
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Recommendation from the Scientific  

Committee on Occupational Exposure Limits 
for methyl bromide 

 
 

SCOEL/SUM/114  
October 2004 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 European Commission      
Employment, Social Affairs and Inclusion 

Recommendation from the Scientific Committee on Occupational Exposure Limits for methyl bromide 

October 2004 

2

Table of Contents 
 
 
1. Occurrence/use ............................................................................................................................. 4 

1.1. Occupational exposure ......................................................................................................... 4 
2. Health Significance ........................................................................................................................ 4 

2.1 Toxicokinetics............................................................................................................................. 4 
2.2. Acute toxicity ........................................................................................................................... 6 

2.2.1. Human data ...................................................................................................................... 6 
2.2.2. Animal data....................................................................................................................... 7 

2.3. Irritation...................................................................................................................................... 7 
2.3.1. Human data ...................................................................................................................... 7 
2.3.2. Animal data....................................................................................................................... 7 

2.4. Sensitisation............................................................................................................................... 7 
2.5. Repeated dose toxicity .......................................................................................................... 8 

2.5.1. Human data ...................................................................................................................... 8 
2.5.2. Animal data....................................................................................................................... 8 

2.6. Genotoxicity ............................................................................................................................. 8 
2.6.1. Human data ...................................................................................................................... 8 
2.6.2. Mutagenicity in vitro ......................................................................................................... 9 
2.6.3. Mutagenicity in vivo ......................................................................................................... 9 
2.6.4. DNA methylation............................................................................................................... 9 

2.7. Carcinogenicity ..................................................................................................................... 10 
2.8. Reproductive toxicity ............................................................................................................ 10 

Recommendations........................................................................................................................... 12 
References......................................................................................................................................... 13 
Appendix: Details of experimental toxicity tests with methyl bromide .................................... 21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 European Commission      
Employment, Social Affairs and Inclusion 

Recommendation from the Scientific Committee on Occupational Exposure Limits for methyl bromide 

October 2004 

3

Recommendation from the Scientific Committee on 
Occupational Exposure Limits for 

methyl bromide 
 

8 hour TWA  : not feasible to derive a health-based limit  
(see Recommendation) 

STEL (15 min)  : not feasible to derive a health-based limit  
(see Recommendation) 

Notation   : "Skin" 

SCOEL Carcinogen category                : A (non-threshold genotoxic carcinogen)  

Substance identification 
Methyl bromide 

BrH

H

H

 

Synonyms : Bromomethane, monobromomethane, HBr 

EINECS No. : 200-813-2 

EEC No. : 602-002-00-2  

Classification : Mutagenicty, Cat. 3; R68, T R23/25, Xn R48/20, Xi R36/37/38, N R50, N R59 

CAS No. : 74-83-9 

MWt  : 94.95 g/mol 

Conversion factor (25 °C): 1 ppm = 3.89 mg/m3; 1 mg/m3 = 0.26 ppm 

This document is based on ACGIH (2001), IARC (1999), DFG (1999), IPCS (1995) and the 
references based therein, as well as on a re-assessment by SCOEL of the recent literature. 
Further reviewed literature: Calvert et al. (1998), Kaneda et al. (1998), and Wilson et al., 
(1998), Pletsa et al. (1999). 

Physico-chemical properties 
Methyl bromide is a colourless, non-flammable gas with no taste or odour at low 
concentrations. At levels well above current limit values of 1 ppm (3.89 mg/m3), a sweetish 
odour may be observed. Odour thresholds between of 80 and 4000 mg/m3 are reported 
(Ruth, 1983). The melting point of methyl bromide is -93.66 °C and the boiling point is 
3.56°C. Methyl bromide is soluble in water (17.5 g/l at 20°C), in diethyl ether, ethanol, 
chloroform, carbon disulfide, benzene, and tetrachloromethane. The vapour pressure is 
1893 hPa (20°C). 
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1. Occurrence/use 
The annual production volume of methyl bromide in the year 1990 was in the EU about 
19000 tonnes, and about 28000 tonnes in North America (IPCS, 1995). Methyl bromide is 
commonly produced by the interaction of methanol and hydrogen bromide (IPCS, 1995). 
Methyl bromide is used as follows: soil (pre-planting) fumigation (77%), quarantine and 
commodity fumigation (12%), structural fumigation (5%), and chemical intermediates (6%) 
(UNEP, 1992). The general use of methyl bromide in fire extinguishers has been abandoned 
as it was the cause of a number of fatal accidents. However, it is still used for special-
purpose fire extinguishers (IPCS, 1995), as also exemplified by a recent case report (Hoizey 
et al., 2002). 

1.1. Occupational exposure 
Occupational exposure to methyl bromide takes mainly place during manufacture and 
during fumigation (structural and soil fumigation). The primary route of potential 
occupational exposure is inhalation, although some intoxications have also been reported 
after dermal exposure.  

Manufacturing 

In a methyl bromide plant in the USA, workplace air concentrations of 78-116 mg/m3 were 
recorded using direct measurement (IPCS, 1995). In the worker´s breathing zone (methyl 
bromide-producing factory in Japan) methyl bromide concentrations were usually below  
4 mg/m3, but sometimes exceeded 20 mg/m3 (Kishi et al., 1988). 

Fumigation 

Occupational exposures between < 0.8 and 646 mg methyl bromide/m3 were measured 
during space, soil or chamber fumigation in a survey of methyl bromide fumigation in 
Switzerland (Guillemin et al., 1990). During greenhouse fumigation, relatively high methyl 
bromide concentrations are reported: values range from 320 to 4000 mg/m3 in one 
investigation (Roosels et al., 1981) and from 117 to 11700 mg/m3 in a further study (van den 
Oever et al., 1982). 

