Saua:

Bundesanstalt für Arbeitsschutz und Arbeitsmedizin Federal Institute for Occupational Safety and Health

Justification Document for the Selection of a CoRAP Substance

Substance Name (public name):	Antimony trichloride
EC Number:	233-047-2
CAS Number:	10025-91-9
Authority:	Germany
Date:	20/03/2018

Cover Note

This document has been prepared by the evaluating Member State given in the CoRAP update.

Table of Contents

1	IDENTITY OF THE SUBSTANCE	3
1.1	Other identifiers of the substance	3
1.2	Similar substances/grouping possibilities	3
2	OVERVIEW OF OTHER PROCESSES / EU LEGISLATION	4
3	HAZARD INFORMATION (INCLUDING CLASSIFICATION)	5
3.1 3. 3. 3.	 Classification 1.1 Harmonised Classification in Annex VI of the CLP 1.2 Self classification 1.3 Proposal for Harmonised Classification in Annex VI of the CLP 	5 5 5
4	INFORMATION ON (AGGREGATED) TONNAGE AND USES	6
4.1	Tonnage and registration status	6
4.2	Overview of uses	6
5. CO	JUSTIFICATION FOR THE SELECTION OF THE CANDIDAT RAP SUBSTANCE	E 8
5.1.	Legal basis for the proposal	8
5.2. CoR	Selection criteria met (why the substance qualifies for being in AP)	8
5.3. Eva	Initial grounds for concern to be clarified under Substance luation	8
5.4. requ	Preliminary indication of information that may need to be uested to clarify the concern	10
5.5.	Potential follow-up and link to risk management	11

1 IDENTITY OF THE SUBSTANCE

1.1 Other identifiers of the substance

Table: Other Substance identifiers				
EC name (public):	Antimony trichloride			
IUPAC name (public):	Antimontrichlorid			
Index number in Annex VI of the CLP Regulation:	051-001-00-8			
Molecular formula:	Cl ₃ Sb SbCl ₃			
Molecular weight or molecular weight range:	228.11 g/mol			
Synonyms:	Antimony trichloride antimony(3+) ion trichloride antimony(3+) trichloride Antimony(III) chloride antimony-trichloride- trichlorostibane			

Table: Other Substance identifiers

Type of substance	🛛 Mono-constituent	Multi-constituent	
Structural formula			

Structural formula:

1.2 Similar substances/grouping possibilities

Substance	read-across applied by registant(s)
Reference: diantimony trioxide (Sb ₂ O ₃); EC-No.: 215- 175-0, CAS-No.: 1309-64-4	yes
antimony metal (Sb), EC-No.: 231-146-5, CAS-No.: 7440-36-0	no

2 OVERVIEW OF OTHER PROCESSES / EU LEGISLATION

Table: Completed or ongoing processes

Г

RMOA		\Box Risk Management Option Analysis (RMOA)			
	ion	Compliance check, Final decision			
	/aluat	Testing proposal			
sses	ш	\Box CoRAP and Substance Evaluation			
H Proce	risation	Candidate List			
REAC	Authoi	□ Annex XIV			
	Restric -tion	□ Annex XVII ¹			
Harmonised C&L		\boxtimes Annex VI (CLP) (see section 3.1)			
ses other tion	Plant Protection Products Regulation Regulation (EC) No. 1107/2000				
Proces under c EU legisla		Biocidal Product Regulation Regulation (EU) 528/2012 and amendments			
/ious lation		☑ Dangerous substances Directive Directive 67/548/EEC (NONS)			
Prev legis		Existing Substances Regulation Regulation 793/93/EEC (RAR/RRS)			
EP) holm PS		Assessment			
(UN Stock conve (PC	In relevant Annex				
Other processes / EU legislation		$oxedsymbol{\boxtimes}$ Other (provide further details below)			

 $^{^{\}scriptscriptstyle 1}$ Please specify the relevant entry.

