazole	2.68E-02		
Cypermethrin	2.03E+01		

Application - Bridge over the pond - Curative treatment by injection (150 g.m ⁻²) followed by brushing (300 g.m ⁻²)		
Initial concentration in local water after application [µg.L ⁻¹]		
Professional Non-professional		
Tebuconazole	2.48E-01	3.38E-01
Propiconazole	2.31E-01	3.15E-01
Cypermethrin	2.97E-01	4.05E-01
Initial concentration in local sediment after application [mg.kg ⁻¹ wwt]		
Tebuconazole	5.53E-03	7.54E-03
Propiconazole	4.92E-03	6.71E-03
Cypermethrin	3.71E+00	5.06E+00

Application - Bridge over the pond - Curative treatment by injection (150 g.m⁻²) followed by spraying (300 g.m⁻²)

Initial concentration in local water after application [µg.L ⁻¹]	
Tebuconazole	1.46E+00
Propiconazole	1.37E+00
Cypermethrin	1.76E+00
Initial concentration in local sediment after application mg.kg ⁻¹ wwt]	
Tebuconazole	3.27E-02
Propiconazole	2.91E-02
Cypermethrin	2.19E+01

Direct emissions during service life:

ge over the pond - Preventive surface treatment (200 g.m ⁻²) – Treated wood in		
service only		
al water over the TIME1 assessment period (30 days) [µg.L ⁻¹]		
1.87E-03		
1.10E-03		
2.29E-06		
diment over the TIME1 assessment period (30 days) [mg.kg ⁻¹ wwt]		
4.72E-05		
3.86E-05		
Cypermethrine 2.33E-04		
TWA concentration in local water over the TIME2 assessment period [µg.L ⁻¹]		
4.06E-03		
1.45E-03		
3.78E-07		
Local concentration in sediment over the TIME2 assessment period [mg.kg ⁻¹ wwt]		
3.66E-04		
1.20E-03		
9.08E-05		

Wood-in-service - Bridge over the pond - Curative surface treatment (300 g.m ⁻²)– Treated wood in service only			
TWA concentration in	TWA concentration in local water over the TIME1 assessment period (30 days) [µg.L ⁻¹]		
Tebuconazole	2.80E-03		
Propiconazole	1.66E-03		
Cypermethrine	3.44E-06		
Local concentration i	n sediment over the TIME1 assessment period (30 days) [mg.kg ⁻¹ wwt]		
Tebuconazole	7.08E-05		
Propiconazole	Propiconazole 5.79E-05		
Cypermethrine 3.50E-04			
TWA concentration ir	n local water over the TIME2 assessment period – [µg.L ⁻¹]		
Tebuconazole	6.09E-03		
Propiconazole	2.18E-03		
Cypermethrin	Cypermethrin 5.67E-07		
Local concentration in sediment over the TIME2 assessment period – [mg.kg ⁻¹ wwt]			
Tebuconazole	Tebuconazole 5.49E-04		
Propiconazole	1.80E-03		
Cypermethrine	1.36E-04		

Wood-in-service - Bridge over the pond - Injection followed by curative surface treatment (eq. to 450 g.m ⁻²) – Treated wood in service only			
TWA concentration in local water over the TIME1 assessment period (30 days) – Clocal _{water,surface,TWA TIME1} [µg.L ⁻¹]			
Tebuconazole	4.20E-03		
Propiconazole	2.48E-03		
Cypermethrine	5.14E-06		
Local concentration in sediment over the TIME1 assessment period (30 days) – [mg.kg ⁻¹ wwt]			
Tebuconazole	1.06E-04		
Propiconazole	8.68E-05		
Cypermethrine	Cypermethrine 5.25E-04		
TWA concentration in local water over the TI	TWA concentration in local water over the TIME2 assessment period [µg.L ⁻¹]		
Tebuconazole	9.14E-03		
Propiconazole	3.27E-03		
Cypermethrin	8.48E-07		
Local concentration in sediment over the TIME2 assessment period [mg.kg ⁻¹ wwt]			
Tebuconazole	8.23E-04		
Propiconazole	2.69E-03		
Cypermethrine	2.04E-04		

2. Indirect emissions via the STP - Noise barrier scenario:

Indirect emissions to surface water and sediment via the STP were calculated on results described in FR-CA box 14, and according to the equations 45 and 50 of the ECHA Guidance Vol.IV, par B (2015).

Wood-in-service – Noise barrier - Preventive treatment (200 g.m⁻²) – Treated wood in service only

PEC _{water via STP} [µg.L ⁻¹]	TIME1	TIME 2
Tebuconazole	1.36E-03	6.35E-04
Propiconazole	1.15E-03	8.01E-04
Cypermethrine	9.03E-07	1.42E-07
PEC _{sediment via STP} [mg.kg ⁻¹ wwt]		
Tebuconazole	3.04E-05	1.42E-05
Propiconazole	2.45E-05	1.71E-05
Cypermethrine	1.13E-05	1.78E-06

Wood-in-service – Noise barrier - Curative treatment (300 g.m ⁻²) – Treated wood in service only		
PEC _{water via STP} [µg.L ⁻¹]	TIME1	TIME 2
Tebuconazole	2.04E-03	9.52E-04
Propiconazole	1.72E-03	1.20E-03
Cypermethrine	1.35E-06	2.14E-07
PEC _{sediment_via_STP} [mg.kg ⁻¹ wwt]		
Tebuconazole	4.56E-05	2.13E-05
Propiconazole	3.67E-05	2.57E-05
Cypermethrine	1.69E-05	2.67E-06

Wood-in-service – Noise barrier - Injection followed by curative surface treatment (eq. to 450 g.m ⁻²)			
 Treated wood in service only 			
PEC _{water_via_STP} [µg.L ⁻¹] TIME1 TIME 2			
Tebuconazole	3.06E-03	1.43E-03	
Propiconazole	2.58E-03	1.80E-03	
Cypermethrine	2.03E-06	3.19E-07	

PEC _{sediment_via_STP} [mg.kg ⁻¹ wwt]		
Tebuconazole	6.84E-05	3.19E-05
Propiconazole	5.50E-05	3.84E-05
Cypermethrine	2.54E-05	3.99E-06

2.2.8.5.3 PECs in soil

The soil may be contaminated directly during the application of the product 06LBCEOL20/2PT and during the service life of the treated wood due to leaching of the active substances out of the wood. The agricultural soil may also be contaminated indirectly *via* sewage sludge applications. PECs in soil are calculated for these 3 ways of contamination.

* <u>Direct emissions into the soil during the application</u> by brushing, spraying or injection and the resulting concentrations in soil are calculated in the section 3.3.2.1.2.

Active substance	PECs in soil [kg/kg _{wwt}]	
Application dose: 200	g/m² (preventive treatment)	
Cypermethrin	9.62*10 ⁻⁸	
Tebuconazole	7.92*10 ⁻⁸	
Propiconazole	7.35*10 ⁻⁸	
Application dose: 300	g/m² (curative treatment)	
Cypermethrin	1.44*10 ⁻⁷	
Tebuconazole	1.19*10 ⁻⁷	
Propiconazole	1.10*10 ⁻⁷	

Table 3.3.3.3-1: Predicted concentrations into the soil – in situ brushing

Table 3.3.3.3-2: Predicted concentrations into the soil – in situ spraying

Active substance	PEC in a band of soil of 50 cm width adjacent to the house (tier 1) [kg/kg _{wwt}]	PEC in a band of soil of 50 cm width at a distance between 1 m and 1.5 m from the house wall (tier 2) [kg/kg _{wwt}]	
Application dose = 200	Application dose = 200 g/m ² (preventive treatment)		
Cypermethrin	5.77*10 ⁻⁷	5.50*10 ⁻⁸	
Tebuconazole	4.75*10 ⁻⁷	4.53*10 ⁻⁸	
Propiconazole	4.41*10 ⁻⁷	4.21*10 ⁻⁸	
Application dose = 300 g/m ² (curative treatment)			
Cypermethrin	8.65*10 ⁻⁷	8.25*10 ⁻⁸	
Tebuconazole	7.13*10 ⁻⁷	6.79*10 ⁻⁸	
Propiconazole	6.62*10 ⁻⁷	6.31*10 ⁻⁸	

Table 3.3.3.3-3: Predicted concentrations into the soil - in situ injection

Active substance	PEC in soil [kg/kg _{wwt}]
Application dose = 150 g/m ²	
Cypermethrin	1.13*10 ⁻⁸
Tebuconazole	9.26*10 ⁻⁹
Propiconazole	8.60*10 ⁻⁹

* <u>Direct emissions into the soil during the service life</u> of the treated wood and the resulting concentrations in soil are calculated in the section 3.3.2.2.1. These calculations don't take into account degradation processes. In a second tier, soil concentrations were calculated taking into account degradation of the substances, using the model described in section 3.4.1.2 of the revised ESD (equations 3.11 and 3.12).

The DT50_{soil} at 12°C is used to calculate the rate constant for removal from soil (k) according to the following equation: $k = ln2 / DT50_{soil}$. The following values of DT50_{soil} and k are used for the calculations:

Table 3.3.3.3-4: DT50_{water} and rate constant for removal from water values

Active substance	DT50 _{soil} at 12°C [d]	k [d ⁻¹]
Cypermethrin	17.2	0.0403
Tebuconazole	77	9.00*10 ⁻³
Propiconazole	129	5.37*10 ⁻³

The concentrations in soil taking into account degradation are reported in the following table.

Table 3.3.3.3-5: Predicted concentrations in soil – service life, house scenario, with degradation

Active substance	PEC in soil, with degradation, over 30 days [kg/kg _{wwt}]	PEC in soil, with degradation, over 5 years [kg/kg _{wwt}]	
Application dose = 300) g/m² (curative treatment by brushing or	spraying)	
Cypermethrin	2.67*10 ⁻¹¹	1.48*10 ⁻¹²	
Tebuconazole	3.25*10 ⁻⁹	6.37*10 ⁻⁹	
Propiconazole	2.87*10 ⁻⁹	1.40*10 ⁻⁸	
Application dose = 450	Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)		
Cypermethrin	6.25*10 ⁻¹¹	3.48*10 ⁻¹²	
Tebuconazole	7.59*10 ⁻⁹	1.49*10 ⁻⁸	
Propiconazole	6.72*10 ⁻⁹	3.28*10 ⁻⁸	

* <u>Indirect emissions</u> into agricultural soil *via* sewage sludge applications and resulting concentrations in soil are calculated in EUSES v2.1.2 using the quantities of active substance emitted in the STP calculated in section 3.3.2.2.3 according to the noise barrier scenario. Daily emissions during the first 30 days assessment period are higher than daily emissions during the second assessment period of 5 years. Daily emissions during the 30 days assessment period are therefore used as worst case for calculating the PEC in agricultural soil.

The concentrations in agricultural soil calculated in EUSES v2.1.2 are reported in the following tables.

Table 3.3.3.3-6: Predicted concentrations in agricultural soil – service life, noise barrier scenario

Active substance	PEC in agricultural soil over 30 days [kg/kg _{wwt}]		
Application dose = 300	Application dose = 300 g/m ² (curative treatment by brushing or spraying)		
Cypermethrin	5.58*10 ⁻¹³		
Tebuconazole	8.49*10 ⁻¹²		
Propiconazole	8.02*10 ⁻¹²		
Application dose = 450	cation dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)		
Cypermethrin	8.38*10 ⁻¹²		
Tebuconazole	1.27*10 ⁻¹⁰		
Propiconazole	1.20*10 ⁻¹⁰		

FR-CA box 16 – Calulcation of PEC_{soil}.

1. Direct emissions to soil - House scenario

For direct releases to soil, the concentrations in local soil were calculated using emission values as described in FR-CA box 7 for the outdoor application phase, and in FR-CA box 11 for the service life of treated wood phase. For application, initial concentrations are presented (eq. 4.38 for brush, 4.120 for spray Tier 1 and 4.121 for spray Tier 2 of the PT08 ESD). For service-life, twa concentrations are calculated (with eq. 3.7 and 3.8 of the PT08 ESD) taking into account the degradation process with the half-life in soil (DT50_{soil}) described in FR-CA box 2.

Direct emissions during outdoor application:

Application – House -Preventive treatment by brushing (200 g.m ⁻²)				
Initial concentrations in local soil [mg.kg ⁻¹ _{wwt}]				
	Professional Non-professional			
Tebuconazole	5.09E-02	8.48E-02		
Propiconazole	4.75E-02	7.92E-02		
Cypermethrin	6.11E-02	1.02E-01		
	ouse -Preventive treatment by spray	/ing (200 g.m ⁻²)		
Initial concentrations in local soil [m	g.kg ⁻¹ _{wwt}]			
	Tier1 (Runoff + Drift) Tier 2 (Drift)			
Tebuconazole	5.09E-01	4.85E-02		
Propiconazole	4.75E-01 4.53E-02			
Cypermethrin 6.11E-01 5.82E-02		5.82E-02		
	ouse - Curative treatment by brush	ing (300 g.m ⁻²)		
Initial concentrations in local soil [m	g.kg ⁻¹ _{wwt}]			
	Professional	Non-professional		
Tebuconazole	7.64E-02	1.27E-01		
Propiconazole	7.13E-02	1.19E-01		
Cypermethrin	9.16E-02	1.53E-01		
Application – House - Curative treatment by spraying (300 g.m ⁻²)				
Initial concentrations in local soil [mg.kg ⁻¹ wwt]				
	Tier1 (Runoff + Drift)	Tier 2 (Drift)		
Tebuconazole	7.64E-01	7.28E-02		
Propiconazole	7.13E-01	6.79E-02		
Cypermethrin	9.16E-01	8.74E-02		

Application – House - Curative treatment by injection (150 g.m ⁻²)		
Initial concentrations in local soil [mg.kg ⁻¹ wwt]		
Tebuconazole 6.36E-02		
Propiconazole 5.94E-02		
Cypermethrin 7.64E-02		

Direct emissions during service life of treated wood:

Wood-inservice – House - Preventive treatment (200 g.m ⁻²) – Treated wood in service only			
TWA concentration in loc	TWA concentration in local soil over the TIME1 assessment period (30 days) [mg.kg ⁻¹ wwt]		
Tebuconazole 1.13E-03			
Propiconazole	9.50E-04		
Cypermethrine	1.03E-05		
TWA concentration in loc	al soil over the TIME2 assessment period [mg.kg ⁻¹ wwt]		
Tebuconazole 4.14E-03			
Propiconazole	5.43E-03		
Cypermethrin	4.06E-06		
Cypermetinin 4.06E-06			

Wood-inservice – House - Preventive treatment (200 g.m⁻²) – Brush application + Treated wood in service

TWA concentration in local soil over the TIME1 assessment period (30 days) [mg.kg ⁻¹ _{wwt}]				
Professional Non professional		Non professional		
Tebuconazole	4.57E-02	7.55E-02		
Propiconazole	4.29E-02	7.09E-02		
Cypermethrine	3.55E-02	5.91E-02		
TWA concentration in loc	TWA concentration in local soil over the TIME2 assessment period [mg.kg ⁻¹ wwt]			
Tebuconazole 6.51E-03 8.08E-03				
Propiconazole	7.82E-03	9.42E-03		
Cypermethrin	2.52E-04	4.17E-04		

Wood-inservice – House - Preventive treatment (200 g.m⁻²) – Spray application + Treated wood in service TWA concentration in local soil over the TIME1 assessment period (30 days) [mg.kg⁻¹wwt] Tier1 (Runoff + Drift) Tebuconazole 4.47E-01 Propiconazole 4.21E-01 Cypermethrine 3.54E-01 TWA concentration in local soil over the TIME2 assessment period [mg.kg⁻¹wwt] Tebuconazole 2.78E-02 Propiconazole 2.93E-02 2.48E-03 Cypermethrin