2. Health Significance 

2.1 Toxicokinetics 
Absorption 

Inhalation 

The uptake of inhaled methyl bromide is about 50 % in F344 rats, beagle dogs and in 
human volunteers (Andersen et al., 1980, Medinsky et al., 1985, Raabe, 1986, Raabe, 1988). 
In rat experiments at higher methyl bromide concentrations (above 650 mg/m3) the 
amount of absorbed material decreased: at 1206 mg/m3 only 27% was absorbed. 
(Medinsky et al., 1985): Therefore, it appears that the uptake of methyl bromide in 
experimental animals by inhalation is saturable. 

Dermal 

In fumigation workers who had skin contact with methyl bromide, increased plasma 
bromide levels provided evidence of the penetration of the substance through the skin 
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(Iwasaki et al., 1989). This is also supported by experiments on dermal uptake of methyl 
bromide in rats (Yamamoto et al., 2000). The possibility of absorption by the skin of toxic 
quantities of methyl bromide has been repeatedly demonstrated (Jordi, 1953, Longley and 
Jones, 1965, Lifschitz and Gavrilov 2000). 

Distribution 

In rats methyl bromide is rapidly distributed to all tissues after inhalation and rapidly 
metabolised. A small percentage is cleared slowly and incorporated into metabolic pools. 
The major organs of [14C] distribution are adipose tissue, liver, lung and kidney (Bond et al., 
1985, Honma et al., 1985; Jaskot et al., 1988). Methyl bromide concentrations in all tissues 
described reached a maximum within 1 h after start of exposure and maintained almost 
the same steady-state level during 8 h of continuous exposure (Honma et al., 1985).  

Metabolism and elimination 

Increased bromide values were found in the blood serum of persons who had immediate 
skin contact with methyl bromide (Longley and Jones, 1965, Hezemans-Boer et al., 1988), 
even when they wore adequate respirators (Zwaveling et al., 1987). 

Investigations with rats administered 14C-labelled methyl bromide showed that about half 
of the 14C dose taken up is exhaled as 14CO2 (Bond et al., 1985). The rest of the 
radioactivity appears mainly in urine and a small amount also in the faeces; the 
distribution between the routes of excretion depends on the mode of administration 
(inhalation, oral or intraperitoneal; Medinsky et al., 1985). The metabolic pathways of 
methyl bromide correspond with those of the chemically related substances methyl 
chloride and methyl iodine. These are represented in Figure 1, according to Kornbrust and 
Bus (1982) and Bolt and Gansewendt (1993). 

 

Figure 1: Metabolic pathways of methyl halides (chloride, bromide, iodide) 

To a small extent the monohalomethanes are oxidised by the cytochrome P-450 system 
which eliminates the halogen ion (here: bromide) to form formaldehyde and, in 
consequence, formic acid (Kornbrust and Bus, 1982, 1983). 

Methyl halides can be conjugated enzymatically in several tissues including human 
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erythrocytes, to form S-methylglutathione (Redford-Ellis and Govenlock). There are marked 
species differences; this metabolic pathway could not be detected in erythrocytes of 
mouse, rat, cattle, sheep, pigs, nor rhesus monkeys (Deutschmann et al., 1990). 

When human blood samples from different persons are incubated with methyl bromide, in 
most cases ("conjugators") this is conjugated with glutathione to form S-methyl-glutathione. 
Some blood samples (those of "non-conjugators") do not contain this enzyme activity 
(Hallier et al., 1990a). The responsible enzyme activity is markedly higher towards methyl 
bromide than towards the other halomethanes. The purification and characterisation of 
the enzyme has been described (Schröder et al. 1992); it is the glutathione-S-transferase 
hGSTT1-1 (Pemble et  al., 1994). Dependent on ethnicity, the hGSTT1 gene is deleted in 
major parts of the population (Table 1). This has reflections on inter-individual and inter-
ethnic differences of disposition and toxicity of methyl bromide (see 3.2). 

Table 1: Percentages of carriers (“conjugators”, homozygous and heterozygous) and non-
carriers (“non-conjugators”) of the hGST1 gene, within different populations/ethnicities 
(Thier et al. 2003) 
 
Country/region % hGSTT1 carriers % hGSTT1 non-carriers Reference 

Germany 75% 25% Hallier et al. 
(1994) 

Turkey 80% 20% Oke et al. (1998) 

Scandinavia 85% 15% Hallier et al. 
(1993)  

USA (whites) 80% 20% Nelson et al. 
(1995) 

USA (“African American”) 87% 22% Nelson et al. 
(1995) 

USA (“Mexican American”) 90% 10% Nelson et al. 
(1995) 

China (Shanghai) 51% 49% Shen et al. (1998) 

East Asia (Korea, China) 38% 62% El Masri et al 
(1999) 