Cosmetics Regulation (EC) 1223/2009:

Entry 40: Antimony and its compounds listed in "LIST OF SUBSTANCES PROHIBITED IN COSMETIC PRODUCTS"

3 HAZARD INFORMATION (INCLUDING CLASSIFICATION)

3.1 Classification

Further details

3.1.1 Harmonised Classification in Annex VI of the CLP

Table: Harmonised classification

Index No	International Chemical Identification	EC No CAS No		Classifica	ation	Spec. Conc. Limits,	Notes
				Hazard Class and Category Code(s)	Hazard statement code(s)	M- factors	
051-001- 00-8	Antimony trichloride	233- 047-2	10025- 91-9	Skin Corr. 1B Aquatic Chronic 2	H314	STOT SE 3; H335: C≥5 %	
		1			H411		

3.1.2 Self classification

• In the registration:

Skin Corr. 1B H314 Aquatic Chronic 2 H411

• The following hazard classes are in addition notified among the aggregated self classifications in the C&L Inventory (number of notifiers in brackets):

Eye Dam. 1	H318	(1)
STOT SE 3	H335	(lungs) (1)
Muta. 2	H341	(1)
Carc. 1B H350 (1	L)	

3.1.3 Proposal for Harmonised Classification in Annex VI of the CLP

Currently, no proposal for harmonized classification and labelling is available.

4 INFORMATION ON (AGGREGATED) TONNAGE AND USES²

4.1 Tonnage and registration status

Table: Tonnage and registration status

From ECHA dissemination site *					
☑ Full registration(s) (Art. 10)		□ Intermediate registration	□ Intermediate registration(s) (Art. 17 and/or 18)		
Tonnage band (as per dissemina	ation s	ite)			
🖾 1 – 10 tpa		0 – 100 tpa	🗆 100 – 1000 tpa		
🗆 1000 – 10,000 tpa	🗆 10,000 – 100,000 tpa		□ 100,000 - 1,000,000 tpa		
□ 1,000,000 - 10,000,000 tpa □ 10,000,000 - 100,000,000 □ > 100 tpa □ > 100 □ □ □			□ > 100,000,000 tpa		
□ <1 >+ tpa (e.g. 10+ ; 100+ ; 10,000+ tpa) □ Confidential					

*the total tonnage band has been calculated by excluding the intermediate uses, for details see the Manual for Dissemination and Confidentiality under REACH Regulation (section 2.6.11):

https://echa.europa.eu/documents/10162/22308542/manual_dissemination_en.pdf/7e0b8 7c2-2681-4380-8389-cd655569d9f0

4.2 Overview of uses

Table: Uses

Part 1:

\boxtimes		\boxtimes			🗌 Article	Closed
Manufacture	Formulation	Industrial	Professional	Consumer	service life	system
		use	450	450		

Part 2:

	Use(s)
Uses as intermediate	
Formulation	-

² The dissemination site was accessed in November 2017.

Uses at industrial sites	Industrial use of antimony trichloride in the production of antimony metal (PROC 22: Potentially closed processing operations with minerals/metals at elevated temperature)
Uses by professional workers	
Consumer Uses	
Article service life	

5. JUSTIFICATION FOR THE SELECTION OF THE CANDIDATE CORAP SUBSTANCE

5.1. Legal basis for the proposal

 \Box Article 44(2) (refined prioritisation criteria for substance evaluation)

 \boxtimes Article 45(5) (Member State priority)

5.2. Selection criteria met (why the substance qualifies for being in CoRAP)

- ⊠ Fulfils criteria as CMR/ Suspected CMR
- □ Fulfils criteria as Sensitiser/ Suspected sensitiser
- □ Fulfils criteria as potential endocrine disrupter
- □ Fulfils criteria as PBT/vPvB / Suspected PBT/vPvB
- \Box Fulfils criteria high (aggregated) tonnage (*tpa* > 1000)
- □ Fulfils exposure criteria
- \boxtimes Fulfils MS's (national) priorities

5.3. Initial grounds for concern to be clarified under Substance Evaluation

Hazard based concerns				
CMR	Suspected CMR ¹ \square C \square M \square R	Potential endocrine disruptor		
	□ Suspected Sensitiser ³			
□ PBT/vPvB	□ Suspected PBT/vPvB ¹	Other (please specify below)		
Exposure/risk based concerns				
\Box Wide dispersive use	Consumer use	Exposure of sensitive populations		
Exposure of environment	Exposure of workers	Cumulative exposure		
□ High RCR	High (aggregated) tonnage	Other (please specify below)		

³ <u>CMR/Sensitiser</u>: known carcinogenic and/or mutagenic and/or reprotoxic properties/known sensitising properties (according to CLP harmonized or registrant self-classification or CLP Inventory) Suspected CMR/Suspected sensitiser: suspected carcinogenic and/or mutagenic and/or reprotoxic properties/suspected sensitising properties (not classified according to CLP harmonized or registrant selfclassification)