Wood-inservice – House - Curative treatment (300 g.m ⁻²)– Treated wood in service only		
TWA concentration in local soil over the TIME1 assessment period (30 days) [mg.kg ⁻¹ wwt]		
Tebuconazole 1.70E-03		
Propiconazole 1.43E-03		
Cypermethrine 1.55E-05		
TWA concentration in local soil over the TIME2 assessment period [mg.kg ⁻¹ wwt]		
Tebuconazole 6.21E-03		

Propiconazole	8.17E-03	8.17E-03		
Cypermethrin	6.09E-06			
	··· ·			
Wood-inservice		(300 g.m ⁻²) – Brush application + Treated wood in ervice		
TWA concentration	TWA concentration in local soil over the TIME1 assessment period (30 days) [mg.kg ⁻¹ wwt]			
	Professional	Non professional		
Tebuconazole	6.86E-02	1.13E-01		
Propiconazole	6.44E-02	1.06E-01		
Cypermethrine	5.32E-02	8.86E-02		
TWA concentration	in local soil over the TIME2 asse			
Tebuconazole	9.76E-03	1.21E-02		
Propiconazole	1.18E-02	1.41E-02		
Cypermethrin	3.78E-04	6.26E-04		
Wood-inservice		(300 g.m ⁻²) – Spray application + Treated wood in ervice		
TWA concentration		essment period (30 days) [mg.kg ⁻¹ _{wwt}]		
	Tier1 (Runoff + Drift)			
Tebuconazole	6.71E-01			
Propiconazole	6.31E-01			
Cypermethrine	5.32E-01	1		
	in local soil over the TIME2 asse	essment period [mg.kg ⁻¹ wwt]		
Tebuconazole	4.17E-02			
Propiconazole		4.40E-02		
Cypermethrin 3.73E-03				
	– Treated wo	rative surface application treatment (eq. to 450 g.m ⁻²) od in service only		
		essment period (30 days) [mg.kg ⁻¹ _{wwt}]		
Tebuconazole	2.55E-03			
Propiconazole		2.14E-03		
Cypermethrine		2.32E-05		
1,2,4-triazole	2.44E-04			
	in local soil over the TIME2 asse			
Tebuconazole		9.32E-03		
Propiconazole	1.22E-02			
Cypermethrin 1,2,4-triazole	1.73E-03	9.10E-06		
1,2,4-1182018	1.752-03			
	Injection followed by brush a	rative surface application treatment (eq. to 450 g.m ⁻²) pplication + Treated wood in service essment period (30 days) [mg.kg ⁻¹ wwt]		
I WA CONCENTRATION	Professional	Non professional		
Tebuconazole	1.24E-01	1.69E-01		
Propiconazole	1.18E-01	1.60E-01		
Cypermethrine	9.76E-02	1.33E-01		
	in local soil over the TIME2 asse			
Tebuconazole	1.58E-02	1.82E-02		
Propiconazole	1.88E-02	2.12E-02		
Topiconazoie	1.002-02	2.126-02		

Cypermethrin	6.91E-04	9.39E-04		
Wood-in service – H	louse - Injection followed cu	rative surface application treatment (eq. to 450 g.m ⁻²)		
– 1	 Injection followed by spray application + Treated wood in service 			
TWA concentration in	TWA concentration in local soil over the TIME1 assessment period (30 days) [mg.kg ⁻¹ wwt]			
	Tier1 (Runoff + Drift)			
Tebuconazole	7.28E-01			
Propiconazole	6.84E-01	6.84E-01		
Cypermethrine	ethrine 5.76E-01			
TWA concentration in local soil over the TIME2 assessment period [mg.kg ⁻¹ wwt]				
Tebuconazole	4.78E-02			
Propiconazole	biconazole 5.11E-02			
Cypermethrin	ethrin 4.04E-03			

2. Indirect emissions via the STP - Noise barrier scenario:

Indirect emissions to soil via spreading of STP sludge onto soil was calculated based on results described in FR-CA box 13, and according to the equations of the ECHA Guidance Vol.IV, par B (2015), with the following inputs. As the Noise barrier scenario has been requested to the applicant to cover releases to STP in urban area, only this indirect emission pathway to soil was assessed.

Variable/Parameter	Value	Unit	Origin
Estp,TIME1	c.f. FR-CA box 13	[kg.d-1]	S
Estp,TIME2			
K _{oc}	c.f. FR-CA box 2	[L.kg-1]	S
DT50 _{soil}		[L.kg ⁻¹]	S
Fstp _{sludge}		[-]	S
SLUDGERATE	790	[kg.d⁻¹]	D

Wood-in-service – Noise barrier- Preventive treatment (200 g.m ⁻²) – Treated wood in service only			
PEC _{soil_via_STP} [mg.kg ⁻¹ _{wwt}] TIME1 TIME 2			
Tebuconazole	5.64E-06	2.63E-06	
Propiconazole	4.39E-06	3.06E-06	
Cypermethrine	3.61E-07	5.69E-08	

Wood-in-service – Noise barrier- Curative treatment (300 g.m ⁻²) – Treated wood in service only			
PEC _{soil_via_STP} [mg.kg ⁻¹ _{wwt}] TIME1 TIME 2			
Tebuconazole	8.46E-06	3.94E-06	
Propiconazole	6.59E-06	4.61E-06	
Cypermethrine	5.42E-07	8.54E-08	

Wood-in-service – Noise barrier- Injection followed curative surface application treatment (eq. to 450 g.m ⁻²) – Treated wood in service only			
PEC _{soil_via_STP} [mg.kg ⁻¹ wwt] TIME1 TIME 2			
Tebuconazole	1.27E-05	5.92E-06	
Propiconazole	9.88E-06	6.90E-06	
Cypermethrine	8.11E-07	1.28E-07	

2.2.8.5.4 PECs in groundwater

When the soil is contaminated, the active substances may leach into the soil and reach the groundwater.

Consequently to the environmental risk assessment performed for the application phase (see sections 3.3.2.1 and 3.3.3.3 of this document and Document IIC, section 2.2.3.1), it is recommended on the label to cover the soil during the application by brushing, spraying or injection. Then, no emission into the soil occurs during the application. Therefore, only emissions into the soil during the service-life of the treated wood due to leaching are taken into account to estimate the contamination of the groundwater.

During the service life of the treated wood, the soil may be contaminated directly due to leaching and the agricultural soil may also be contaminated indirectly *via* sewage sludge applications.

Concentrations in groundwater are therefore estimated for these 2 ways of contamination of the soil.

* Calculations for direct contamination of the soil

As an indication for potential groundwater contamination, the concentration in pore water is calculated from the PEC_{soil} calculated in section 3.3.3.3 according to the following formula (equations 3.9 and 3.10 of the revised ESD for PT08). It has to be noted that this calculation is a worst-case assumption, neglecting transformation and dilution in deeper soil layers.

PEClocal_{porewater, time} = [Clocal_{soil, time} * RHO_{soi}I / K_{soil-water}] / 1000

where:	
PEClocal _{porewater, time} :	Local PEC in pore water over the assessment period [kg/L]
Clocal _{soil, time} :	Concentration in local soil taking into account degradation over the assessment period
	[kg/kg _{wwt}]
RHO _{soil} :	Bulk density of wet soil [1700 kg/m ³]
K _{soil-water} :	Soil-water partitioning coefficient [m ³ /m ³] (see detailed calculation below).

 $K_{soil-water}$ is calculated according to equation 24 of the Guidance on the BPR, Volume IV Environment – Part B Risk assessment (active substances), April 2015, version 1.0 based on the K_{oc} and Henry's law constant of each active substance.

K _{soil-water} = Fai	r _{soil} * K _{air-water} + Fwater _{soil} + [Fsolid _{soil} * (Kp _{soil} /1000) * RHOsolid]
where:	
K _{soil-water} :	soil-water partitioning coefficient [m ³ .m ⁻³]
Fair _{soil}	fraction of air in soil [0.2 m ³ .m ⁻³]
K _{air-water}	air-water partitioning coefficient [-] calculated according to equation 22
Fwater _{soil} :	fraction of water in soil [0.2 m ³ .m ⁻³]
Fsolid _{soil} :	fraction of solids in soil [0.6 m ³ .m ⁻³]
Kp _{soil} :	solids-water partitioning coefficient in soil [L.kg ⁻¹] calculated according to
equation 23	
RHOsolid:	density of the solid phase [2500 kg.m ⁻³]

```
- Equation 22 of the Guidance on the BPR, Volume IV Environment – Part B Risk assessment (active substances), April 2015, version 1.0:

K_{air-water} = HENRY / (R * TEMP)

where:

HENRY: Henry's law constant [Pa.m<sup>3</sup>.mol<sup>-1</sup>]

R: gas constant [8.314 Pa.m<sup>3</sup>.mol<sup>-1</sup>.k<sup>-1</sup>]

TEMP: temperature at the air-water interface [285 K]
```

```
- Equation 23 of the Guidance on the BPR, Volume IV Environment – Part B Risk assessment (active substances), April 2015, version 1.0:

Kp_{soil} = Foc_{soil} * K_{oc}

where:

Kp_{soil} partition coefficient solid-water in soil [L.kg<sup>-1</sup>]
```

 Foc_{soil} : weight fraction of organic carbon in soil [0.02 kg.kg⁻¹] K_{oc}: partition coefficient organic carbon-water [L.kg⁻¹]

Henry's law constant and K_{oc} values used for the calculations and resulting $K_{air-water}$ and $K_{soil-water}$ are reported for the 3 active substances in the following tables.

Table 3.3.3.4-1: Henry's law constant values and resulting $K_{air-water}$ used for the calculations of the PEC_{pore-water}

Active substance	Henry's law constant [Pa.m ³ .mol ⁻ ¹]	K _{air-water}
Cypermethrin	0.0240	1.01*10 ⁻⁵
Tebuconazole	1.00*10 ⁻⁵	4.22*10 ⁻⁹
Propiconazole	9.20*10 ⁻⁵	3.88*10 ⁻⁸

Table 3.3.3.4-2: Koc values and resulting Ksoil-water used for the calculations of the PECpore-water

Active substance	K _{oc} [L/kg]	K _{soil-water}
Cypermethrin	574 360	17 231
Tebuconazole	992	29.96
Propiconazole	944	28.52

The concentrations in pore water are reported in the following table.

Table 3.3.3.4-3: Predicted concentrations in pore water – service life, house scenario, with degradation

Active substance	PEC in pore water, with degradation, over 30 days [µg/L]	PEC in pore water, with degradation over 5 years [µg/L]	
Application dose = 300) g/m² (curative treatment by brushing or	spraying)	
Cypermethrin	2.63*10 ⁻⁶	1.46*10 ⁻⁷	
Tebuconazole	0.184	0.361	
Propiconazole	0.171 0.835		
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)			
Cypermethrin	6.16*10 ⁻⁶	3.43*10 ⁻⁷	
Tebuconazole	0.431	0.847	
Propiconazole	0.401	1.95	

* Calculation for indirect contamination of the soil

Concentration in pore water following indirect contamination of the soil *via* sewage sludge application are calculated in EUSES v2.1.2 and reported in the following table.

Table 3.3.3.4-4: Predicted concentrations in pore water – service life, noise barrier scenario

Active substance	PEC in pore water of agricultural soil [µg/L]		
Application dose = 30	Application dose = 300 g/m ² (curative treatment by brushing or spraying)		
Cypermethrin	1.31*10 ⁻⁸		
Tebuconazole	2.71*10 ⁻⁴		
Propiconazole	3.30*10 ⁻⁴		
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)			
Cypermethrin	1.96*10 ⁻⁷		
Tebuconazole	4.06*10 ⁻³		
Propiconazole	4.95*10 ⁻³		

FR-CA box 17 - Estimations of releases of active substances, and their relevant degradation products for the groundwater compartment

The estimations of releases of active substances, and their relevant degradation products for the groundwater compartment, were calculated with the FOCUS PEARL v.4.4.4 software.

According to the paragraph 578 of the PT08-ESD (2013), the estimation of releases to groundwater is relevant for substance with:

- $K_{oc} < 500 \text{ L.kg}^{-1}$ and
- DT50_{soil} > 21 d.

Considering that:

K _{oc} [L.kg ⁻¹]	DT50 _{soil,12°C} [d]	Origin
992	77	S - PT07-CAR of tebuconazole
944	82	S - PT07-CAR of propiconazole
89	114.7 ^(**)	S - PT07-CAR of propiconazole / PT07-CAR of
		tebuconazole
575000	17.2	S - PT08-CAR of cypermethrin
	992 944 89	992 77 944 82 89 114.7 (***)

^(*) – Relevant degradation product of tebuconazole and propiconazole in soil, with a maximum of 9% and 43.23% of applied radioactivity, respectively.

^(**) – Calculated according to the arrhenius equation with a DT₅₀ at 20°C of 60.5 days.

Estimations of releases to groundwater is considered relevant by FR-CA for the following substances: tebuconazole, propiconazole, and 1,2,4-triazole.

According to the paragraph 580 of the PT08-ESD (2013), a groundwater assessement is only necessary for the house scenario, which can be considered to be the worst case for soil exposure, thus covering all other scenarios.

The scenario for the groundwater exposure assessment for wood preservatives described in the supplement of the appendix 4 of the PT08-ESD was applied for injection followed curative surface application treatment (eq. to 450 g.m⁻²) as a worst case, based on leaching values calculated in the <u>FR-CA box 10</u>, and summarized below:

Extrapolated leaching values for a surface application at 450 g/m ² with topcoat		
Active substance	Q*leach, TIME2 (5y) [mg.m ⁻²]	
Tebuconazole 2.79E+01		
Propiconazole	3.49E+01	

Other inputs are:

Inputs:			
Parameter	Value	Origin	
Q*leach, TIME2(5y) [mg.m ⁻²]	C.f. FR-CA box 10	S	
Total leachable area per hectare [m².ha ⁻¹]	2000 (corresponding to 16 houses)	D – PT08-ESD, appendix 4	
Fraction of house surface exposed to weather – F _{weatherside} [-]	0.5	D – PT08-ESD, appendix 4	
Service life for surface applicaton [d]	1825	D – PT08-ESD	
Fraction of house surface exposed to weather $(F_{weatherside})$	0.5	D – PT08-ESD, appendix 4	
Number of equal applications per annum	10	D – PT08-ESD, appendix 4	
Application scheme	10.01 15.02 24.03 29.04 05.06 11.07 17.08 22.09 29.10 04.12	D – PT08-ESD, appendix 4	
Scenarios to be calculated	All 9 scenarios	D – PT08-ESD, appendix 4	
Crop setting	"grassland" scenario	D – PT08-ESD, appendix 4	
Additional assumptions	 No interception Fallow soil No plant uptake Assessment of standard 26 years 	D – PT08-ESD, appendix 4	
Freundlich exponent	1	D	

The results are listed in the table below.

Model	Scenario	Tebuconazole [µg.L ⁻¹]	Propiconazole [µg.L ⁻¹]	1,2,4-triazole ⁽ *) [µg.L ⁻¹]
PEARL 4.4.4	CHATEAUDUN	< 0.001	< 0.001	0.05
	HAMBURG	< 0.001	< 0.001	0.08
	JOIKIONEN	< 0.001	< 0.001	0.07
	KREMSMUENSTER	< 0.001	< 0.001	0.05
	OKEHAMPTON	< 0.001	< 0.001	0.07
	PIACENZA	< 0.001	< 0.001	0.05
	PORTO	< 0.001	< 0.001	0.04
	SEVILLA	< 0.001	< 0.001	0.02
	THIVA	< 0.001	< 0.001	0.03
(*) – Values are the sum of 1,2,4-triazole from the degradation of tebuconazole and propiconazole in soil.				
		ž		

2.2.8.5.5 PEC in air

The vapour pressure of cypermethrin, tebuconazole and propiconazole are very low $(2.3*10^{-7} \text{ Pa at } 20^{\circ}\text{C}, 1.7*10^{-6} \text{ Pa at } 20^{\circ}\text{C} \text{ and } 5.6*10^{-5} \text{ Pa at } 25^{\circ}\text{C}$, respectively), therefore emissions and PECs in air are considered as negligible for the three active substances.