2.2. Acute toxicity 

2.2.1. Human data 
Cases of severe methyl bromide poisoning in humans, some of them fatal, were frequently 
reported. Fatal poisoning has resulted from exposures to relatively high concentration 
(from 33000 mg/m3). Non-fatal poisoning has resulted from exposure to concentrations 
above  
390 mg/m3. The manifestations of methyl bromide poisoning may be delayed. The latent 
period may vary from 2 to 48 h (Holling and Clarke 1944). Symptoms of acute methyl 
bromide poisoning are severe pulmonary oedema, headache, visual disturbances, 
nausea, vomiting, smarting of the eyes, itching of the skin, listlessness, vertigo, and tremor; 
progressing to convulsions, fever, cyanosis, pallor and death. Several neuropsychiatric 
signs and symptoms, such as mental confusion, mania, muscular twitches, and slurring of 
speech, may precede death (Wyers, 1945, Sax et al., 1984, Gosselin et al., 1984, Lifshitz and 
Gavrilov, 2000, Hoizey et al., 2002). 
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Garnier et al. (1996) described an intoxication event of two methyl bromide fumigators 
working together and of which duration and intensity of exposure were considered 
identical. One person, being of negative GSTT1 phenotype (“non-conjugator”) developed 
only mild neurotoxicity of reversible nature, whereas the other, of GSTT1-positive 
phenotype (“conjugator”), developed very severe neurotoxicity and persistent infirmity. 
The GSTT1 negative subject showed higher concentrations, compared to those of the 
GSTT1 positive subject, of S-methylcysteine adduct in albumin (149 vs. 91 nmol/g protein) 
and in globin  
(77 vs, 30 nmol/g globin). This is consistent with the view of glutathione conjugation being  
a toxifying pathway of methyl bromide (see 3.1). A recent case report of methyl bromide 
poisoning, also including biomonitoring and GSTT1 phenotyping data, is supportive of this 
view (Buchwald and Müller, 2001).  

2.2.2. Animal data 
An LD50 value after oral administration in rats was 214 mg/kg bw (Danse et al., 1984). The 
dose-mortality response curve after methyl bromide inhalation is quite steep. The LC50 
values for rats and mice are shown (details: in Table 2, see Appendix) 

Clinical signs were decrease in locomotor movement, tremor, convulsion, diarrhoea, 
bradypnoea, dyspnoea, lacrimation and diarrhoea. 

Based on comparative pharmacological studies of methyl bromide and bromide, using 
hippocampal slices of young rats, it was postulated that the central neurotoxicity of methyl 
bromide should be due to metabolites or other indirect effects, rather than on methyl 
bromide itself (Zeise et al. 1999).  

2.3. Irritation 

2.3.1. Human data 
Liquid methyl bromide and methyl bromide gas has penetrated through all articles of 
clothing. Liquid methyl bromide caused dermal irritation with superficial burns with much 
vesication when in contact with skin (ACGIH, 2001, Butler et al., 1945). But also methyl 
bromide gas is irritating to the skin. Hezemans-Boer et al (1988) reported sharply 
demarcated erythema with multiple vesicles and large bullae in workers exposed for 40 
minutes to about 35000 mg/m3. With the exception of some residual hyperpigmentation, 
the effects were reversible within 4 weeks. 

2.3.2. Animal data 
Irish et al. (1940) noticed lacrimation in rats after inhalation of methyl bromide levels above 
10000 mg/m3. Irritation of the eye membranes in mice at concentrations of 3200 mg 
methyl bromide/m3 was described by Balander et al. (1962). In rats, local application of 
methyl bromide to the skin caused morphological changes of epidermal cells, fibroblasts 
and blood vessels which were attributed to cytotoxicity (Yamamoto et al. 2000). 

2.4. Sensitisation 
No data are available. 
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2.5. Repeated dose toxicity 

2.5.1. Human data 
There are numerous case reports of effects after repeated exposure to high 
concentrations  
of methyl bromide. In most cases there are no data on exposure concentrations given. 

Adverse symptoms like lethargy, ataxia, and retrobulbar optic neuritis were reported by 
workers exposed to a maximum concentration of 58 mg/m3 (Kishi et al., 1988). Nausea, 
vomiting, headache, and skin lesions were observed in workers exposed for 2 weeks at 
concentrations generally below 136 mg/m3 (35 ppm) (Watrous, 1942). Mental confusions, 
speech difficulties, hallucinations, paraesthesia are described following repeated 
administration to methyl bromide (Johnstone, 1945, Kantarjian and Shaheen, 1963) After 
chronic intoxication to low methyl bromide concentrations (not detectable by workers) 
sometimes irreversible CNS lesions with symptoms associated especially with the corpus 
striatum, cerebellum and pyramidal tract were seen (Dechaume et al., 1948).  

Non-fatal poisoning has resulted from exposure to concentrations as low as 390 – 1950 
mg/m3 (100-500 ppm). Organs affected by exposure include the nervous system, lung, 
nasal mucosa, kidney, eye and skin (IPCS, 1995). 

2.5.2. Animal data 
Inhalation 

Several studies are available investigating the effects after inhalative administration of 
methyl bromide. The results of the well performed and documented studies, lasting 2 
weeks or more are listed (details in Table 3 see Appendix). 

Typical effects after inhalative methyl bromide administration to rats and mice were 
decreased body weight gain, changes in haematology (Japanese Ministry of Labour, 
1992, NTP, 1992), myocardial damage (Kato et al., 1986, Reuzel et al., 1991), degeneration 
in the brain (Japanese Ministry of Labour, 1992, NTP, 1992) and inflammation and 
metaplasia of the olfactory epithelium (Japanese Ministry of Labour, 1992, Reuzel et al., 
1991). At higher doses also lung congestion, liver and kidney necrosis were seen (Japanese 
Ministry of Labour, 1992). The LOAEL is 16 mg/m3 based on dose-related inflammation of 
the nasal cavity. 

Oral 

After oral administration of methyl bromide to rats lesions in the stomach and forestomach 
were observed (Danse et al., 1984). No adverse effects were observed in beagle dogs 
(Wilson et al., 1998). The results of these studies are summarized (details in Table 3, see 
Appendix). An NOAEL has been reported to be 2 mg/kg bw. 

2.6. Genotoxicity 

2.6.1. Human data 
Blood and oropharyngeal cells of 32 methyl-bromide-exposed fumigation workers (4h 
during the 2 weeks preceding the analysis, exposure concentrations not available) were 
collected and compared with 28 controls. Micronuclei were measured in lymphocytes 
and oropharyngeal cells, and hypoxanthine-guanine phosphoribosyl transferase gene 
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(hprt) mutations were measured in lymphocytes. Mean hprt variant frequencies and mean 
oropharyngeal cell micronuclei were elevated in workers compared to reference persons 
(Calvert et al., 1998).  

