Oxidative Stress as a mechanism for carcinogenicity of glyphosate

Dr. Peter Clausing

Antecedents

IARC (2015, p. 399):

"There is strong evidence that glyphosate ... can act to induce oxidative stress based on studies in experimental animals, and in studies in humans in vitro."

RAR (2015), Addendum 1, p. iv:

- > uncoupling of oxidative phosphorylation by glyphosate has been reported in rat liver microsomes."
- "However, from the sole observation of oxidative stress and the existence of a plausible mechanism for induction of oxidative stress ... carcinogenic activity ... cannot be deduced for glyphosate"

→ The "sole observation" should be part of weight of evidence

Kidney tumours in mice – re-cap:

Significant increases in male mice (trend-test, 2-sided)

Year	Strain	Duration (months)	Support by HCD	Dose- dependent
2001	Swiss	18	YES (?)	YES (?)
1997	Crj:CD-1	18	YES	NO
1983	Crl:CD-1	24	No data in RAR but by EPA	YES

Gao et al. (2019): Study in male ICR mice

- Glyphosate (Sigma, 96% purity,)
- oral (gavage) administration 28 days
- Significant ↑ of Malondialdehyde (MAD)

Hypothesis:

N-(phosphonomethyl) **glycine** (glyphosate) stimulates ROSformation via NMDA receptor (glycine is a known agonist)

Proof:

Glyphosate + NMDA receptor-blocker:

✓ in oxidative stress

Glyphosate an "inert" compound?

 Uncoupling of oxidative phosphorylation in isolated rat liver mitochondria (Bababunmi et al. 1979 – referred to in RAR 2015)

Oxidative stress in kidneys of mice in vivo via NMDA-receptor (glycine)
 (Gao et al. 2019)

 Oxidative stress in testes of rats via gut microbial dysbiosis and subsequent IL-17A/TNF-α signalling

(Liu et al. 2022)