2.2.8.5.6 Non-compartmental-specific exposure relevant to the food chain (secondary poisoning)

- Cypermethrin

As cypermethrin has a log $K_{ow} > 3$ (log $K_{ow} = 5.45$) and a BCF > 100 (BCF in fish = 417 L/kg and BCF in earthworm estimated in EUSES as 3380 L/kg), secondary poisoning may occur *via* the aquatic food chain and *via* the terrestrial food chain.

The concentration of cypermethrin in food (*i.e.* in fish and in earthworm) of fish-eating and worm-eating predators (birds or mammals) is calculated in EUSES v2.1.2.

The concentration in fish is calculated using the worst case concentration in surface water (*i.e.* the concentration of $2.90*10^{-6}$ mg/L obtained with the bridge over pond scenario, without degradation for the application dose of 450 g/m², see Table 3.3.2.2.2-2). The calculated concentration in fishes can therefore be considered as a worst case.

The concentration in earthworm is calculated using the worst case concentration in soil (*i.e.* the concentration of $2.56*10^{-10}$ kg/kg_{wwt} obtained with the house scenario without degradation adapted for injection treatment, see Table 3.3.2.2.1-3). The calculated concentration in earthworms can therefore be considered as a worst case.

Table 3.3.4-1 PEC of cypermethrin in fish and earthworm

	Concentration in fish	Concentration in earthworm
Cypermethrin	6.05*10 ⁻⁴ mg/kg _{wet fish}	5.14*10 ⁻⁵ mg/kg _{wet earthworm}

- Tebuconazole

According to the BCF in earthworm equal to 28, tebuconazole is not expected to bioaccumulate to terrestrial organisms. Therefore, even if tebuconazole has a potential to cause toxic effects in higher organism since it is classified as toxic for the reproduction, category 2 (H361d), an assessment of secondary poisoning doesn't need to be performed.

- Propiconazole

Log K_{ow} of propiconazole is 3.7 implying slight bioaccumulation potential. However, based on the estimation of BCF for terrestrial organisms (BCF = 64) propiconazole is not bioaccumulative to terrestrial organisms. Moreover, propiconazole is not classified as STOT RE 1 or 2 (H372 or H373, equivalent to R48), and is not classified as reprotoxic category 1 or 2 (H360f, H360d, H361f, H361d or H362, equivalent to R60, R61, R62, R63 and R64). Therefore, there is no need to perform an assessment of secondary poisoning for propiconazole.

FR-CA box 18 – Secondary poisoning for cypermethrin

FR-CA agreed with the applicant for considering that secondary poisoning is relevant only for the active substance cypermethrin. As a consequence, the secondary poisoning was assessed for the TIME2 assessment period of service life considering as a worst case:

for the aquatic food chain, the scenario "injection followed by curative surface treatment (eq. to 450 g.m⁻²) – treated wood in service only" with a Clocal_{water,TWA_TIME2} of 8.48E-07 μg.L⁻¹ (*c.f.* FR-CA box 15);

 for the terrestrial food chain, the scenario "curative treatment – Injection followed by spray application (Tier1 – runoff + drift) + treated wood in service" with a Clocal_{soil,TWA_TIME2} of 4.04E-03 mg.kg⁻¹_{wwt} (*c.f.* FR-CA box 16).

In accordance with the equations of the ECHA guidance vol.IV, part B (2015), $PEC_{oral,predator}$ for both food chain were calculated as followed:

Parameter / variable	Symbol	Unit	Value	Origin
Aquatic food chain:				
Predicted environmental concentration during episode	PEC _{local,water}	[mg.L ⁻¹]	8.48E-10	S - FR-CA box 15
Bioconcentration factor for fish on wet weight basis	BCF _{fish}	[L.kg ⁻¹ _{wet fish}]	417	S
Biomagnification factor in fish	BMF	[-]	2	S - table 24 of ECHA guidance vol.IV, part B (2015)
Predicted environmental concentration in food (considering that predators feed at 50% on local level)	PEC oral,predator	[mg.kg ⁻¹ _{wet fish}]	3.54E-07	Eq. 76 - ECHA guidance vol.IV, part B (2015)
Terrestrial food chain :				
log of partition coefficient n- octanol-water	Log K _{ow}	[-]	5.45	S
Bioconcentration factor for earthworm on wet weight basis	BCF _{earthworm}	[L.kg ⁻¹ _{wet} earthworm]	3.38E+03	Eq. 82d - ECHA guidance vol.IV, part B (2015)
Concentration in porewater	C _{porewater}	[mg.L ⁻¹]	3.98E-07	Eq. 67 - ECHA guidance vol.IV, part B (2015)
Concentration in soil	C _{soil}	[mg.kg ⁻¹ wwt]	4.04E-03	S - FR-CA box 16
Fraction of gut loading in worm	F _{gut}	[kg _{dwt} .kg ⁻¹ _{wwt}]	0.1	D
Conversion factor for soil concentration wet-dry weight soil	CONV _{soil}	[kg _{wwt} .kg ⁻¹ _{dwt}]	1.13	Eq. 82b - ECHA guidance vol.IV, part B (2015)
Predicted environmental concentration in food (considering that predators feed at 50% on local level)	PEC _{oral,predator}	[mg.kg ⁻¹ wet earthworm]	8.10E-04	Eq. 80 - ECHA guidance vol.IV, part B (2015)

2.2.8.6 Risk characterisation for the environment

The risk characterisation presented below is based on estimated concentrations in the different compartments calculated for amateur use which is a worst case and covers the professional use. The calculated concentrations take into account the application of a topcoat after the treatment with the product 06LBCEOL20/2PT (see Document IIB).

For the service life, the application rates assessed are 300 g/m^2 (corresponding to a curative treatment by brushing or spraying) and 450 g/m² (corresponding to a curative treatment by injection at 150 g/m² followed by a treatment by brushing or spraying at 300 g/m²). The risk assessment for the service life after a treatment at

200 g/m² (corresponding to a preventive treatment by brushing or spraying) is not presented as it is covered by the assessment performed for the highest application doses of 300 or 450 g/m².

According to the screening step for mixture ecotoxicity assessment, a mixture assessment is needed for the product 06LBCEOL20/PT. The mixture assessment is conducted according to the tiered assessment scheme described in the Transitional Guidance on mixture toxicity assessment for biocidal products for the environment of May 2014.

The risk quotients of the product are estimated in a first tier by the sum of PEC/PNEC ratios according to equation 4:

$$RQ_{\text{Product}} = \sum_{i=1}^{n} \left(\frac{PEC}{PNEC} \right)_{i}$$

FR-CA box 19

The risk characterisation presented below by FR-CA is based on estimated concentrations in the different compartments calculated for the scenarios corresponding to the following applicant's intended uses:

- Preventive treatment by surface application (200 g product/m² by brushing and spraying) by professional and non-professional;
- Curative treatment:
 - by surface application (300 g product/m² by brushing and spraying) by professional and nonprofessional;
 - by injection (150 g product/m²) followed by surface application (300 g product/m² by brushing and spraying) by professional and non-professional.

As mentioned by the applicant the mixture ecotoxicity assessment was conducted in accordance with the first Tier of the Transitional Guidance on mixture toxicity assessment for biocidal products for the environment of May 2014.

2.2.8.6.1 Risk characterisation for the Sewage Treatment Plant

Emissions of active substances into the STP may occur during the service life of the treated wood following leaching due to rainfall. Daily emissions into the STP have been calculated according to the noise barrier scenario.

Concentrations in the STP are calculated in EUSES v2.1.2, using the daily emission during the first 30 days assessment period which is a worst case as compared to daily emission during the second assessment period of 5 years.

PECs and risk ratios for the STP are presented in the following table.

Active substance	PEC in STP [mg/L]	RCR for the STP				
Application dose = 300 g/m ² (curative treatment by brushing or spraying)						
Cypermethrin (PNEC _{STP} = 1.63 mg/L)	2.60*10 ⁻⁸	1.60*10 ⁻⁸				
Tebuconazole (PNEC _{STP} = 0.320 mg/L)	2.04*10 ⁻⁵	6.39*10 ⁻⁵				
Propiconazole (PNEC _{STP} = 100 mg/L)	1.72*10 ⁻⁵	1.72*10 ⁻⁷				
Cumulated RCR		6.41*10 ⁻⁵				

Table 2.2.1-1: PECs and risk ratios for the STP – service life, noise barrier scenario

Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)				
Cypermethrin (PNEC _{STP} = 1.63 mg/L)	3.91*10 ⁻⁷	2.40*10 ⁻⁷		
Tebuconazole (PNEC _{STP} = 0.320 mg/L)	3.06*10 ⁻⁴	9.57*10 ⁻⁴		
Propiconazole (PNEC _{STP} = 100 mg/L)	2.59*10 ⁻⁴	2.59*10 ⁻⁶		
Cumulated RCR		9.60*10 ⁻⁴		

The individual risk characterisation ratios for each active substance and the cumulated RCR are below 1 for the application doses of 300 and 450 g/m².

Therefore, the risk for the STP is acceptable when using the product 06LBCEOL20/2PT at the doses of 200 g/m² (preventive treatment by brushing or spraying), 300 g/m² (curative treatment by brushing and spraying) and 450 g/m² (curative treatment by injection at 150 g/m² followed by a treatment by brushing or spraying at 300 g/m²) according to the label recommendations.

FR-CA box 20 – Risk characterisation for the STP

The risk characterisation for the STP has been performed considering PEC calculated for the noise barrier scenario of the PT08-ESD as described in the FR-CA box 14, and compared to PNEC_{STP} of each active substance for the service life of treated wood.

	Preventive treatment (200 g.m ⁻²)		ment	Curative surface treatment (300 g.m ⁻²)		Injection treatment (eq. to 450 g.m-2)	
		PEC [mg.L ⁻¹]	PEC/PNEC	PEC [mg.L ⁻¹]	PEC/PNEC	PEC [mg.L ⁻¹]	PEC/PNEC
TIME1	Tebuconazole	1.36E-05	4.25E-05	2.05E-05	6.41E-05	3.07E-05	9.59E-05
	Propiconazole	1.15E-05	1.15E-07	1.73E-05	1.73E-07	2.59E-05	2.59E-07
	Cypermethrin	1.68E-08	1.03E-08	2.52E-08	1.55E-08	3.78E-08	2.32E-08
	Σ PEC/PNEC		4.26E-05		6.43E-05		9.62E-05
TIME2	Tebuconazole	6.36E-06	1.99E-05	9.53E-06	2.98E-05	1.43E-05	4.47E-05
	Propiconazole	8.03E-06	8.03E-08	1.21E-05	1.21E-07	1.81E-05	1.81E-07
	Cypermethrin	2.65E-09	1.63E-09	3.98E-09	2.44E-09	5.95E-09	3.65E-09
	Σ PEC/PNEC		2.00E-05		2.99E-05		4.49E-05

Considering that all PEC/PNEC ratios and aggregated PEC/PNEC ratios for STP are below 1, the risk for the STP is considered acceptable for preventive and curative treatment with the product.

2.2.8.6.2 Risk characterisation for the aquatic compartment including sediment

2.2.8.6.2.1 Risk characterisation for the application phase

As the product is only used to treat house pieces such as shutters, doors, siding, fences, gates, awnings, roof overhangs and is not used to treat commodities such as bridge over water bodies, the contamination of the surface water during application by brushing, spraying or injection is considered as negligible.

Indeed, as mentioned in the document Technical Agreement of Biocides, when it is not an intended use, the bridge over pond scenario does not need to be evaluated for the application phase:

"Should the bridge over pond scenario for UC3 be included in the CAR even if this is not proposed as an intended use by the applicant?

(TM V 2007, TM IV 2012, TM I 2013)

The bridge over pond scenario is not used to evaluate the application phase but the use phase, in order to describe the emission pathway into open water bodies, and should therefore be included in the CAR."

The risk for the aquatic compartment is therefore acceptable when applying the product 06LBCEOL20/2PT according to the label recommendations.

FR-CA box 21 – Outdoor application phase - Risk characterisation for the aquatic compartment including sediment

For the application phase, the risk characterisation for the aquatic compartment including sediment has been performed considering PEC calculated for the bridge over pond scenario of the PT08-ESD as described in the FR-CA box 15, and compared to PNEC_{water} and PNEC_{sediment} of each active substance for the application phase of preventive and curative treatment. Agreggated ratios are also presented.

	Preventive treatment (200 g.m ⁻²)				Curative treatment (300 g.m ⁻²)			
	Professional		Non-professional		Professional		Non-professional	
	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC
Tebuconazole	9.00E- 02	9.00E-02	1.50E-01	1.50E-01	1.35E-01	1.35E-01	2.25E-01	2.25E-01
Propiconazole	8.40E- 02	1.24E-02	1.40E-01	2.06E-02	1.26E-01	1.85E-02	2.10E-01	3.09E-02
Cypermethrin	1.08E- 01	108	1.80E-01	180	1.62E-01	162	2.70E-01	270
ΣPEC/ PNEC		108		180		162		270

BRIDGE OVER POND - BRUSHING APPLICATION – SURFACE WATER [µg.L⁻¹]

BRIDGE OVER POND - BRUSHING APPLICATION – SEDIMENT [mg.kg⁻¹wwt]

	Preventive treatment (200 g.m ⁻²)				Curative treatment (300 g.m ⁻²)			.m ⁻²)
	Professional Non-professional		essional	Professional		Non-professional		
	PEC	PEC/PNEC	PEC	PEC/PNEC	PEC	PEC/PNEC	PEC	PEC/PNEC
Tebuconazole	2.01E-03	3.66E-03	3.35E-03	6.09E-03	3.02E-03	5.49E-03	5.03E-03	9.14E-03
Propiconazole	1.79E-03	3.31E-02	2.98E-03	5.52E-02	2.68E-03	4.97E-02	4.47E-03	8.29E-02
Cypermethrin*	1.35E+00	108	2.25E+00	180	2.03E+00	162	3.38E+00	270

PEC/ PNEC		108.04	180.06		162.06		270.09
An additional fac	ctor of 10 has be	en considered as PN	VECsed was define	ned using the E	PM meth	od	
						1-	
	BRIDGE OVE	R POND - SPRAYIN	IG APPLICATIO	N – SURFACE	WATER	[µg.L ⁻ ']	
		Preventive treatme	ont		Curativ	e treatment	
			5111		Gurativ	e treatment	
	PEC	PEC/ PNEC		PEC		PEC/ PNEC	;
Tebuconazole	9.00E-01	9.00E-01		1.35E+00		1.35E+00	
Propiconazole	8.40E-01	1.24E-01		1.26E+00		1.85E-01	
Cypermethrin	1.08E+00	1080		1.62E+00		1620	
Σ PEC/ PNEC		1081				1621	
						-1 •	
	BRIDGE OV	ER POND - SPRAY	ING APPLICATI	ON - SEDIMEN	NT [mg.k	g wwt]	
		Preventive treatme	ent	Curative treatment			
	PEC	PEC/ PNEC		PEC		PEC/ PNEC	;
Tebuconazole	2.01E-02	3.66E-02		3.02E-02			
Propiconazole	1.79E-02	3.31E-01		1 1		5.49E-02 4.97E-01	
Cypermethrin*	1.35E+01	1080		2.03E+01	2.03E+01		
PEC/ PNEC		1080				1620	
An additional fac	ctor of 10 has be	en considered as PN	VECsed was define	ned using the E	PM meth	od	
BRIDGE OVER	POND - INJEC	TION (150 g.m ⁻²) FO	LLOWED BY BR	RUSHING (300	g.m ⁻²) – \$	SURFACE W	ATER [µg.
			1]				
			1]				
		Professional	1]	treatment		sional	
		Professional	¹] Curative	No	n-profess		
Tehuconazola	PEC	PEC/ PNEC	¹] Curative	Nor PE	EC/ PNEC		
Tebuconazole	PEC 2.48E-01	PEC/ PNEC 2.48E-01	¹] Curative PEC 3.38E-0	Noi PE 1 3.3	E C/ PNEC 38E-01		
Propiconazole	PEC 2.48E-01 2.31E-01	PEC/ PNEC 2.48E-01 3.40E-02	¹] Curative PEC 3.38E-0 3.15E-0	Nor PE 1 3.3 1 4.6	EC/ PNEC 38E-01 63E-02		
	PEC 2.48E-01	PEC/ PNEC 2.48E-01	¹] Curative PEC 3.38E-0	Noi PE 1 3.: 1 4.0 1 40	EC/ PNEC 38E-01 63E-02		

		Curative treatment					
	Professional			Non-professional			
	PEC	PEC/ PNEC	PEC	PEC/ PNEC			
Tebuconazole	5.53E-03	1.01E-02	7.54E-03	1.37E-02			
Propiconazole	4.92E-03	9.11E-02	6.71E-03	1.24E-01			
Cypermethrin*	3.71E+00	297	5.06E+00	405			
ΣPEC/ PNEC		297.10		405.14			

* An additional factor of 10 has been considered as PNECsed was defined using the EPM method

BRIDGE OVER POND - INJECTION (150 g.m⁻²) FOLLOWED BY SPRAYING (300 g.m⁻²) – SURFACE WATER [µg.L⁻¹]

	Curative treatment				
	PEC	PEC/ PNEC			
Tebuconazole	1.46E+00	1.46E+00			
Propiconazole	1.37E+00	2.01E-01			
Cypermethrin	1.76E+00	1755			
ΣPEC/ PNEC		1756.66			

BRIDGE OVER POND - INJECTION (150 g.m⁻²) FOLLOWED BY SPRAYING (300 g.m⁻²) – SEDIMENT [mg.kg⁻¹wwt]

	Curative treatment PEC PEC/ PNEC			
Tebuconazole	3.27E-02	5.94E-02		
Propiconazole	2.91E-02	5.39E-01		
Cypermethrin*	2.19E+01	1755		
Σ PEC/ PNEC		1755.6		
Propiconazole Cypermethrin*	2.91E-02	5.39E-01 1755		

* An additional factor of 10 has been considered as PNECsed was defined using the EPM method

Whatever the application method (brushing, spraying, and injection) and the application rate, all the calculated sums of PEC/PNEC ratios are above 1 for surface water and sediment.