2.6.2. Mutagenicity in vitro 
Methyl bromide is clearly genotoxic, both in vivo and in vitro (Bolt and Gansewendt, 1993, 
IARC, 1999). 

Bacterial tests 

Ames assays and one modified Ames (SOS-umu) were performed with standard tester 
strains TA 100, 98, 1535, 1537, 1538 and TA 1535/pSK1002 with and without metabolic 
activation. Positive results were obtained with TA 100 and TA 1535 (IPCS, 1995). One 
forward mutations streptomycin resistance assay with Klebsiella pneumoniae ur- pro- was 
also positive (Kramers et al., 1985a). 

Mammalian tests 

One mouse lymphoma assay was positive (Kramers et al., 1985a). No data are given on 
metabolic activation. In human lymphocyte cultures the frequency of sister chromatid 
exchanges was increased with and without S9 (Tucker et al., 1985, 1986). Chromosome 
aberrations were induced in the presence of S9 in human G0 lymphocytes (Garry et al., 
1990). Two UDS assays were negative in concentrations of up to 30 mg/l (McGregor 1981, 
Kramers et al., 1985a).  

2.6.3. Mutagenicity in vivo 
A sex-linked recessive assay with Drosophila melanogaster was negative after a dose level 
of 750 mg/m3 for 6 h, but positive after exposure to 375 mg/m3 (5 x 6 h) and 200 mg/m3 (15 
x 6 h) (Kramers et al., 1985a, b). A sex-linked recessive lethal Drosophila melanogaster 
assay at concentration up to 272 mg/m3 for 5 h was negative (McGregor 1981). The rate 
of chromosomal aberrations in rat bone marrow cells were not elevated after single or 
repeated dosage of up to 272 mg/m3 methyl bromide (McGregor, 1981). 

Micronucleus assays in mice and rats were clearly positive after administration of 600 – 
1712 mg/m3 methyl bromide (6 h/d, 5 d/w, 14 d). Micronuclei were found in the bone 
marrow of rats and mice and in peripheral blood cells of rats (Ikawa et al., 1986). A further 
positive micronucleus assay was reported in peripheral erythrocytes of B6C3F1 mice 
treated with  
47-778 mg/m3 for 6 h/d, 5 d/w, 14 d (NTP, 1992). This result could not be reproduced after  
13 week treatment. After the same treatment a (not reproducible) positive SCE assay was 
performed (NTP, 1992) 

A dominant lethal assay with male CD rats and a dosage of up to 272 mg/m3 for 5 d (7 
h/d) was negative (McGregor 1981). 

2.6.4. DNA methylation 
A DNA binding study of inhaled and orally applied 14C-methyl bromide in F344 rats and 
B6C3F1 mice showed, after isolation and hydrolysis of DNA from liver, lung, stomach and 
forestomach, three methylated bases (3-methyl-adenine, 7-methyl-guanine, O6-methyl-
guanine) and the existence of another unidentified DNA adduct. Adducts occurred in all 
tissues examined. There was a remarkably high level of adducts in stomach and 
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forestomach after both oral and inhalation exposures (Gansewendt et al., 1991). The latter 
finding paralleled the finding of Medinsky et al. (1984) of a persistence of 14C-labeling in 
the stomach after dosing rats i.p. with 14C-methyl bromide. 

Later, the occurrence of the main DNA adducts N7- and/or O6-methylguanine at 
comparable levels in various tissues was independently confirmed (among others, in 
glandular stomach, forestomach, liver) after single (rat: 80, 160 mg/kg bw) or multiple (rat: 
30, 60 mg/kg bw, 4 consecutive days, mice: 25 mg/kg bw, 10 consecutive days) oral 
treatment of rats or �lacZ transgenic mice with methyl bromide. Multiple rat treatment 
resulted in substantial decreases in the repair enzyme O6-alkylguanine-DNA 
alkyltransferase (Pletsa et al., 1999). 

Thus, a clear, systemic, directly DNA-alkylating potential of methyl bromide is well 
established which is to be viewed along with its direct mutagenic properties (v.s.). 

2.7. Carcinogenicity 
Oral 

In subchronic toxicity studies with Wistar rats (0, 0.4, 2, 10, 50 mg/kg bw) severe irritating 
effects in the forestomach have been found, including inflammation and hyperplasia at 
doses of 0.5 mg/kg bw and 10 mg/kg bw respectively (Boorman et al., 1986; Danse et al., 
1984; Hubbs et al., 1986). In the study of Danse et al. (1984) squamous cell carcinomas of 
the forestomach were found at 50 mg/kg bw in 13/20 animals. From subsequent 
examinations of the slides it was concluded that the forestomach lesions represented 
inflammation and hyperplasia rather than malignant lesions (Pesticide Toxic Chemical 
News, 1984) (details: Table 4, see Appendix). Forestomach hyperplasia and inflammation 
was also seen after dosage of 50 mg methyl bromide/kg bw to male Wistar rats over 13 
weeks (additional  
12 weeks of recovery). Evidence of malignancy was seen in one rat (Boorman et al., 1986) 
(details: Table 4, see Appendix). 

Sixty male and female F344 rats were fed diets fumigated with methyl bromide (80, 200,  
500 mg total bromide/kg diet; equal to 2.7, 6.8 and 17 mg total bromide/kg bw). The only 
effect was a slightly reduced body weight gain in males at 500 ppm group. No 
carcinogenic effects were observed (Mitsumori et al., 1990). 

Inhalation 

As shown (details in table 2; see Appendix) no increased tumour incidence was seen in the  
13 week- and in carcinogenicity studies with rats (Wistar, F344) and mice (B6C3F1, 
Crj:BDF1) (Japanese Ministry of Labour, 1992, NTP, 1992, Reuzel et al., 1991). 

2.8. Reproductive toxicity 
 
Fertility 
Adverse effects on male fertility after inhalative administration of methyl bromide were 
observed in several studies (details are shown in table 4). Male rats and mice showed testis 
atrophy (Eustis et al., 1988), incomplete spermatogenesis (Kato et al., 1986), decreased or 
increased testis weights (Morrissey et al., 1988), reduced sperm motility and increased 
percentages of abnormal sperm (Kato et al., 1986, Morrissey et al., 1988). The LOAEL was 
117 mg/m3 for rats and 39 mg/m3 for mice.  
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In one dominant lethal assay (details: Table 5, see Appendix) no effects on frequency of 
pregnancy, number of corpora lutea per pregnancy and the frequency of early deaths 
were observed (McGregor, 1981).  

Two-generation toxicity study 
In a two-generation toxicity study with Sprague-Dawley rats (American Biogenics 
Corporation, 1986) maternal toxicity (reduced body weight gains, increased relative liver 
weights and decreased mean brain weights) was seen at 350 mg/m3. The body weights of 
the pups were reduced in the F1a, F2a and F2b generations at ≥ 117 mg/m3. In the F1a 
generation a reduced pup survival was recorded at 350 mg/m3. The female fertility index 
was slightly reduced in the F2a litters at 350 mg/m3. The NOAEL for maternal toxicity was 117 
mg/m3 (based on brain weights and body weight gain) and the NOAEL for effects on the 
offspring is 12 mg/m3 (based on pup body weight). 

Developmental toxicity 
The design and the results of developmental toxicity studies are presented in Table 6 (see 
Appendix). 

Developmental toxicity was found only at maternally toxic levels in studies with rats and 
rabbits. In the study of Peters et al. (1982) with rats at 50 mg/kg bw total resorptions of all 
embryos was found, but no effects were observed at 25 mg/kg bw which was maternal 
toxic. Increased incidences of fused sternebrae, reduced foetal weights and 
malformations (missing gallbladder of missing caudal lobe of the lung) were observed in 
one study with New Zealand rabbits at 311 mg/m3 (Breslin et al., 1982). Signs of maternal 
toxicity at this dose level were reduced body weights and brain lesions. The NOAEL 
(maternal toxicity and teratogenicity) derived for this study was 156 mg/m3. 

Biological monitoring 
Determination of the bromide concentrations in blood or urine was recommended 
(Tanaka et al., 1991) although the concentrations only correlate badly with the external 
exposure to methyl bromide (Rathus and Landy, 1961, van den Oever, 1978,) as there are 
no practicable alternatives. With high exposures, this value together with clinical 
parameters can provide a reason to remove a fumigator from the workplace (van den 
Oever et al., 1984). The fact that the bromide concentration does not correlate with the 
severity of the neurological symptoms of intoxication makes evaluation of the 
concentration more difficult (Verberk et al., 1979). Death has been observed with levels of 
bromide in serum of 30 mg/l while concentrations of over 200 mg/l were not reported to 
be lethal (Hustinx et al. (1993). The bromide concentration in the urine of professional 
fumigators investigated by Hallier (1995) was within the background of the general 
population, of about 5 mg/l.  

The determination of reaction products (adducts) with macromolecules in blood, in 
particular serum albumin and globin, proved to be a suitable parameter for the biological 
monitoring of exposure to methyl bromide during fumigation. S-Methyl-cysteine in globin 
has been suggested as a parameter (Iwasaki, 1988); however, there was a lack of 
reproducibility of results, also in animal experiments (Iwasaki, 1988a). With methyl bromide 
fumigators, also considerable interindividual variability of the results was noticed (Iwasaki 
and Kagawa, 1989). An advantage of the determination of S-methyl-cysteine in serum 
albumin and in globin is that this parameter is not influenced by smoking habits (Iwasaki 
and Kagawa, 1989, Hallier, 1995). 

Measuring S-methyl-cysteine in serum albumin and in globin (Müller et al., 1995) provides a 
basis for biological monitoring of persons exposed during fumigation with methyl bromide. 
Although a health-based Biological Exposure Limit cannot however be established (DFG, 
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1999) an orientation for the biological monitoring of methyl bromide can be based on the 
existing occupational experience, i.e. on the adduct values found during fumigation 
under various conditions. Base values in the general population, according to Müller et al. 
(1995) are located at 15 nmol S-methyl-cystein per gram albumin. According to Hallier 
(1995) a guide value of 50 to 60 nmol S-methyl-cysteine per gram protein in practice 
seems to provide a reasonable safety margin to toxic dose ranges. If this value is 
exceeded it is usually the result of inadequate occupational safety measures. 

Recommendations 
The use of methyl bromide as a fumigant is based on its reactivity as a methylating agent. 
In a variety of biological systems, in vitro and in vivo, it methylates macromolecules 
(proteins and DNA) and displays genotoxic properties. In long-term experiments (rats, 
gavage), methyl bromide has induced neoplastic prestages in the forestomach and 
stomach (hyperplasia, inflammation), and in one experiment and at the highest dose (50 
mg/kg per day) it has induced squameous cell carcinomas. No such tumours were 
observed in mice. Upon inhalation, there are local effects of inflammation and metaplasia 
of the rat olfactory epithelium. An LOAEL of inflammation in the rat nasal cavity was 16 
mg/m3 [4 ppm]. 