Therefore, the application phase by brushing, spraying or injection near surface water is cause of concern for the aquatic compartment (including sediment) and should be prevented.

2.2.8.6.2.2 Risk characterisation for the service life

Surface water and sediment may be contaminated during the service life of the treated wood due to leaching of the active substances out of the wood. Surface water may be contaminated directly or indirectly *via* the STP effluents. The risk assessment is performed for these 2 ways of contamination and is presented below.

* Concentrations in surface water and sediment resulting from <u>direct emissions</u> into surface water due to leaching have been calculated in the document IIB, section 3.3.3.2 according to the bridge over pond scenario. The degradation of the active substances is taken into account. PECs and risk ratios for surface water and sediment are summarised in the following tables.

Table 2.2.2.2-1: PECs and risk ratios for surface water - service life, bridge over po	ond scenario, with degradation
--	--------------------------------

Active substance	PEC in surface water, with degradation, over 30 days [mg/L]	RCR for surface water, over 30 days	PEC in surface water, with degradation, over 5 years [mg/L]	RCR for surface water, over 5 years			
Application dose = 300 g/m ² (curative treatment by brushing or spraying)							
Cypermethrin (PNECsw = 1.00*10 ⁻⁶ mg/L)	2.89*10 ⁻⁸	0.0289	2.78*10 ⁻⁹	2.78*10 ⁻³			
Tebuconazole	3.16*10 ⁻⁶	3.16*10 ⁻³	2.44*10 ⁻⁵	0.0244			

(PNECsw = 1.00*10 ⁻³ mg/L)										
Propiconazole (PNECsw = 6.80*10 ⁻³ mg/L)	2.73*10 ⁻⁶	4.02*10 ⁻⁴	8.82*10 ⁻⁵	0.0130						
Cumulated RCR		0.0325		0.0402						
Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)										
Cypermethrin (PNECsw = 1.00*10 ⁻⁶ mg/L)	4.34*10 ⁻⁷	0.434	4.18*10 ⁻⁸	0.0418						
Tebuconazole (PNECsw = 1.00*10 ⁻³ mg/L)	4.74*10 ⁻⁵	0.0474	3.67*10 ⁻⁴	0.367						
Propiconazole (PNECsw = 6.80*10 ⁻³ mg/L)	4.10*10 ⁻⁵	6.03*10-3	1.32*10 ⁻³	0.194						
Cumulated RCR		0.487		0.603						

Table 2.2.2.2-2: PECs and risk ratios for sediment – service life, bridge over pond scenario, with degradation

Active substance	PEC in sediment, with degradation, over 30 days [mg/kg _{wwt}]	RCR for sediment, over 30 days	PEC in sediment, with degradation, over 5 years [mg/kg _{wwt}]	RCR for sediment, over 5 years
Application dose = 300 g	/m ² (curative treatment	t by brushing or sprayi	ng)	
Cypermethrin (PNECsed = 0.125 mg/kg _{wwt})	3.61*10 ⁻⁴	2.89*10 ⁻³	3.47*10 ⁻⁵	2.78*10 ⁻⁴
Tebuconazole (PNECsed = 0.55 mg/kg _{wwt})	7.07*10 ⁻⁵	1.29*10 ⁻⁴	5.46*10 ⁻⁴	9.93*10 ⁻⁴
Propiconazole (PNECsed = 0.054 mg/kg _{wwt})	5.83*10 ⁻⁵	1.08*10 ⁻³	1.88*10 ⁻³	0.0348
Cumulated RCR		4.10*10 ⁻³		0.0361
Application dose = 450 g	/m² (curative treatment	t by injection and by br	rushing or spraying)	
Cypermethrin (PNECsed = 0.125 mg/kg _{wwt})	5.41*10 ⁻³	0.0433	5.22*10 ⁻⁴	4.17*10 ⁻³
Tebuconazole (PNECsed = 0.55 mg/kg _{wwt})	1.06*10 ⁻³	1.93*10 ⁻³	8.20*10 ⁻³	0.0149
Propiconazole (PNECsed = 0.054 mg/kg _{wwt})	8.74*10 ⁻⁴	0.0162	2.81*10 ⁻²	0.521
Cumulated RCR		0.0614		0.540

FR-CA box 22 – Service Life of treated wood - Risk characterisation for direct releases to the aquatic compartment including sediment

The risk characterisation for the aquatic compartment including sediment has been performed considering PEC calculated for the bridge scenario as described in the FR-CA box 15, and compared to PNEC_{water} and PNEC_{sediment} of each active substance for the service life of the treated wood.

BRIDGE OVER POND - SERVICE LIFE OF TREATED WOOD – SURFACE	WATER [µg.L ⁻¹]
---	-----------------------------

	Preventive treatment (200 g.m ⁻²)					Curative tre	atment (300 g.	m ⁻²)	Injection followed by curative surface treatment (eq. to 450 g.m ⁻²)				
	TI	VIE 1	TIN	/IE 2	Т	ME 1	TIN	TIME 2		/IE 1	TIME 2		
	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	
Tebuconazole	1.87E- 03	1.87E- 03	4.06E- 03	4.06E- 03	2.80E- 03	2.80E-03	6.09E-03	6.09E-03	4.20E-03	4.20E-03	9.14E-03	9.14E-03	
Propiconazole	1.10E- 03	1.62E- 04	1.45E- 03	2.13E- 04	1.66E- 03	2.44E-04	2.18E-03	3.21E-04	2.48E-03	3.65E-04	3.27E-03	4.81E-04	
Cypermethrin	2.29E- 06	2.29E- 03	3.78E- 07	3.78E- 04	3.44E- 06	3.44E-03	5.67E-07	5.67E-04	5.14E-06	5.14E-03	8.48E-07	8.48E-04	
ΣPEC/ PNEC		4.32E- 03		4.65E- 03		6.48E-03		6.98E-03		9.71E-03		1.05E-02	

	BRIDGE OVER PO	ND - SERVICE LIFE OF	TREATED WOOD – SEDIMEI	NT [mg.kg ⁻¹ _{wwt}]					
Preventive tr	eatment (200 g.m ⁻²)	Curative trea	atment (300 g.m ⁻²)	Injection followed by curative surface treatment (eq 450 g.m ⁻²)					
TIME 1	TIME 2	TIME 1	TIME 2	TIME 1	TIME 2				

	PEC	PEC/	PEC	PEC/	PEC	PEC/	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC
		PNEC		PNEC		PNEC						
Tebuconazole	4.72E-	8.58E-			7.08E-			/				
	05	05	3.66E-04	6.65E-04	05	1.29E-04	5.49E-04	9.98E-04	1.06E-04	1.93E-04	8.23E-04	1.50E-03
Propiconazole	3.86E-	7.15E-	4 005 00	2 225 02	5.79E-	4.075.00	4 005 00	2 225 02		4 64 5 02		4.005.00
	05	04	1.20E-03	2.22E-02	05	1.07E-03	1.80E-03	3.33E-02	8.68E-05	1.61E-03	2.69E-03	4.98E-02
Cypermethrin*	2.33E-	1.87E-	0.005.05	7.005.00	3.50E-	2 905 02	1 265 04	1.005.02		4 205 02		1 625 02
	04	02	9.08E-05	7.26E-03	04	2.80E-02	1.36E-04	1.09E-02	5.25E-04	4.20E-02	2.04E-04	1.63E-02

ΣPEC/ PNEC	1.95E 02	-	3.01E-02		2.92E-02		4.52E-02		4.38E-02		6.76E-02	
* An additional factor of 10 has been considered as PNECsed was defined using the EPM method												
Considering that all PEC/PNEC ratios for surface water and sediment are below 1, as well as the aggregated values, the risk for the aquatic compartment (including												
sediment) expose	ed to direct rel	eases is consid	dered accep	table during	g the servic	e life of treate	ed wood, wha	tever the trea	tment type. N	levertheless the	he application	
phase of the proc	phase of the product above or near water leads to unacceptable risk to the aquatic compartment; no treatment above or near water is allowed.											
As leashing rates	have been de	ived from com	field studios	, uning tran	tod wood o	las protostad y	with a tan agai	the lebelling	will domond t	ha avatamatia	application of	

As leaching rates have been derived from semi-field studies using treated wood also protected with a top coat, the labelling will demand the systematic application of a top coat after wood preservation, as intended by the applicant.

* Concentrations in surface water and sediment resulting from <u>indirect emissions</u> *via* STP effluents have been calculated in EUSES v2.1.2 using the daily quantities of active substance emitted in the STP calculated according to the noise barrier scenario (see document IIB, section 3.3.3.2). The daily emission during the first 30 days assessment period is a worst case as compared to daily emission during the second assessment period of 5 years and is therefore used to calculate PEC in surface water and sediments. PECs and risk ratios for surface water and sediment are summarised in the following tables.

Ŭ

Active substance	PEC in surface water [mg/L]	RCR for surface water
Application dose = 300 g/m ² (c	urative treatment by brushing or spr	aying)
Cypermethrin (PNECsw = 1.00*10 ⁻⁶ mg/L)	1.40*10 ⁻⁹	1.40*10 ⁻³
Tebuconazole (PNECsw = 1.00*10 ⁻³ mg/L)	2.04*10 ⁻⁶	2.04*10 ⁻³
Propiconazole (PNECsw = 6.80*10 ⁻³ mg/L)	1.72*10 ⁻⁶	2.53*10 ⁻⁴
Cumulated RCR		3.69*10 ⁻³
Application dose = 450 g/m ² (c	urative treatment by injection and by	v brushing or spraying)
Cypermethrin (PNECsw = 1.00*10 ⁻⁶ mg/L)	2.10*10 ⁻⁸	0.0210
Tebuconazole (PNECsw = 1.00*10 ⁻³ mg/L)	3.06*10 ⁻⁵	0.0306
Propiconazole (PNECsw = 6.80*10 ⁻³ mg/L)	2.58*10 ⁻⁵	3.80*10 ⁻³
Cumulated RCR		0.0554

Table 2.2.2.4: PECs and risk ratios for sediment - service life, noise barrier scenario

Active substance	PEC in sediment [mg/kg _{wwt}]	RCR for sediment
Application dose = 300 g/m ² (c	urative treatment by brushing or spr	aying)
Cypermethrin (PNECsed = 0.125 mg/kg _{wwt})	1.75*10 ⁻⁵	1.40*10 ⁻⁴
Tebuconazole (PNECsed = 0.55 mg/kg _{wwt})	4.56*10 ⁻⁵	8.29*10 ⁻⁵
Propiconazole (PNECsed = 0.054 mg/kg _{wwt})	3.67*10 ⁻⁵	6.79*10 ⁻⁴
Cumulated RCR		9.02*10 ⁻⁴
Application dose = 450 g/m ² (c	urative treatment by injection and by	/ brushing or spraying)
Cypermethrin (PNECsed = 0.125 mg/kg _{wwt})	2.62*10 ⁻⁴	2.10*10 ⁻³
Tebuconazole (PNECsed = 0.55 mg/kg _{wwt})	6.83*10 ⁻⁴	1.24*10 ⁻³
Propiconazole (PNECsed = 0.054 mg/kg _{wwt})	5.50*10 ⁻⁴	0.0102
Cumulated RCR		0.0135

For the both scenarios, the individual risk characterisation ratios for each active substance and the cumulated RCR are below 1 for the application doses of 300 and 450 g/m².

Therefore, the risk for the surface water and sediment is acceptable when using the product 06LBCEOL20/2PT at the doses of 200 g/m² (preventive treatment by brushing or spraying), 300 g/m² (curative treatment by brushing and spraying) and 450 g/m² (curative treatment by injection at 150 g/m² followed by a treatment by brushing or spraying at 300 g/m²) according to the label recommendations.

FR-CA box 23 – Service Life of treated wood - Risk characterisation for indirect releases (via STP) to the aquatic compartment including sediment.

The risk characterisation for indirect releases via STP to the aquatic compartment including sediment has been performed considering PEC calculated for the noise barrier scenario as described in the FR-CA box 15, and compared to PNEC_{water} and PNEC_{sediment} of each active substance for the service life of the treated wood.

NOISE BARRIER - SERVICE LIFE OF TREATED WOOD – SURFACE WATER VIA STP [µg.L⁻¹]

	Preven	tive treatme	nt (200 g.m ⁻²)	Cu	rative treatn	nent (300 g.r	n ⁻²)	Injection followed by curative surface treatment (eq. to 450 g.m ⁻²)			
	TIME 1		TIM	E 2	TIME 1		TIME 2		TIME 1		TIME 2	
	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC
Tebuconazole	1.36E- 03	1.36E-03	6.35E-04	6.35E-04	2.04E-03	2.04E-03	9.52E-04	9.52E-04	3.06E-03	3.06E-03	1.43E-03	1.43E-03
Propiconazole	1.15E- 03	1.69E-04	8.01E-04	1.18E-04	1.72E-03	2.53E-04	1.20E-03	1.76E-04	2.58E-03	3.79E-04	1.80E-03	2.65E-04
Cypermethrin	9.03E- 07	9.03E-04	1.42E-07	1.42E-04	1.35E-06	1.35E-03	2.14E-07	2.14E-04	2.03E-06	2.03E-03	3.19E-07	3.19E-04
Σ PEC/ PNEC		2.43E-03		8.95E-04		3.64E-03		1.34E-03		5.47E-03		2.01E-03

NOISE BARRIER - SERVICE LIFE OF TREATED WOOD – SEDIMENT VIA STP [mg.kg⁻¹wwt]

	Pr	eventive tre	atment (200	g.m ⁻²)	Cu	rative treatn	nent (300 g.ı	n⁻²)	Injection followed by curative surface treatment (eq. to 450 g.m ⁻²)			
	TIME 1		TIN	IE 2	TIME 1		TIME 2		TIME 1		TIM	E 2
	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC
Tebuconazole	3.04E- 05	5.53E-05	1.42E-05	2.58E-05	4.56E-05	8.29E-05	2.13E-05	3.87E-05	6.84E-05	1.24E-04	3.19E-05	5.80E-05
Propiconazole	2.45E- 05	4.54E-04	1.71E-05	3.17E-04	3.67E-05	6.80E-04	2.57E-05	4.76E-04	5.50E-05	1.02E-03	3.84E-05	7.11E-04
Cypermethrin*	1.13E- 05	9.04E-04	1.78E-06	1.42E-04	1.69E-05	1.35E-03	2.67E-06	2.14E-04	2.54E-05	2.03E-03	3.99E-06	3.19E-04
Σ PEC/ PNEC		1.41E-03		4.85E-04		2.11E-03		7.29E-04		3.17E-03		1.09E-03
* An additional fact	tor of 10 h	as been consi	dered as PNE	Csed was defi	ned using the	EPM method						

Considering that all PEC/PNEC ratios for surface water and sediment are below 1, as well as the aggregated values, the risk for the aquatic compartment (including sediment) exposed to indirect releases via the STP is considered acceptable during the service life of treated wood with the product. As leaching rates have been derived from semi-field studies using treated wood also protected with a top coat, the labelling will demand the systematic application of a top coat after wood preservation, as intended by the applicant. 2.2.8.6.2.3 Risk characterisation for the metabolites

In surface water and sediments, three major metabolites of cypermethrin were identified: 3-phenoxybenzoic acid (21% AR in water and 11% in sediment), TDCVC (44% AR in water and 20% in sediment) and CDCVC (22% AR in water and 15% in sediment). A further unknown metabolite was identified up to 14% of AR in the units dosed with the cyclopropyl label.