The preponderant systemic effect of methyl bromide is neurotoxicity which is evidently 
related to metabolites. The metabolic process leading to such toxicity in humans is 
triggered by the glutathione S-transferase hGSTT1-1. As this enzyme is genetically 
polymorphic (in about 20% of the European population the hGST1 gene is deleted) there is 
a wide variation in individual susceptibility to the neurotoxic effects of methyl bromide. 

Systemic uptake of methyl bromide via the skin has been clearly demonstrated, in humans 
and in experimental animals, which calls for a use of biological monitoring. Determinations 
of bromide concentrations in blood and/or urine and of methylated cystein in blood 
proteins (albumin, haemoglobin) may be used. However, there are no sufficient data to 
establish a health-based Biological Exposure Limit. 

Because of the clear systemic mutagenic effects of methyl bromide, a health-based 
Occupational Exposure Limit cannot be derived. Based on the LOAEL for local 
inflammation in the upper airways (v.s.), the exposure, in any case, should be kept well 
below 1 ppm, and appropriate protective measures should minimise both dermal and 
inhalational contact. 

The data base is presently not sufficient to derive a Biological Limit Value. However, in 
order to provide a provisional guidance, it should be noted that human fatalities have 
occurred at plasma or serum bromide levels above 30 mg/l, and that EEG changes have 
been reported at bromide levels above 12 mg/l. As the background bromide level in 
serum or plasma is about 5 mg/l, a provisional tolerable range for occupationally exposed 
persons could be between 5 and 12 mg Br- per liter plasma or serum (DFG, 2003). 
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Appendix: Details of experimental toxicity tests with methyl 
bromide 
 
Table 2: Acute inhalation toxicity 
 
 

Species Concentration 
(mg/m3) 

Exposure time Reference 

Mouse 6600 30 min Bakhishev, 1973 
Mouse 4680 1 h Alexeeff et al., 1985 
Mouse 1540 2 h Balander et al 1962 
Mouse 1575 4 h Yamano 1991 
Rat 11000 30 min Bakhishev 1973 
Rat 7300 1 h Zwart 1988, Zwart et al., 

1992 
Rat 3034 4 h Kato et al., 1986 
Rat  1175 8 h Honma et al., 1985 
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Table 3: Repeated dose toxicity after inhalation 
Species Exposure time Dose (mg/m3) Effects Reference 
Rat 
SPF Wistar 
6 m 

6 h/d, 5 d/w 
2 w  0, 150, 375, 750 

≥ 150 mg/m3: body weight gain ↓, liver weight ↓,  
750 mg/m3: hyperaemic lung 
NOAEL: < 150 mg/m3 

NTP 1992 

Rat 
F344/DuCrj 
10 m, 10 f 

6 h/d, 5 d/w 
2 w 

0, 599, 778, 
1011, 1315, 
1712 

599 mg/m3 f: body weight gain ↓,  
≥ 599 mg/m3: metaplasia of olfactory epithelium  
≥ 778 mg/m3: body weight gain ↓, vacuolisation in adrenal glands, 
myocardial damage,  
≥ 1315 mg/kg bw: mortality ↑, 1712 mg/kg bw: lung: congestion and 
haemorrhage, liver: necrosis, fatty changes, kidney: necrosis 
NOAEL: < 599 mg/m3 

Japanese 
Ministry of 
Labour, 1992 

Rat 
SPF Wistar 
6 m, 6 f 

6 h/d, 5 d/w 
(w 1, 2, 3) 
6 h/d, 7 d/w (w 4) 
4 w 

0, 70, 200, 600 
≥ 200 mg/m3: body weight gain ↓,  
600 mg/m3: mortality ↑, histopathological changes in heart and lungs 
NOAEL: 70 mg/m3 

NTP 1992 
(Dutch study) 

Rat 
Sprague-Dawley
10-12 m 

4 h/d,  
6 w 

0, 584, 778, 
1167, 1556 

≥ 584 mg/m3: adrenal glands weight ↓, heart changes, ≥ 778 mg/m3: body 
weight gain ↓, organ weights (heart – not dose dependant, liver) ↓, ≥ 1167 
mg/m3: testis weights ↓, changes in testes; 1556 mg/m3: brain, kidney 
changes, spleen weight ↓ 
NOAEL: < 584 mg/m3 

Kato et al., 
1986 

Rat 
Wistar 
10 m, 10 f 

6 h/d, 5 d/w 
13 w 0, 4, 25, 166 166 mg/m3: liver: minimal changes 

NOAEL: 25 mg/m3 
Wilmer et al., 
1983 

Rat 
F344/N 
18 m, 18 f 

6 h/d, 5 d/w 
13 w 0,117, 234, 467 

≥ 234 mg/m3 f: body weight gain ↓, 467 mg/m3: body weight gain ↓, Hct ↓, 
Hb ↓, RBC ↓, olfactory epithelial: dysplasia, cysts 
NOAEL: 117 mg/m3 

Haber et al., 
1985 
(abstract), NTP 
1990 

Rat 
10 m, 10 f 

6 h/d, 5 d/w 
13 w 

0, 29, 73, 183, 
455, 1140 

≥ 73 mg/m3: biochemical changes in blood, ≥ 455 mg/m3: body weight 
gain ↓, Hct ↑, MCV ↑, platelet (m) ↑, 1140 mg/m3: brain: necrosis, 
degeneration of granular layer of cerebellum, thymus: haemorrhage, 
atrophy, kidney: necrosis, testis: atrophy, respiratory tract: interstitial 
pneumonia, metaplasia of olfactory epithelium, adrenal gland: 
vacuolisation, myocardial damage 
NOAEL: 29 mg/m3 

Japanese 
Ministry of 
Labour, 1992 
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Species Exposure time Dose (mg/m3) Effects Reference 

rat 
Wistar  
90 m, 80 f 

6 h/d, 5 d/w,  
29 m 0, 12, 117, 350 

≥ 12 mg/m3: changes in nasal olfactory epithelium (was not considered as 
relevant for NOAEL by ACGIH)  
350 mg/m3: mortality ↑, body weight gain ↓, brain: weight ↓, heart: myocardial 
degeneration, thrombi, oesophagus, forestomach: hyperkeratosis 
NOAEL: 117 mg/m3 

Dreef-van der 
Meulen et al., 
1989, Reuzel et 
al., 1991 

rat 
F344/DuCrj  
50 m, 50 f 

6 h/d, 5 d/w,  
2 y 0, 16, 78, 389 

≥ 16 mg/m3 m: nasal cavity: incidence, severity of inflammation dose related 
≥ 78 mg/m3 m: protein in urine ,  
389 mg/m3: body weight gain ↓, changes in haematology, blood 
biochemistry, urinalysis, olfactory epithelium: necrosis, metaplasia 
NOAEL m: < 16 mg/m3 

Japanese 
Ministry of 
Labour, 1992 

Mouse 
B6C3F1 
10 m 10 f 

6 h/d, 5 d/w 
2 w 

0, 47, 97, 195, 
389, 778 

778 mg/m3: mortality ↑ 
NOAEL: 389 mg/m3 NTP, 1992 

Mouse 
Crj:BDF1 
10 m, 10 f 

6 h/d, 5 d/w 
2 w 

0, 467, 599, 778, 
1011, 1315, 
1712 

≥ 467 mg/m3: mortality ↑, body weight gain ↓, histological findings in brain, 
thymus, kidney heart adrenal glands, F: MCV ↑, protein in urinalysis ↑ 
NOAEL: < 467 mg/m3 

Japanese 
Ministry of 
Labour, 1992 

Mouse 
B6C3F1 
15 m, 15 f 

6 h/d, 5 d/w 
6 w 0, 622 

Lethargy, tremors, body weight gain ↓, organ weights: lung, heart, thymus, 
brain, liver ↓, neuronal necrosis, nephrosis, atrophy in adrenal cortex testicular 
degeneration, RBC ↓, f: WBC ↑ 

Eustis et al., 
1988 

mouse 
B6C3F1 
18-30 m, 18-30 
f 

6 h/d, 5 d/w 
13 w 

0, 39, 78, 156, 
311, 467 

156 mg/m3 m: Hb ↓, MCV ↓, RBC ↑ 
467 mg/m3: mortality ↑, body weight ↓, curling and crossing of hindlimbs, 
twitching of forelimbs 
NOAEL: 78 mg/m3 

NTP, 1992 

mouse 
Crj:BDF1 
10 m, 10 f 

6 h/d, 5 d/w 
13 w 

0, 29, 58, 117, 
234 

234 mg/m3: body weight gain↓, F: MCV ↑, protein in urinalysis ↑ 
NOAEL: 117 mg/m3 

Japanese 
Ministry of 
Labour, 1992 

mouse 
B6C3F1 
86 m, 86 f 

6 h/d, 5 d/w,  
2 y (interim 
sacrifice at 6 
and 15 m) 

0, 39, 128. 389 
389 mg/m3: mortality ↑, body weight gain ↓, thymus weight ↓, nonneoplastic 
lesions in brain, bone, heart, and nose, behavioural effects 
NOAEL: 128 mg/m3 

NTP, 1992 

mouse 
Crj:BDF1  
50 m, 50 f 

6 h/d, 5 d/w,  
2 y 0, 16, 62, 250 

250 mg/m3: body weight gain ↓, changes in blood biochemistry, brain: 
atrophy of granular layer of the cerebellum 
NOAEL: 62 mg/m3 

Japanese 
Ministry of 
Labour, 1992 
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Table 4: Repeated dose toxicity after oral administration 

Species Exposure time Dose  Effects Reference 

Rat 
Wistar 
10 m, 10 f 
Gavage 

5 d/w 
13 w 

0, 0.4, 2, 10, 50 
mg/kg bw 

≥ 10 mg/kg bw: forestomach mucosa: proliferative changes 
50 mg/kg bw: stomach: squamous cell carcinomas (13/20) (represented 
inflammation and hyperplasia), haematological changes 
NOAEL: 2 mg/kg bw 

Danse et al., 
1984, Pesticide 
Toxic 
Chemical 
News, 1984 

Rat 
15 not specified 
not specified 

13-25 w 
12 w recovery 0, 50 mg/kg bw 

Forestomach: acanthosis, fibrosis, pseudoeptheliomatous hyperplasia, 
hyperplastic lesions (stomach lesions regressed, but adhesions, fibrosis, 
and mild acanthosis remained after recovery) 

Boorman et al., 
1986 

Rat 
not specified 
gavage 

5 d/w 
up to 17 w (4-8 w 
recovery) 

0, 25, 50 mg/kg 
bw 

≥ 25 mg/kg bw: forestomach: ulceration, pseudoepitheliomatous 
hyperplasia (inclomplete regression after recovery); evidence of 
malignancy in one rat 
NOAEL: < 25 mg/kg bw 

Hubbs et al., 
1986 

Rat 
F344 
60 m, 60 f 

Diet 
2 y 0, 3, 7 mg/kg bw 7 mg/kg bw m: body weight ↓ 

NOAEL: 3 mg/kg bw 
Mitsumori et 
al., 1990 

Beagle Dog 
3 m, 1 f 
Diet 

1 y 

0, 0.06/0.07, 
0.13/0.12, 
0.28/0.27 mg/kg 
bw (m/f) 

NOAEL: 0.28 mg/kg bw Wilson et al., 
1998 
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Table 5: Effects on fertility  