The two main degradation products TDCVC and CDCVC have to be considered as persistent with typical DT_{50} values > 40 days.

However, no data on the ecotoxicity of these major metabolites is available and no environmental risk assessment has been performed for the metabolites in the assessment report of cypermethrin.

Therefore, it is not possible to perform a risk assessment for the metabolites of cypermethrin in surface and sediment.

No major metabolites were found in water/sediment systems for tebuconazole and propiconazole.

2.2.8.6.3 Risk characterisation for the terrestrial compartment

2.2.8.6.3.1 Risk characterisation for the application phase

The soil may be contaminated during the application of the product 06LBCEOL20/2PT by brushing, spraying or injection.

Emissions into the soil following application of the product 06LBCEOL20/2PT and resulting concentrations in soil have been calculated in the Document IIB, section 3.3.2.1.2.

PECs and risk ratios for the soil are summarised in the following tables.

Table 2.2.3.1-1: PECs and risk ratios for soil - in situ brushing	g
---	---

Active substance	PEC in soil [kg/kg _{wwt}]	RCR for soil	
Application dose = 200 g/m ² (preventive treatment)			
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	9.62*10 ⁻⁸	1.05	
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	7.92*10 ⁻⁸	0.792	
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	7.35*10 ⁻⁸	0.735	
Cumulated RCR		2.58	
Application dose = 300 g/m ² (curative treatment)			
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	1.44*10 ⁻⁷	1.57	
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	1.19*10 ⁻⁷	1.19	
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	1.10*10 ⁻⁷	1.10	
Cumulated RCR		3.86	

The cumulated RCR are above the trigger value of 1. Therefore, the risk for the soil is unacceptable when applying the product 06LBCEOL20/2PT by brushing.

Therefore, it is recommended to cover the soil during the application by brushing. This is stated on the label.

Active substance	PEC in a band of soil of 50 cm width adjacent to the house (tier 1) [kg/kg _{wwt}]	RCR for soil (tier 1)		
Application dose = 200 g/m ² (preve	entive treatment)			
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	5.77*10 ⁻⁷	6.28		
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	4.75*10 ⁻⁷	4.75		
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	4.41*10 ⁻⁷	4.41		
Cumulated RCR		15.4		
Application dose = 300 g/m ² (curat	ive treatment)			
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	8.65*10 ⁻⁷	9.43		
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	_ / 13*10 /			
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	6.62*10 ⁻⁷	6.62		
Cumulated RCR		23.2		

Table 2.2.3.1-2: PECs and RCR in soil – in situ spraying, tier 1

Table 2.2.3.1-3: PECs and RCR in soil – in situ spraying, tier 2

Active substance	PEC in a band of soil of 50 cm width at a distance between 1 m and 1.5 m from the house wall (tier 2) [kg/kg _{wwt}]	RCR for soil (tier 2)							
Application dose = 200 g/m ² (preventive treatment)									
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	5.50*10 ⁻⁸	0.599							
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	4.53*10 ⁻⁸	0.453							
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	4.21*10 ⁻⁸	0.421							
Cumulated RCR		1.47							
Application dose = 300 g/m ² (curat	ive treatment)								
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	8.25*10 ⁻⁸	0.899							
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	6.79*10 ⁻⁸	0.679							
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	6.31*10 ⁻⁸	0.631							
Cumulated RCR		2.21							

The cumulated RCR are above the trigger value of 1 for both tiers. Therefore, the risk for the band of soil of 1.5 m width adjacent to the house is unacceptable when applying the product 06LBCEOL20/2PT by spraying.

Therefore, it is recommended to cover the soil up to 1.5 m from the house walls during the application by spraying.

Active substance	PEC in soil [kg/kg _{wwt}]	RCR for soil		
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	1.13*10 ⁻⁸	0.123		
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	9.26*10 ⁻⁹	0.0926		
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	8.60*10 ⁻⁹	0.0860		
Cumulated RCR		0.301		

The cumulated RCR is below the trigger value of 1. Therefore, the risk for the soil is acceptable when applying the product 06LBCEOL20/2PT by injection.

FR-CA box 24 - Risk characterisation for the terrestrial compartment for outdoor application

The risk characterisation for the terrestrial compartment has been performed considering PEC calculated for the house scenario of the PT08-ESD as described in the <u>FR-CA box 16</u>, and compared to $PNEC_{soil}$ of each active substance for the application phase of preventive and curative treatment.

	HOUSE - BRUSHING APPLICATION – SOIL [mg.kg ⁻¹ wwt]										
	Pro	eventive treat	tment (200 g	.m⁻²)	Curative treatment (300 g.m ⁻²)						
	Professio	onal	Non-professional		Professional		Non-professional				
	PEC	PEC/	PEC	PEC/	PEC	PEC/	PEC	PEC/ PNEC			
		PNEC		PNEC		PNEC					
Tebuconazo	le 5.09E-02	5.09E-01	8.48E-02	8.48E-01	7.64E-02	7.64E-01	1.27E-01	1.27E+00			
Propiconazo	le 4.75E-02	4.75E-01	7.92E-02	7.92E-01	7.13E-02	7.13E-01	1.19E-01	1.19E+00			
Cypermethr	n 6.11E-02	6.65E-01	1.02E-01	1.11E+00	9.16E-02	9.98E-01	1.53E-01	1.66E+00			
ΣPEC/ PNE	C	1.65E+00		2.75E+00		2.48E+00		4.12E+00			

Considering that calculated Σ PEC/PNEC ratio for are above 1 for soil, brushing application phase is cause of concern for the terrestrial compartment, unless direct releases to soil is prevented by covering the soil during application.

As a consequence, the risk for the application phase by brushing is considered acceptable for the terrestrial compartment only if the soil is covered during the application, in order to prevent direct releases to soil.

HOUSE - SPRAYING APPLICATION – SOIL [mg.kg ⁻¹ wwt]									
	Preventive treatment (200 g.m ⁻²) Curative treatment (300 g.m ⁻²)							-2)	
	TIER1 (run	off + drift)	TIER 2 (drift)		TIER1 (runoff + drift)		TIER 2 (drift)		
	PEC PEC/ PNEC		PEC PEC/PNEC PEC PEC/		PEC	PEC/ PNEC PEC		PEC/	
				PNEC				PNEC	
Tebuconazole	5.09E-01	5.09E+00	4.85E-	4.85E-01	7.64E-01	7.64E+00	7.28E-	7.28E-01	

			02				02	
Propiconazole	4.75E-01	4.75E+00	4.53E-	4.53E-01	7.13E-01	7.13E+00	6.79E-	6.79E-01
	4.752-01	4.752+00	02	4.552-01	7.132-01	7.132+00	02	0.792-01
Cypermethrin	6.11E-01	6.65E+00	5.82E-	6.34E-01	9.16E-01	9.98E+00	8.74E-	9.52E-01
	0.112-01	0.052700	02	0.342-01	9.102-01	9.902700	02	9.522-01
Σ PEC/ PNEC		1.65E+01		1.57E+00		2.48E+01		2.36E+00

For the terrestrial compartment and considering releases due to run off and drift (TIER1) on soil adjacent to the treated surface (0 to 1m), PEC/PNEC ratios for tebuconazole, propiconazole, and cypermethrin are above 1 for preventive and curative treatment by spraying.

For the terrestrial compartment and considering releases due to drift only (TIER 2) on soil distant form the treated surface (1 to 1.5m), Σ PEC/PNEC ratios for tebuconazole, propiconazole, and cypermethrin are also above 1 for preventive and curative treatment by spraying.

As a consequence, the risk for the terrestrial compartment induced by application by spraying is considered acceptable only if the soil is covered during the application, in order to prevent all direct releases to soil *via* run-off and drift.

HOUSE INJECTION (150 g.m ⁻²) – SOIL [mg.kg ⁻¹ wwt]							
	Curative treatment						
	PEC	PEC/ PNEC					
Tebuconazole	6.36E-02	6.36E-01					
Propiconazole	5.94E-02	5.94E-01					
Cypermethrin	7.64E-02	7.64E-02 8.33E-01					
ΣPEC/ PNEC		2.06E+00					

Considering that aggregated PEC/PNEC ratio are above 1, the application by injection alone is cause of concern for the terrestrial compartment, unless direct releases to soil is prevented by covering the soil during application.

As a consequence, the risk for the application phase by injection is considered acceptable for the terrestrial compartment only if the soil is covered during the application, in order to preventdirect releases to soil.

2.2.8.6.3.2 Risk characterisation for the service life phase

The soil may be contaminated during the service life of the treated wood due to leaching of the active substances out of the wood. The soil may be contaminated directly or indirectly *via* sewage sludge application on agricultural soil. The risk assessment is performed for these 2 ways of contamination and is presented below.

* Concentrations in soil resulting of <u>direct emissions</u> into soil due to leaching have been calculated in the document IIB, section 3.3.3.3 according to the house scenario. The degradation of the active substances is taken into account. PECs and risk ratios for the soil are summarised in the following table.

Active substance	PEC in soil, with degradation, over 30 days [kg/kg _{wwt}]	RCR for soil	PEC in soil, with degradation, over 5 years [kg/kg _{wwt}]	RCR for soil
Application dose = 300 g	/m² (curative treatment	by brushing or sprayi	ng)	
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wvt})	2.67*10 ⁻¹¹	2.91*10 ⁻⁴	1.48*10 ⁻¹²	1.62*10 ⁻⁵
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	3.25*10 ⁻⁹	0.0325	6.37*10 ⁻⁹	0.0637
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wvt})	2.87*10 ⁻⁹	0.0287	1.40*10 ⁻⁸	0.140
Cumulated RCR		0.0615		0.204
Application dose = 450 g	g/m² (curative treatment	by injection and by br	ushing or spraying)	
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	6.25*10 ⁻¹¹	6.80*10 ⁻⁴	3.48*10 ⁻¹²	3.79*10 ⁻⁵
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	7.59*10 ⁻⁹	0.0759	1.49*10 ⁻⁸	0.149
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	6.72*10 ⁻⁹	0.0672	3.28*10 ⁻⁸	0.328
Cumulated RCR		0.144		0.477

Table 2.2.3.2-1: PECs and risk ratios for the soil - service life, house scenario, with degradation

The individual risk characterisation ratios for each active substance and the cumulated RCR are below 1. Therefore, the risk for the soil is acceptable when using the product 06LBCEOL20/2PT at the doses of 200 g/m² (preventive treatment by brushing or spraying), 300 g/m² (curative treatment by brushing and spraying) and 450 g/m² (curative treatment by injection and by brushing or spraying).

FR-CA box 25 - Risk characterisation for the terrestrial compartment during the service life of treated wood

Concerning the service-life phase of treated wood, the risk characterisation for the terrestrial compartment has been performed considering PEC calculated for the house scenario of the PT08-ESD as described in the FR-CA box 16, and compared to PNEC_{soil} of each active substance for the service life of the treated wood.

Considering the unacceptable risk for the terrestrial compartment calculated for all intended type of application (c.f. FR-CA box 24), the risk characterisation for the terrestrial compartment during the service life of treated wood taking into account also the application phase was not calculated.

	HOUSE - SERVICE LIFE OF TREATED WOOD – SOIL [mg.kg ⁻¹ wwt]											
	Preventive surface treatment (200 g.m ⁻ ²)			Curati	Curative surface treatment (300 g.m ⁻²)				Injection followed curative surface treatment (eq. to 450 g.m ⁻²)			
	TIN	1E 1	TIN	IE 2	TIN	NE 1	TIN	ME 2	TIN	1E 1	TIME 2	
	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC
Tebuconazole	1.13E- 03	1.13E- 02	4.14E-03	4.14E-02	1.70E-03	1.70E-02	6.21E-03	6.21E-02	2.55E-03	2.55E-02	9.32E-03	9.32E-02
Propiconazole	9.50E- 04	9.50E- 03	5.43E-03	5.43E-02	1.43E-03	1.43E-02	8.17E-03	8.17E-02	2.14E-03	2.14E-02	1.22E-02	1.22E-01
Cypermethrin	1.03E- 05	1.12E- 04	4.06E-06	4.42E-05	1.55E-05	1.69E-04	6.09E-06	6.63E-05	2.32E-05	2.52E-04	9.10E-06	9.91E-05
1,2,4-triazole	-	-	-	-	-	-	-	-	2.44E-04	2.97E-02	1.73E-03	2.11E-01
Σ PEC/ PNEC		2.09E- 02		9.57E-02		3.14E-02		1.44E-01		7.69E-02		4.26E-01

Considering that all PEC/PNEC ratios for terrestrial compartment are below 1 regarding the parent compounds, the risk is considered acceptable during the service life of treated wood (also considering that application phases lead to no release to the terrestrial compartment with the application of appropriate risk mitigation measure.

The risk assessment for the metabolite 1,2,4-triazole has been conducted with the highest emission rate (injection + curative) covering all the scenarios. Risks are also acceptable considering this metabolite.

As leaching rates have been derived from semi-field studies using treated wood also protected with a top coat, the labelling will demand the systematic application of a top coat after wood preservation, as intended by the applicant.

<FR>

* Concentrations in agricultural soil resulting from <u>indirect emissions</u> *via* sewage sludge application have been calculated in EUSES v2.1.2 using the daily quantities of active substance emitted in the STP calculated according to the noise barrier scenario (see document IIB, section 3.3.3.2).

The daily emission during the first 30 days assessment period is a worst case as compared to daily emission during the second assessment period of 5 years and is therefore used to calculate PEC in agricultural soil. PECs and risk ratios for agricultural soil are summarised in the following tables

Active substance	PEC in agricultural soil [mg/kgwwt]	RCR for agricultural soil
Application dose = 300) g/m ² (curative treatment by brushing or	spraying)
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	5.58*10 ⁻¹³	6.09*10 ⁻⁶
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	8.49*10 ⁻¹²	8.49*10 ⁻⁵
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	8.02*10 ⁻¹²	8.02*10 ⁻⁵
Cumulated RCR		1.71*10⁻⁴
Application dose = 450) g/m² (curative treatment by injection an	d by brushing or spraying)
Cypermethrin (PNEC _{soil} = 9.18*10 ⁻⁸ kg/kg _{wwt})	8.38*10 ⁻¹²	9.13*10 ⁻⁵
Tebuconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	1.27*10 ⁻¹⁰	1.26*10 ⁻³
Propiconazole (PNEC _{soil} = 1.00*10 ⁻⁷ kg/kg _{wwt})	1.20*10 ⁻¹⁰	1.21*10 ⁻³
Cumulated RCR		2.56*10 ⁻³

The individual risk characterisation ratios for each active substance and the cumulated RCR are below 1 for the application doses of 300 and 450 g/m^2 .