Study/animals 
Authors 

Type of study 
Treatment Specific investigations Toxicological findings 

NOAEL 

Rat 
10 m 
Kato et al., 1986 

Subacute study  
0, 584, 778, 1167, 1556 
mg/m3 
4 h/d, 5 d/w, 6 w 

Histopathology of 
reproductive organs 

≥ 584 mg/m3: histopathological changes in kidney, heart, spleen 
≥ 1167 mg/m3: incomplete spermatogenesis, giant cells in seminal tubules, 
accumulation of necrotic spermatocytes, testis weights ↓  
NOAEL: 778 mg/m3 

F344 rat 
m 
Hurtt et al., 1988 

Subacute study 
778 mg/m3 
6 h/d, 5 d 

Histopathology of 
testes, testis weight 

778 mg/m3: plasma testosterone, testicular nonprotein sulfhydryl 
concentrations 

F344 rats 
m, f 
Morrissey et al., 
1988 

Subchronic study 
0, 117, 233, 467 mg/m3 
13 w 

Histopathology of 
testes, sperm 
morphology, vaginal 
cytology, 
reproductive organ 
weights 

≥ 117 mg/m3: cauda epididymis weight ↓, testis weights ↑, sperm motility ↓ 
NOAEL: < 117 mg/m3 

CD rats 
10 m 
McGregor, 1981 

Dominant lethal assay 
0, 78, 272 mg/m3, 7 h/d, 5 
d 
mated with untreated 
females (1 m/2 f) 

Frequency of 
pregnancy, number of 
corpora lutea per 
pregnancy, frequency 
of early deaths 

No effects 
NOAEL: 272 mg/m3 

Rats, mice 
m 
Eustis et al., 1988 

622 mg/m3 
6 h/d, 5 d/w, 6 w 

Histopathology of 
testes 

622 mg/m3: testicular degeneration and atrophy 
rats>mice 

B6C3F1 mice 
10 m 
McGregor, 1981 

0, 78, 272 mg/m3 
7 h/d, 5 d Sperm investigations No findings 

NOAEL: 272 mg/m3 

B6C3F1 mice 
m, f 
Morrissey et al., 
1988 

Subchronic study 
0, 39, 156, 467 mg/m3 
13 w 

Histopathology of 
testes, sperm 
morphology, vaginal 
cytology, 
reproductive organ 
weight 
 

≥ 39 mg/m3 m: epididymides, testis weight ↑, sperm density ↓, % of abnormal 
sperms ↑  
NOAEL: < 39 mg/m3 
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CD Sprague-
Dawley rats 
m, f 
American 
Biogenics 
Corporation, 1986

Two-generation-study 
0, 12, 117, 350 mg/m3 6 
h/d, 5 d/w, 8 m 

Effects on growth, 
reproduction, 
offspring 

350 mg/m3: relative liver weight ↑ (F0) 
350 mg/m3 m: body weight ↓ (F0, F1f), mean brain weight ↓ (F0, F1m+f) 
≥ 117 mg/m3: pups body weights ↓ (F1a, F2a, F2b) 
350 mg/m3: pup survival ↓ (F1a) 
350 mg/m3 f: fertility index ↓ (F2a) 
NOAEL: 12 mg/m3 
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Table 6: Developmental Toxicity 
Animals 
Sex 

Treatment Maternal effects
NOAEL 

Developmental effects
NOAEL 

References 

rats 
Wistar  
f 

0, 78, 272 mg/m3  
7 h/d, 5 d/w, 3 w before mating 
+ from day 1-19 of gestation 

NOAEL: 272 mg/m3 NOAEL: 272 mg/m3 Sikov et al., 1981 

Rats 
f (pregnant) 

0, 0.5, 5, 25, 50 mg/kg bw gavage
day 5-20 of gestation 

≥ 25 mg/kg bw: 
maternal toxicity (no 
details available) 
NOAEL: 5 mg/kg bw 

50 mg/kg bw: total resorption of 
embryos 
NOAEL: 25 mg/kg bw 

Peters et al., 1982 

Rats 
Crj:CD  
24 copulated f 

0, 3, 10, 30 mg/kg bw gavage 
day 6-15 of gestation 
deaths at day 20 

30 mg/kg bw: body 
weight ↓, erosive 
lesions in stomach 
NOAEL: 10 mg/kg bw 

NOAEL: 30 mg/kg bw Kaneda et al., 1998 

rabbits 
New Zealand  
24 f 

0, 78, 272 mg/m3 
7 h/d, 5 d/w 
day 1 (artificial insemination) - 24 
of gestation (272 mg/m3: exposure 
stop at d 15); deaths at day 30 

272 mg/m3: mortality ↑ 
NOAEL: 78 mg/m3 

78 mg/m3: no effect 
272 mg/m3: no evaluation Sikov et al., 1981 

rabbits 
New Zealand 
f (inseminated) 

0, 78, 156, 311 mg/m3 
d 7-19 of gestation 
necropsy at day 28 of gestation 

311 mg/m3: body 
weight ↓, brain lesions 
NOAEL: 156 mg/m3 

311 mg/m3: foetal weights ↓, 
fused sternebrae and 
malformations (missing 
gallbladder, missing caudal lobe 
of the lung) ↑  
NOAEL: 156 mg/m3 

Breslin et al., 1990 

Rabbits 
Kbl:JW  
18 inseminated f 

0, 1, 3, 10 mg/kg bw gavage 
day 6-18 of gestation 
deaths at day 27 

10 mg/kg bw: body 
weight ↓, erosive 
lesions in stomach 
NOAEL: 3 mg/kg bw 

NOAEL: 10 mg/kg bw Kaneda et al., 1998 
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