Therefore, the risk for the agricultural soil is acceptable when using the product 06LBCEOL20/2PT at the doses of 200 g/m² (preventive treatment by brushing or spraying), 300 g/m² (curative treatment by brushing and spraying) and 450 g/m² (curative treatment by injection at 150 g/m² followed by a treatment by brushing or spraying at 300 g/m²) according to the label recommendations.

FR-CA box 26 - Risk characterisation for indirect releases via STP (i.e. spreading of STP sludge on soil) to the terrestrial compartment

Concerning the service-life of treated wood, the risk characterisation for indirect releases via STP (*i.e.* spreading of STP sludge on soil) to the terrestrial compartment has been performed considering PEC calculated for the noise barrier scenario of the PT08-ESD as described in the FR-CA box 16, and compared to PNEC_{soil} of each active substance for the service life of the treated wood.

	Preventive treatment (200 g.m ⁻²)				Curative treatment (300 g.m ⁻²)				Injection followed curative surface application treatment (eq. to 450 g.m ⁻²)			
	TIME 1 TIME 2		TIME 1 TIME 2		1E 2			TIME 2				
	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC	PEC	PEC/ PNEC
Tebuconazole	5.64E-06	5.64E-05	2.63E-06	2.63E-05	8.46E-06	8.46E-05	3.94E-06	3.94E-05	1.27E- 05	1.27E-04	5.92E-06	5.92E-05
Propiconazole	4.39E-06	4.39E-05	3.06E-06	3.06E-05	6.59E-06	6.59E-05	4.61E-06	4.61E-05	9.88E- 06	9.88E-05	6.90E-06	6.90E-05
Cypermethrin	3.61E-07	3.93E-06	5.69E-08	6.20E-07	5.42E-07	5.90E-06	8.54E-08	9.30E-07	8.11E- 07	8.83E-06	1.28E-07	1.36E-06
ΣPEC/ PNEC		1.04E-04		5.75E-05		1.56E-04		8.64E-05		2.35E-04		1.30E-04

Considering that all PEC/PNEC ratios for terrestrial compartment are below 1 regarding the parent compounds, the risk for the terrestrial compartment is considered acceptable during the service life of treated wood following indirect emissions *via* the STP.

For the metabolite 1,2,4-triazole, the risk assessment conducted for the house scenario covers the noise barrier emissions. Therefore the risks considering this metabolite are also acceptable for indirect releases *via* the STP.

As leaching rates have been derived from semi-field studies using treated wood also protected with a top coat, the labelling will demand the systematic application of a top coat after wood preservation, as intended by the applicant.

2.2.8.6.3.3 Risk characterisation for the metabolites

soil aerobic conditions. major metabolites In in two of cypermethrin were identified: 3-phenoxybenzoic acid (10.2% Applied Radioactivity, AR at day 7) and TDCVC (13.6% of AR at day 7). Further metabolism of these metabolites lead to bound residues and mineralisation to carbon dioxide. A risk assessment for these 2 metabolites is not necessary. Concentrations of cypermethrin in soil can be used as a worst-case assumption in the risk assessment of these degradation products.

1,2,4-triazole was identified as a major metabolite of tebuconazole (9% of AR) and propiconazole (24 – 43% of AR) in soil. Due to the considerably shorter half-life of 1,2,4-triazole in soil compared to that of tebuconazole (10 days *versus* 77 days) and propiconazole (10 days *versus* 129 days), 1,2,4-triazole can be regarded as a transient metabolite. Moreover, the ecotoxicity for the terrestrial environment of the metabolite is significantly lower than found for tebuconazole and propiconazole (see Document IIB, point 5.3). Therefore, the risk assessment of the parent compounds tebuconazole and propiconazole will cover the risk assessment of the metabolite 1,2,4-triazole.

CGA 118 245 was also identified as a main degradation product of propiconazole in soil. This metabolite is also biodegraded in soil faster than propiconazole and is less toxic than the parent compound (see Document IIB, point 5.3). The concentrations of CGA 118 245 is not assumed to exceed the one of propiconazole in soil. Therefore, concentrations of propiconazole in soil can be used as the worst case assumption in the risk assessment of this degradation product.

Based on these considerations it can be concluded that none of the major metabolites will pose an unacceptable risk to the soil compartment following the use of the product 06LBCEOL20/2PT according to the label recommendations.

FR-CA box 27 – Risk chracterisation for the relevant metabolites

1,2,4-triazole has been considered relevant for the risk assessment for the terrestrial and the groundwater compartments. The assessment of 1,2,4-triazole was proposed only for groundwater and soil at the highest level of environmental exposure during service-life, as described in FR-CA box 16, FR-CA box 17, FR-CA box 25, and FR-CA box 26.

2.2.8.6.3.4 Risk characterisation for the groundwater compartment

When the soil is contaminated, the active substances may leach into the soil and reach the groundwater. The soil may be contaminated during the service life of the treated wood due to leaching of the active substances out of the wood. The soil may be contaminated directly or indirectly *via* sewage sludge application on agricultural soil. The risk assessment is performed for these 2 ways of contamination and is presented below.

As an indication for potential groundwater concentrations, the concentrations in pore water have been calculated. These concentrations are calculated based on concentrations in soil taking into account the degradation of the substances. The Predicted concentrations in pore water are compared to the threshold value of 0.1 μ g/L, the maximum permissible concentration for drinking water laid down by Directive 98/83/EC.

Active substance	PEC in pore water, with degradation, over 30 days [µg/L] PEC in pore water degradation, over 5 ye									
Application dose = 300 g/m ² (curative treatment by brushing or spraying)										
Cypermethrin	2.63*10 ⁻⁶	1.46*10 ⁻⁷								
Tebuconazole	0.184	0.361								
Propiconazole	0.171	0.835								

Table 2.2.4-1 Predicted concentrations in pore water - service life, house scenario, with degradation

Application dose = 450 g/m ² (curative treatment by injection and by brushing or spraying)								
Cypermethrin	6.16*10 ⁻⁶	3.43*10 ⁻⁷						
Tebuconazole	0.431	0.847						
Propiconazole	0.401	1.95						

Table 2.2.4-2: Predicted concentrations in pore water - service life, noise barrier scenario

Active substance	PEC in pore water of agricultural soil [µg/L]								
Application dose = 30	Application dose = 300 g/m ² (curative treatment by brushing or spraying)								
Cypermethrin	1.31*10 ⁻⁸								
Tebuconazole	2.71*10 ⁻⁴								
Propiconazole	3.30*10 ⁻⁴								
Application dose = 45) g/m ² (curative treatment by injection and by brushing or spraying)								
Cypermethrin	1.96*10 ⁻⁷								
Tebuconazole	4.06*10 ⁻³								
Propiconazole	4.95*10 ⁻³								

Cypermethrin $PEC_{porewater}$ is below the threshold value for drinking water of 0.1 µg/L in both scenarios. Therefore, cypermethrin will not reach the groundwater in unacceptable amounts following the use of the product 06LBCEOL20/2PT according to the label recommendations.

For tebuconazole and propiconazole, the PECs are below 0.1 μ g/L in the noise barrier scenario but are above 0.1 μ g/L at both times in the house scenario.

However, it has to be noted that this calculation is a worst-case assumption, neglecting transformation and dilution in deeper soil layers.

Moreover, the fate and behaviour of tebuconazole and propiconazole suggest that it is not expected to reach groundwater since these compounds have a low mobility in soil (K_{oc} = 992 L/kg for tebuconazole and 944 L/kg for propiconazole). Furthermore, at the active substance's authorisation stage, the leaching potential of tebuconazole from wood in service was evaluated using the leaching model PEARL 3.3.3. The results show that tebuconazole is not expected to leach to groundwater in unacceptable amounts. Regarding propiconazole, the groundwater concentrations were also calculated at active substance evaluation stage, using FOCUS-PEARL 3.3.3 simulation in nine different FOCUS scenarios with the assumption of 35 houses of treated wood per hectare. None of these concentrations exceeded the maximum permissible concentration of 0.1 μ g/L.

Therefore, it can be concluded that a higher tier assessment is not necessary and that tebuconazole and propiconazole are not expected to reach groundwater in unacceptable amounts following the use of the product 06LBCEOL20/2PT according to the label recommendations.

FR-CA box 28

The estimated concentrations of active substances, and their relevant degradation products, in the groundwater compartment, were calculated with the FOCUS PEARL v.4.4.4 software, as described in the FR-CA box 17.

The calculated $PEC_{groudwater}$ have been compared to the drinking water standard for pesticides (set at 0.1 μ g/L) for each relevant substance. For all 9 EU scenarios, PECgroundwater are all below 0.1 μ g/L.

Based on these results, it can be concluded that the use of the product will not pose a significant risk of groundwater contamination.

2.2.8.6.4 Risk characterisation for the atmospheric compartment

The vapour pressures of cypermethrin, tebuconazole and propiconazole are very low $(2.3*10^{-7} \text{ Pa at } 20^{\circ}\text{C}, 1.7*10^{-6} \text{ Pa at } 20^{\circ}\text{C}$ and $5.6*10^{-5} \text{ Pa at } 25^{\circ}\text{C}$, respectively), thus emissions and PECs in air are considered as negligible for the three active substances.

Therefore, it can be concluded that the use of the product 06LBCEOL20/2PT will not pose a significant risk to the atmospheric compartment.

2.2.8.6.5 Risk characterisation for non-compartmental-specific exposure relevant to the food chain (secondary poisoning)

- Cypermethrin

As cypermethrin has a log $K_{ow} > 3$ (log $K_{ow} = 5.45$) and a BCF > 100 (BCF in fish = 417 L/kg and BCF in earthworm estimated in EUSES as 3380 L/kg), secondary poisoning may occur *via* the aquatic food chain and *via* the terrestrial food chain.

The concentration of cypermethrin in food (*i.e.* in fish and in earthworm) of fish-eating and worm-eating predators (birds or mammals) is calculated in the Document IIB, section 3.3.3.6 taking into account the worst case concentrations in surface water and soil. PEC and risk ratios for the risk of secondary poisoning for birds and mammals are summarised in the following table.

Concentration in freshwater or soil	PEC _{oral predator}	PEC/PNEC _{birds} (PNEC _{oral,bird} =33.3 mg/kg food)	PEC/PNEC _{mammals} (PNEC _{oral,small mammal} = 3.33 mg/kg food)
$PEC_{freshwater} = 2.90*10^{-6} mg/L$	6.05*10 ⁻⁴ mg/kg _{wet fish}	1.82*10 ⁻⁵	1.82*10 ⁻⁴
$PEC_{soil} = 2.56*10^{-10} \text{ kg/kg}_{wwt}$	5.14*10 ⁻⁵ mg/kg _{wet earthworm}	1.54*10 ⁻⁶	1.54*10 ⁻⁵

The RCR are below 1 for the birds and for mammals.

Therefore, the risk of secondary poisoning is acceptable when using the product 06LBCEOL20/2PT at the doses of 200 g/m² (preventive treatment by brushing or spraying), 300 g/m² (curative treatment by brushing and spraying) and 450 g/m² (curative treatment by injection at 150 g/m² followed by a treatment by brushing or spraying at 300 g/m²) according to the label recommendations.

- Tebuconazole

According to the BCF in earthworm equal to 28, tebuconazole is not expected to bioaccumulate to terrestrial organisms. Therefore, even if tebuconazole has a potential to cause toxic effects in higher organism since it is classified as toxic for the reproduction, category 2 (H361d), an assessment of secondary poisoning doesn't need to be performed.

- Propiconazole

Log K_{ow} of propiconazole is 3.7 implying slight bioaccumulation potential. However, based on the estimation of BCF for terrestrial organisms (BCF = 64) propiconazole is not bioaccumulative to terrestrial organisms. Moreover, propiconazole is not classified as STOT RE 1 or 2 (H372 or H373, equivalent to R48), and is not classified as reprotoxic category 1 or 2 (H360f, H360d, H361f, H361d or H362, equivalent to R60, R61, R62, R63 and R64). Therefore, there is no need to perform an assessment of secondary poisoning for propiconazole.

Based on these considerations, it can be concluded that the use of the product 06LBCEOL20/2PT according to the label recommendations will not pose a significant risk to the top predators.

FR-CA box 29 – Risk characterisation for secondary poisonning.

FR-CA agreed with the applicant for considering that secondary poisoning is relevant only for the active substance cypermethrin. As a consequence, the secondary poisoning was assessed for the TIME2 assessment period of the service life for wood treated by injection and surface treatment, considered as a worst case, as described in the FR-CA box 18. PEC and risk ratios for the risk of secondary poisoning for birds and mammals are summarised in the following table.

	PEC/PNEC _{birds}	PEC/PNEC _{mammals}
PEC _{oral predator}	(PNEC _{oral,bird} = 33.3 mg/kg	(PNEC _{oral,small mammal} = 3.33
	food)	mg/kg food)
3.54E-07 mg/kg _{wet fish}	1.06E-8	1.06E-07
8.10E-04 mg/kg _{wet earthworm}	2.43E-05	2.43E-04

Based on these PEC/PNEC ratios, it can be concluded that the use of the product will not pose a significant risk to the top predators.

2.2.8.7 Conclusions

			Direct rele	eases to the en	vironment	Indirect I	eleases to th	e environmen	t (via STP)		
Treatment	Phase	Type of application / uses	House scenario (direct releases to soil)		Bridge scenario (direct releases to surface water)	Noise barrier scenario				Secondary poisoning	
			Soil	Groundwater	Surface water and sediment	STP	Surface water and sediment	Soil	Groundwater		
	Application	Brush	Acceptable (1)	Acceptable	Unacceptable	n.r.	n.r.	n.r.	n.r.	n.r.	
	Application	Spray	Acceptable (1)	Acceptable	Unacceptable	n.r.	n.r.	n.r.	n.r.	n.r.	
Preventive	Wood in service	Use Class 1 and 2	Not relevant (re	leases to the en	vironment not expected)						
		Use Class 3	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	
			Brush	Acceptable (1)	Acceptable	Unacceptable	n.r.	n.r.	n.r.	n.r.	n.r.
		Spray	Acceptable (1)	Acceptable	Unacceptable	n.r.	n.r.	n.r.	n.r.	n.r.	
	Application	Injection + Brush	Acceptable ⁽¹⁾	Acceptable	Unacceptable	n.r.	n.r.	n.r.	n.r.	n.r.	
Curative		Injection + Spray	Acceptable (1)	Acceptable	Unacceptable	n.r.	n.r.	n.r.	n.r.	n.r.	
	Wood in	Use Class 1 and 2	Not relevant (re	leases to the en	vironment not exp	ected)					
	service	Use Class 3	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	
(0)	atic and terres	during the produ trial food chain.	ict application, in	order to prevent	direct releases to	o soil.					

For use classes 1 and 2, emissions are considered negligible according to PT08 ESD. The risks for the application phase and service life are therefore considered acceptable for treatment in classes 1 and 2.

For the application phase for wood in class 3, risks are only acceptable if emissions to the aquatic and terrestrial compartments are prevented whatever the type of treatment. As a consequence, no application above or near surface water is allowed to protect the aquatic compartment and the ground has to be covered with an appropriate plastic sheet to prevent any emission to the terrestrial compartment.

For the service-life phase of treated wood, considering that no emissions occurs during application with the use of appropriate risk mitigation measures and considering the systematic application of a top-coat after the wood treatment, risks can be considered acceptable for all the compartments whatever the type of treatment.

The risks are also acceptable for the service-life phase using the bridge over pond and noise barrier scenarios, which covers urban direct and indirect releases to the aquatic compartment.

Specific instructions for use and risk mitigation measures **Context / Remark** Use classes 1 and 2 None Use class 3 For outdoor treatment, do not apply under rainfall or when rainfall is General risk mitigation expected during the next 24 hours. **Risk mitigation measure** mandatory to insure acceptable For outdoor treatment, cover the ground with an appropriate plastic risks to the terrestrial sheet to prevent any emission to the terrestrial compartment compartment during outdoor application **Risk mitigation measure** mandatory to insure acceptable Do not apply where the product can reach surface water during outdoor risks to the aquatic application compartment during outdoor application **Risk mitigation measure** The outdoor use of treated wood is allowed only if wood preservation is mandatory to insure acceptable followed by the application of a top-coat which does not contain risks to the aquatic biocides. This top-coat has to be stable under the standard EN 927-2 in compartment and terrestrial order to limit biocide leaching all along the service-life of wood. compartment during outdoor use of treated wood

Proposed risk mitigation measures are detailed in the table below.

Instructions for safe disposal of the product and its packaging	Context / Remark
Dispose of unused product, its packaging and all other waste (i.e. plastic sheet) in accordance with local regulations.	General risk mitigation

Do not discharge unused product on the ground, into water courses, into pipes (sink, toilets...) nor down the drains.

2.2.9 Measures to protect man, animals and the environment

See Summary of Product Characteristics (SPC)

2.2.10 Comparative assessment

Taking into account that only one product is authorized for the same uses, Anses concludes that there is no adequate chemical diversity in line with Article 23(3)(b) and the technical guidance note on comparative assessment.

Since tebuconazole does not meet the exclusion criteria as outlined in Article 5(1), no further assessment is needed at this point. The comparative assessment for V33 TRAITEMENT MULTI-USAGES can be finalised at the screening stage and the product can be authorised for a period not exceeding 5 years in accordance with Article 23(6) of BPR.

Annex 2: List of studies reviewed

List of <u>new data¹⁶</u> submitted in support of the evaluation of the active substance

No new data has been sumitted.

List of <u>new data</u> submitted in support of the evaluation of the biocidal product

Section No	Author	or Year Title Owner of data		Owner of data		er of ess	Da prote clair	ction
					Yes	No	Yes	No
2.3.2.2	Legay S.	2015	Physico chemical properties, technical characteristics and chemical analyse of the bioicidal product 06LBCEOL20/2P before and after an accelerated storage procedure for 14 days at 54 +/- 2°C, in compliance with CIPAC MT 46.3 method (Handbook J, 2000) Final report No.402/14/1207F/abcde-e Laboratoire de Chimie Ecotoxicologie FCBA, Pôle des laboratoires Bois, Allée de Boutaut – BP 227, 33028 Bordeaux cédex. GLP					
2.3.2.2	Legay S.	2015	Physical, chemical and technical characteristics of the biocidal product 06LBCEOL20/2PT final report No.402/14/1207F/ fgh-e Laboratoire de Chimie Ecotoxicologie FCBA, Pôle des laboratoires Bois, Allée de Boutaut – BP 227, 33028 Bordeaux cédex. GLP	V33				

¹⁶ Data which have not been already submitted for the purpose of the Annex I inclusion.

Section No	Author	Year	Title	Owner of data	er of cess	Da prote clair	ction
2.3.2.2	Legay S.	2015	Analyse chimique des matières actives déclarées dans le produit de traitement 06LBCEOL20PT Rapport final n°402/09/1046F/a Laboratoire de Chimie Ecotoxicologie FCBA, Pôle des laboratoires Bois, Allée de Boutaut – BP 227, 33028 Bordeaux cédex. GLP	V33			
2.3.2.2	Legay S.	2015	Physico-chemical testing on wood preservative 06LBCEO20PT, storage stability at ambient temperature Draft report N°402/09/1046F/b-e Laboratoire de Chimie Ecotoxicologie FCBA, Pôle des laboratoires Bois, Allée de Boutaut – BP 227, 33028 Bordeaux cédex. GLP	V33			
2.3.2.2	Legay S.	2015	Analyse chimique sur la formulation 06LBCEO20PT (n°lot: 02021120/2PT) Rapport final n°402/11/1003F/a Laboratoire de Chimie Ecotoxicologie FCBA, Pôle des laboratoires Bois, Allée de Boutaut – BP 227, 33028 Bordeaux cédex. GLP	V33			
2.3.2.2	Legay S.	2013	Chemical analysis of the test item ready to use 06LBCEO20PT (batch n°26031320/2PT) Final report n°402/13/1030F/a-e Laboratoire de Chimie Ecotoxicologie FCBA, Pôle des laboratoires Bois, Allée de Boutaut – BP 227, 33028 Bordeaux cédex. GLP	V33			

Section No	Author	Year	Title	Owner of data	er of cess	Da prote clair	ction
2.3.2.2	Legay S.	2013	Chemical analysis of the test item ready to use 06LBCEO20PT/2PT (batch n°26031320/2PT) Final report n°402/13/1030F/a-e Laboratoire de Chimie Ecotoxicologie FCBA, Pôle des laboratoires Bois, Allée de Boutaut – BP 227, 33028 Bordeaux cédex. GLP	V33			
2.3.2.4	Legay S.	2016	Content of active substances in the biocidal product 06LBCEOL20/2PT after a method validation according to SANCO/3030/99/rev.4, laboratoire de Chimie Ecotoxicologie, FCBA, Pôle des laboratoires Bois, Allée de Boutaut – BP 227, 33028 Bordeaux Cédex – France, report N°.402/16/1011F/ab-e	V33			
2.2.7.1.7.2		2014	06LBCEOL20/2PT Assessment of eye irritation Study No.: IO-OCDE-PH- 14/0423	V33			
2.2.7.1.7.3		2014	06LBCEOL20/2PT Assessment of the skin sensitisation potential in the mouse using the LLNA (LLNA: BrdU)	V33			
2.2.7.1.4	J. Bernal	2016	In-vitro human skin penetration on 14C- propiconazole in 06LBCEOL20/2PT test item, in accordance to the guideline OECD No.428	V33			
2.2.7.1.4	J. Bernal	2015	In-vitro human skin penetration on 14C- cypermethrine in 06LBCEOL20/2PT test item, in accordance to the guideline OECD No.428	V33			
2.2.7.1.4	J. Bernal	2015	In-vitro human skin penetration on 14C- tebuconazole in 06LBCEOL20/2PT test item, in accordance to the guideline OECD No.428	V33			

Section No	Author	Author Year Title Owner of data		Owner of data	er of ess	Da prote clair	ction
2.1.8.1	Gabille M. and Le Bayon I.	2010	NF EN 113. Determination of the protective effectiveness of a wood preservative against wood- destroying basidiomycetes. Accelerated ageing prior to biological testing: evaporation test (EN 73).	V33			
2.1.8.1	Le Bayon I.	2009	NF EN 113. Determination of the protective effectiveness of a wood preservative against wood- destroying basidiomycetes. Accelerated ageing prior to biological testing: leaching procedure (EN 84).	V33			
2.1.8.1	Arana M., Arancon J. and Munné O.	2012	Determination of preventive action against Reticulitermes species according to EN 118 (2005).	V33			
2.1.8.1	Arana M., Arancon J. and Munné O.	2012	Determination of preventive action against Reticulitermes species according to EN 118 (2005).	V33			
2.1.8.1	Ansard D. and Paulmier I.	2015	Efficacité preventive contre les termites du genre Heterotermes, selon NF EN118 adaptée avec NF EN 73.	V33	\boxtimes		
2.1.8.1	Ansard D. and Paulmier I.	2015	Efficacité preventive contre les termites du genre Heterotermes, selon NF EN118 adaptée avec NF EN 84.	V33			
2.1.8.1	Arana M., Arancon J. and Munné O.	2012	Determination of preventive action against Hylotrupes bajulus (Linnaeus) - Part 1: larvicidal effect according to EN 46-1 (2009)		\boxtimes		
2.1.8.1	Arana M., Arancon J. and Munné O.	2012	Determination of preventive action against Hylotrupes bajulus (Linnaeus) - Part 1: larvicidal effect according to EN 46-1 (2009)	V33			
2.1.8.1	Brunet C.and Paulmier I.	2015	Détermination de l'efficacité protectrice vis-à-vis de Lyctus brunneus selon NF EN 20-1	V33			

Section No	Author Year Title		Title	Owner of data	 er of ess	Data protection claimed	
2.1.8.1	Brunet C.and Paulmier I.	2016	Efficacité protectrice contre Anobium punctatum selon NF EN 49-1 avec épreuves d'usure.	V33			
2.1.8.1	Brunet C.and Paulmier I.	2015	Efficacité protectrice contre Lyctus brunneus selon NF EN 20-1	V33	\boxtimes	\boxtimes	
2.1.8.1	Brunet C. and Paulmier I.	2011	06LBCEOL20/2PT. Eradicant efficacy against Hylotrupes bajulus according to EN 1390.	V33	\boxtimes		
2.1.8.1	Schumacher P. and 2010 Fennert EM.		06LBCEOL20/2PT. Determination of the eradicant efficacy in preventing hatching of Anobium punctatum (De Geer) according to EN 370 (05/1993) in combination with evaporative ageing procedure according to EN 73 (04/90).	V33			

Annex 4: Toxicology and metabolism –active substance

<Cypermethrin>

Threshold Limits and other Values for Human Health Risk Assessment

Date: 26/07/2016

Summary							
	Value	Study	SF				
AEL long-term	0.022	2 years rat	100				
AEL medium-term	0.055	90 days dog	100				
AEL acute	0.088	Neurotoxicity rat	100				
Inhalative absorption		100%					
Oral absorption		57%	57%				
Dermal absorption		2%					
Classification	Classification						
with regard to toxicol		Acute Tox 3 – H301					
(according to the criteria in Reg. 1272/2008)		STOT SE 3 – H335					
		STOT RE 2 – H 373					

<Propiconazole>

Threshold Limits and other Values for Human Health Risk Assessment

Date: 26/07/2016

Summary			
	Value	Study	SF
AEL long-term	0.04	2 years rat	100
AEL medium-term	0.08	Fertility rat	100
AEL acute 0.3		Developmental rat	100
Inhalative absorption		100%	
Oral absorption		100%	
Dermal absorption		3%	
Classification			
with regard to toxicol		Acute Tox 4 – H302	
(according to the criteria in Reg. 1272/2008)		Skin Sens 1 – H317	

<Tebuconazole>

Threshold Limits and other Values for Human Health Risk Assessment

Date: 26/07/2016

Summary			
	Value	Study	SF
AEL long-term	0.03	1 year dog	100
AEL medium-term	0.03	1 year dog	100
AEL acute	0.03	1 year dog	100
Inhalative absorption		100%	
Oral absorption		100%	
Dermal absorption		6%	
Classification			
with regard to toxicological data		Acute Tox 4 – H302	
(according to the criteria in Reg. 1272/2008)		Repr 2 – H361d	

Annex 5: Toxicology – biocidal product

<V33 TRAITEMENT MULTI USAGES>

Date: 26/07/2016

General information

Formulation Type Active substance(s) (incl. content) RTU Cypermethrin 0.18% Propiconazole 0.14% Tebuconazole 0.15%

Acute toxicity, irritancy and skin sensi 6.1, 6.2, 6.3)	itisation of the preparation (Annex IIIB, point
Rat LD50 oral (OECD 420)	n.a
Rat LD50 dermal (OECD 402)	n.a
Rat LC50 inhalation (OECD 403)	n.a
Skin irritation (OECD 404)	n.a
Eye irritation (OECD 405)	Non irritant to eyes
Skin sensitisation (OECD 429; LLNA)	Non skin sensitizer

Additional toxicological information (e.g. Annex IIIB, point 6.5, 6.7)					
Short-term toxicity studies	n.a				
Toxicological data on active substance(s) (not tested with the preparation)	n.a				
	n.a				
Toxicological data on non-active substance(s)	n.a				
(not tested with the preparation)					
	n.a				
Further toxicological information	n.a				

Classification and labelling proposed for the preparation with regard to toxicological properties (Annex IIIB, point 9)				
Regulation 1272/2008/EC	EUH 208: Contains propiconazole and 2-methyl- 3(2H)-isothiazolone (MIT). May produce an allergic reaction.			

Annex 6: Safety for professional operators

<V33 TRAITEMENT MULTI USAGES>

Date: 26/07/2016

Exposure assessment

Please refer to the Excel data sheet "Expo Pro – V33" attached to the PAR. This file contains several excel data sheet for each exposure scenario, as follows:

Brush application: Excel data sheet "Expo IR – Brushing"; Spray application: Excel data sheet "Expo IR – Spraying"; Brush application + injection: Excel data sheet "Expo IR – Injecting (1); Spray application + injection: Excel data sheet "Expo IR – Injecting (2);

Risk assessment

Please see the tables presented in the document section 2.2.7.3.1.1

Annex 7: Safety for non-professional operators and the general public

<V33 TRAITEMENT MULTI USAGES>

Date:26/07/2016

Exposure assessment for Non-professionals

Please refer to the Excel data sheet "Expo Non Pro – V33" attached to the PAR. This file contains several excel data sheet for each exposure scenario, as follows:

Brush application: Excel data sheet "Expo IR – Brushing"; Spray application: Excel data sheet "Expo IR – Spraying"; Brush application + injection: Excel data sheet "Expo IR – Injecting (1); Spray application + injection: Excel data sheet "Expo IR – Injecting (2);

Risk assessment for Non-professionals

Please see the tables presented in the document section 2.2.7.3.1.2.

Exposure assessment for General public (secondary exposure)

Please refer to the Excel data sheet "Expo Pro – V33" attached to the PAR. This file contains 2 excel data sheet for secondary exposure scenario, as follows:

Acute exposure scenario: Excel data sheet "Expo IIR - Acute"; Chronic exposure scenario: Excel data sheet "Expo IIR - Chronic".

Risk assessment for General public (secondary exposure)

Please see the tables presented in the document section 2.2.7.3.2.

Annex 8: Residue behaviour

cypermethrine, tebuconazole, propiconazole

Date: 07/07/2016

Intended Use (critical application): preventive and curative treatment of interior woods especially in wet situation (beams, frames, wood in cellars, basements and bathrooms) and exterior woods (shutters, doors, siding, fences, gates, awnings, roof overhangs).

Active substance(s): cypermethrin, tebuconazole, propiconazole

Formulation of biocidal product: EW (emulsion, oil in water)

Place of treatment: indoor and outdoor

Target organisms: wood rotting basidiomycetes, wood boring insects, termites

Superficial application/ spray treatment at 300 g product/m² and by injection (in combination with superficial application) at 150 g product/m².

The intended use descriptions of the cypermethrin, tebuconazole, propiconazole containing biocidal products for which authorisation is sought indicate that these uses are not relevant in terms of residues in food and feed. The product is to be used for preventive and curative treatment of interior and exterior woods that does not come in direct contact with food and feedstuff. No further data are required concerning the residue behaviour.

	Experimental data on the efficacy of the biocidal product against target organism(s)						
Function	Field of use envisaged	Test substance	Test organism(s)	Test method	Test system / concentrations applied / exposure time	Test results: effects	Reference
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT concentrate ¹	C. puteana G.trabeum P.placenta C.versicolor	EN 113 after EN 73 (evaporation)	 Following the recommendation of the standard: On scots pine blocks, the targeted concentrations to be tested were 0.0, 3.7, 4.6, 5.8, 7.2 and 9.0 kg of product/m3 of wood. On beech blocks, the targeted concentrations to be tested were 0.0, 6.3, 8.0, 10.0, 12.6 and 15.9 kg of product/m³ of wood. The product was applied by vacuum impregnation 6 blocks tested for each treatment and each fungal strain. <i>C. puteana, G. trabeum</i> and <i>P. placenta</i> are tested on pine. <i>C. versicolor</i> is tested on beech replicates Number of replicates: 6 replicates for each treatment and each fungal strain. CONTROLS Untreated controls: yes, one non-treated block in each test. There are also 6 virulence control blocks for each fungal strain. The effects investigated is mass loss of the test blocks, induced by the fungal development The method for recording / scoring effects is the individual weighting of the test blocks at the beginning and at the end of the exposure period. Intervals of examination: one time, after 4 months exposure of the blocks to the fungal strains. 	The study is validated as more than 20 % of mass loss is observed in the control (>30 % in each control) Mid toxic values of the test product 06LBCEOL20/2 PT concentrate: - cannot be determined for <i>C.</i> <i>puteana</i> , <i>G. trabeum</i> and <i>C.</i> <i>versicolor</i> , but the toxic values were lower than 3.7, 3.8 and 6.4 kg/m ³ respectively. - against <i>P. placenta</i> : 6.6 kg/m ³ or 13.2 g/m ² . Thus, the biological reference value of the test product 06LBCEOL20/2PT concentrate for brown and white rot fungi, on softwoods and hardwoods, after evaporative ageing procedure, is 6.6 kg/m ³ or 160.25 g 06LBCEOL20/2PT / m ² of wood.	Gabille M. and Le Bayon I., 2010 401/09/047F/1/b/e IC 2
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT concentrate ¹	C. puteana G.trabeum P.placenta C.versicolor	EN 113 After EN 84 (leaching)	Following the recommendation of the standard: On scots pine blocks, the targeted concentrations to be tested were 0.0, 3.7, 4.6, 5.8, 7.2 and 9.0 kg of product/m3 of wood.	The study is validated as more than 20 % of mass loss is observed in the control (>30 % in each control) The study demonstrates the efficacy of the 06LBCEOL20/2PT	Le Bayon I., 2009 401/09/047F/1/a/e IC 1

Annex 9: Efficacy of the active substance from its use in the biocidal product (*)

MG 02: preservatives		06LBCEOL20/2PT ²	Common furniture beetle	EN 49 + EN 84 (leaching	The ready to use product 06LBCEOL20/2PT is applied by dipping	The study is validated as more than 50 alive larvae in total are found in	Brunet C.and Paulmier I., 2016
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT ²	Common furniture beetle	EN 49 + EN 73 (evaporation)	CONTROLS - Untreated controls: yes, one non- treated control block included with the treated block in each test. There are also 6 virulence control blocks for each fungal strain. The effects investigated is mass loss of the test blocks, induced by the fungal development The method for recording / scoring effects is the individual weighting of the test blocks at the beginning and at the end of the exposure period. - Intervals of examination: one time, after 4 months exposure of the blocks to the fungal strains. The ready to use product 06LBCEOL20/2PT is applied by dipping on oak test blocks and followed by an artificial weathering according to the EN 73 standard method (evaporation). The quantity really applied on each test block varied between 197.9 g/m ² and 199.60 g/m ² (mean 101.2 g/m ²). 5 replicates for the treated block and for the control are performed. The efficacy of the product is based on the comparison of egg laying, eggs emergence and mortality larvae between control blocks and treated blocks. The method for recording / scoring effects is the count of eggs laid, eggs hatched and alive larvae found. The ready to use product	The study is validated as more than 50 alive larvae in total are found in the control and as alive larvae are found in each control block This study demonstrated the efficacy of the product at 200 g of product / m ² of wood against <i>Anobium punctatum</i>	Brunet C.and Paulmier I., 2016 401/14/084F/a IC1 Brunet C.and
					On beech blocks, the targeted concentrations to be tested were 0.0, 6.3, 8.0, 10.0, 12.6 and 15.9 kg of product/m3 of wood. - 6 blocks tested for each treatment and each fungal strain. <i>C. puteana, G.</i> <i>trabeum</i> and <i>P. placenta</i> are tested on pine. C. versicolor is tested on beech replicates The product was applied by vacuum impregnation - Number of replicates: 6 replicates for each treatment and each fungal strain.	concentrate formulation is 4.2 kg/m ³ on <i>C. puteana, G. trabeum,</i> <i>P. placenta</i> and 7.2 kg/m ³ for <i>C.</i> <i>versicolor.</i> It corresponds to an application rate of 14.4 g/m ² of concentrate product or 174.82 g of 06LBCEOL20/2PT / m ² of wood.	

<v33 multi="" th="" traitement="" u<=""><th>JSAGES></th></v33>	JSAGES>
---	---------

<pt< th=""><th>8></th></pt<>	8>
---------------------------------	----

	Preventive treatment				on oak test blocks and followed by an artificial weathering according to the EN 84 standard method (leaching). The quantity really applied on each test block varied between 198.2 g/m ² and 200.2 g/m ² (mean 199.4 g/m ²). 5 replicates for the treated block and for the control are performed. The efficacy of the product is based on the comparison of egg laying, eggs emergence and mortality larvae between control blocks and treated blocks. The method for recording / scoring effects is the count of eggs laid, eggs hatched and alive larvae found.	the control and as alive larvae are found in each control block This study demonstrated the efficacy of the product at 200 g of product / m ² of wood against <i>Anobium punctatum</i>	401/14/084F/b IC1
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT ²	House longhorn beetle: <i>Hylotrupes</i> <i>bajulus</i> (L.)	EN 46 + EN 73 (evaporation)	The ready to use product 06LBCEOL20/2PT is applied by dipping on sapwood test blocks (<i>Pinus</i> <i>sylvaticus</i>) and followed by an artificial weathering according to the EN 73 standard method (evaporation). The quantity really applied on each test block varied between 100.80 g/m ² and 101.60 g/m ² (mean 101.2 g/m ²). 10 recently hatched larvae of <i>H. bajulus</i> for each are used for each test block. 6 replicates for the treated block and 3 replicates for the control are performed. The effect investigated is the mortality of insect's larvae. The method for recording / scoring effects is the recovery of the insects and count of dead and alive larvae and count of dead larvae having tunneled or not. - Intervals of examination: one time, after 1 month exposure of the blocks to the insects.	The study is validated as the survival rate in the control is higher than 70 % (90%). On the treated test block, 100 % or the larvae was dead and had not tunnelled. This study demonstrated the efficacy of the product at 100 g of product / m ² of wood against <i>Hylotrupes bajulus</i> larvae	Arana M., Arancon J. and Munné O., 2012 27378-1-a IC2
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT ²	House longhorn beetle: <i>Hylotrupes</i> <i>bajulus</i> (L.)	EN 46 + EN 84 (leaching)	The ready to use product 06LBCEOL20/2PT is applied by dipping on sapwood test blocks (<i>Pinus</i> <i>sylvaticus</i>) and followed by an artificial weathering according to the EN 84 standard method (leaching). The quantity really applied on each test block varied between 100.08 g/m ² and 102.24 g/m ² (mean 101.05 g/m ²). 6 replicates for the treated block and 3 replicates for the control are performed. The effect investigated is the mortality of	The study is validated as the survival rate in the control is higher than 70 % (90%). On the treated test block, 100 % or the larvae was dead and had not tunnelled. This study demonstrated the efficacy of the product at 100 g of product / m ² of wood against <i>Hylotrupes bajulus</i> larvae	Arana M., Arancon J. and Munné O., 2012 27378-2-a IC 1

					insect's larvae. The method for recording / scoring effects is the recovery of the insects and count of dead and alive larvae and count of dead larvae having tunneled or not. - Intervals of examination: one time, after 1 month exposure of the blocks to the insects.		
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT ²	Powder post beetle: <i>Lyctus</i> brunneus	EN 20-1 + EN 73 (evaporation)	The ready to use product 06LBCEOL20/2PT is applied by brushing on oak test blocks and followed by an artificial weathering according to the EN 73 standard method (evaporation). The quantity really applied on each test block varied between 194.7 g/m ² and 197.3 g/m ² (mean 196.0 g/m ²). 10 recently hatched larvae of <i>L. bruneus</i> for each are used for each test block. 5 replicates for the treated block and 5 replicates for the control are performed. The investigated effects are the mortality of the insects. The method for recording / scoring effects is the recovery and the counting of the insects (alive/dead) and the number of drilled openings. - Intervals of examination is one examination, 20 weeks after beginning of exposure of the adults.	 The study is validated as: At least, for each control, 20 insects are found Adult emergence has started at the end test in the control and at least 85 % of the insects are found alive In the treated blocks, a mortality of 100% is observed in each replicate. 	Brunet C.and Paulmier I., 2015 401/14/084F/c
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT ²	Subterranean termite: <i>Reticulitermes</i> grassei	EN 118 + EN 73 (evaporation)	The ready to use product 06LBCEOL20/2PT is applied by brushing on sapwood test blocks (<i>Pinus</i> <i>sylvaticus</i>) and followed by an artificial weathering according to the EN 73 standard method (evaporation). The quantity really applied on each test block varied between 198.45 mL/m ² and 200.48 mL/m ² (mean 199.66 mL/m ²). 250 workers, 4 nymphs and 1 soldier termite were used for each test block. 6 replicates for the treated block and 3 replicates for the control are performed. The investigated effects are the mortality of the insects. Method for recording / scoring effects: recovery of the insects and count of the surviving workers, soldiers and nymphs. Calculation of the percentage of	The study is validated as the survival rate in the control is higher than 50 % (88 %) and the control test blocks are ranked 4. All the treated blocks are ranked 1 at the end of the study which demonstrates the efficacy of the product 06LBCEOL20/2PT at the application rate of 200 ml of product / m ² of wood.	Arana M., Arancon J. and Munné O., 2012 27378-3-a IC 2

					surviving workers. Visual observation of the test blocks and rating (0- no attack, 1- attempted attack, 2- slight attack, 3- average attack, 4- strong attack). - Intervals of examination: one time, after 8 weeks exposure of the blocks to the insects.		
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT ²	European subterranean termite: <i>Reticulitermes</i> grassei	EN 118 + EN 84 (leaching)	The ready to use product 06LBCEOL20/2PT is applied by brushing on sapwood test blocks (Pinus sylvaticus) and followed by an artificial weathering according to the EN 84 standard method (leaching). The quantity really applied on each test block varied between 198.89 mL/m ² and 200.68 mL/m ² (mean 199.50 mL/m ²). 250 workers, 4 nymphs and 1 soldier termite were used for each test block. 6 replicates for the treated block and 3 replicates for the control are performed. The investigated effects are the mortality of the insects. Method for recording / scoring effects: recovery of the insects and count of the surviving workers, soldiers and nymphs. Calculation of the percentage of surviving workers. Visual observation of the test blocks and rating (0- no attack, 1- attempted attack, 2- slight attack, 3- average attack, 4- strong attack). Intervals of examination: one time, after 8 weeks exposure of the blocks to the insects.	The study is validated as the survival rate in the control is higher than 50 % (88 %) and the control test blocks are ranked 4. All the treated blocks are ranked 1 at the end of the study which demonstrates the efficacy of the product 06LBCEOL20/2PT at the application rate of 200 ml of product / m ² of wood.	Arana M., Arancon J. and Munné O., 2012 27378-4-a IC 1
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT ²	Subterranean termite: <i>Heterotermes</i> <i>tenuis</i>	EN 118 + EN 73	The ready to use product 06LBCEOL20/2PT is applied by brushing on sapwood test blocks (<i>Pinus</i> <i>sylvaticus</i>) and followed by an artificial weathering according to the EN 73 standard method (evaporation). The quantity really applied on each test block varied between 199.3 mL/m ² and 202.6 mL/m ² (mean 200.6 mL/m ²) 250 workers, 4 nymphs and 1 soldier termite were used for each test block. 6 replicates for the treated block and 3 replicates for the control are performed. The investigated effects are the mortality of the insects. Method for recording / scoring effects:	The study is validated as the survival rate in the control is higher than 50 % (61.3 %) and the control test blocks are ranked 4. All the treated blocks are ranked 1 at the end of the study which demonstrates the efficacy of the product 06LBCEOL20/2PT at the application rate of 200 ml of product / m ² of wood.	Kutnik M., 2015 401/15/005F/b IC 1

					recovery of the insects and count of the surviving workers, soldiers and nymphs. Calculation of the percentage of surviving workers. Visual observation of the test blocks and rating (0- no attack, 1- attempted attack, 2- slight attack, 3- average attack, 4- strong attack). - Intervals of examination: one time, after 8 weeks exposure of the blocks to the insects.		
MG 02: preservatives	Wood preservative Preventive treatment	06LBCEOL20/2PT ²	Subterranean termite: Heterotermes tenuis	EN 118 + EN 84	The ready to use product O6LBCEOL20/2PT is applied by brushing on sapwood test blocks (<i>Pinus</i> <i>sylvaticus</i>) and followed by an artificial weathering according to the EN 84 standard method (leaching). The quantity really applied on each test block varied between 199.1 mL/m ² and 204.3 mL/m ² (mean 201.6 mL/m ²). 250 workers, 4 nymphs and 1 soldier termite were used for each test block. 6 replicates for the treated block and 3 replicates for the treated block and 3 replicates for the treated block and 3 replicates for the treated block and 5 recovery of the insects are the mortality of the insects. Method for recording / scoring effects: recovery of the insects and count of the surviving workers, soldiers and nymphs. Calculation of the percentage of surviving workers. Visual observation of the test blocks and rating (0- no attack, 1- attempted attack, 2- slight attack, 3- average attack, 4- strong attack). Intervals of examination: one time, after 8 weeks exposure of the blocks to the insects.	The study is validated as the survival rate in the control is higher than 50 % (58.3 %) and the control test blocks are ranked 4. All the treated blocks are ranked 1 at the end of the study which demonstrates the efficacy of the product 06LBCEOL20/2PT at the application rate of 200 ml of product / m ² of wood.	Ansard D and Paulmier I, 2015 401/15/005F/a IC 1
MG 02: preservatives	Wood preservative Curative treatment	06LBCEOL20/2PT ²	Common furniture beetle: <i>Anobium</i> <i>punctatum (L.)</i>	EN 370 + EN 73	The ready to use product 06LBCEOL20/2PT is applied by brushing on sapwood test blocks (<i>Pinus</i> <i>sylvaticus</i>) and followed by an artificial weathering according to the EN 73 standard method (evaporation). The quantity really applied on each test block varied between 300.8 mL/m ² and 301.7 mL/m ² (mean 301.2 mL/m ²). 12 larvae of <i>Anobium punctatum</i> were used per test blocks 6 replicates for the treated block and 6 replicates for the control are performed.	The study is validated at least 30 (37) larvae has emerged in the control No emergence of adult is observed in the treated blocks and the proportion of alive imago is lower than in the control Then this study demonstrates the differed curative efficacy of the product 06LBCEOL20/2PT at the application rate of 300 ml product / m ² of wood.	Schumacher P. and Fennert EM., 2010 32/09/9289/01 IC 2

					The investigated effects is the mortality of the larvae and hatched beetles - Method for recording / scoring effects: count of the holes in the test blocks and of the hatched beetles. After splitting up of the test blocks, count of the dead and alive larvae and beetles. - Intervals of examination: one time, 6 weeks after beginning of the hatching in the control blocks.		
MG 02: preservatives	Wood preservative Curative treatment	06LBCEOL20/2PT ²	House longhorn beetle: <i>Hylotrupes</i> <i>bajulus (L.)</i>	EN 1390	The ready to use product 06LBCEOL20/2PT is applied by brushing on sapwood test blocks (<i>Pinus</i> <i>sylvestris</i>) The quantity really applied on each test block varied between 299.3 mL/m ² and 300.8 mL/m ² (mean 300.1 mL/m ²). 6 larvae of <i>Hylotrupes bajulus</i> were used for each test block. 10 replicates for the treated block and 2 replicates for the control are performed. The investigated effects are the mortality of the larvae. - Method for recording / scoring effects: recovery of the insects and count of the dead and alive larvae. Calculation of the percentage of mortality. - Intervals of examination: one time, 25 weeks after exposure of the larvae in the wood block to the tested product. The efficacy criterion according to the EN 14128 is a mortality higher than 80 %	The study is validated as the survival rate in the control is higher than 75 % (92%). The mortality observed in the treated block is higher than 80 % (86.4 %) which validated the low action efficacy of the product 06 LBCEOL 20/2 PT, at the application rate of 300 ml of product / m ² of wood, 24 weeks after is application.	Brunet C. and Paulmier I., 2011 401/10/096F/1/e IC 1

(*) fill in one table for each MG/PT and/or field of use envisage