Suspected PBT: Potentially Persistent, Bioaccumulative and Toxic

Antimony trichloride is prone to hydrolytic transformation depending on the physiologica media and its properties (e.g., temperature, pH). In water, for example, SbCl₃ is transformed according to the following reaction: $SbCl_3 + H_2O \rightarrow SbOCl + 2$ HCl. Due to the formation of HCl, SbCl₃ is classified as Skin Corr. 1b. Thus, local irritant/corrosive effects can be expected in the upper respiratory tract in inhalation experiments due to HCl. However, effects of SbCl₃ and/or of the III-valent transformation product antimony oxychloride (SbOCl) could occur below the threshold for corrosive effects. Toxic effects of SbOCl are likely, considering the toxicological profile of other III-valent antimony compounds, in particular diantimony trioxide. Part of the substance evaluation would be to decide whether a significant fraction of SbCl₃ particles is inhalable. According to Pubchem, exposure to fumes of antimony compounds originating from antimony trichloride is possible

(<u>https://pubchem.ncbi.nlm.nih.gov/compound/24814#section=Related-Compounds</u>). Moreover, inhalation exposure of rats to antimony trichloride showed that primary sites of antimony deposition other than lung were whole blood, spleen, heart and other highly vascularized organs, demonstrating both, systemic bioavailability of antimony after inhalation of antimony trichloride as well as that antimony trichloride dust particles reach the lung (Clayton, 1994;

https://pubchem.ncbi.nlm.nih.gov/compound/24814#section=Pharmacology-and-Biochemistry).

Currently, diantimony trioxide is classified as Carc. 2, H351. A new NTP study confirmed lung tumourigenic effects in mice and rats in a 2-year inhalation study (https://ntp.niehs.nih.gov/ntp/about_ntp/bsc/2016/december/meetingmaterials/drafta ntimonytrioxide_508.pdf) indicating that a reclassification for carcinogenicity may be necessary. Both, diantimony trioxide and antimony trichloride (as well as its transformation products), contain III-valent Sb, indicating a similar toxicological profile. *In vitro* studies indicate a potential for genotoxic effects of antimony trichloride similar to diantimony trioxide (both positive in the non-guideline rec assay and sister chromatide exchange assay – the latter equivalent to OECD TG 479; Huang et al. 1998, Kuroda et al. 1991). Furthermore, oral exposure of mice to antimony trichloride was associated with a dose-related increase of DNA-strand breaks and slowed DNA repair processes (https://toxnet.nlm.nih.gov/cgi-

<u>bin/sis/search2/r?dbs+hsdb:@term+@rn+@rel+10025-91-9</u>). Increased incidence of DNA-strand breaks have also been observed in the NTP study after inhalation of diantimony trioxide. These information support the assumption that both compounds have similar toxicological properties. Since the III-valent Sb moiety and/or the Sb ion after dissolution is supposed to be responsible for reactivity as well as toxic effects of Sb containing compounds, a possible cumulative exposure to the toxicophore through various III-valent Sb compounds cannot be excluded.

Additionally, antimony metal caused embryotoxic effects in a developmental toxicity study (OECD TG 414, <u>https://echa.europa.eu/registration-dossier/-/registered-dossier/16124/7/9/3/?documentUUID=e07399e8-ca2a-44f8-b66d-a6a8e6636e97</u>). Antimony metal is oxidized to the III-valent diantimony trioxide under physiological conditions suggesting that III-valent Sb compounds are causing the observed effects. Additionally, oral antimony trichloride exposure of rats (both prenatal and postnatal) caused a significant reduction in body weight of pups at the higher dose level (10 mg/L in drinking water, Rossi et al. 1987). Another study indicates that prenatal and/or postnatal exposure of rats to antimony trichloride interferes with vasomotor reactivity development in rats (Marmo et al. 1987). Accordingly, there is also a concern for potential systemic developmental effects of antimony trichloride.

Therefore, in the substance evaluation it will be assessed if a read across to diantimony trioxide and/or antimony metal is justified and thus if antimony trichloride may also have cancerogenic and developmental effects.

Exposure

As indicated already above, exposure to fumes of antimony compounds originating from antimony trichloride is possible and inhalation exposure of rats to antimony trichloride showed that primary sites of antimony deposition other than lung were whole blood, spleen, heart and other highly vascularized organs, demonstrating both, systemic bioavailability of antimony after inhalation of antimony trichloride as well as that antimony trichloride dust particles reach the lung. Since the III-valent Sb moiety and/or the Sb ion after dissolution is supposed to be responsible for reactivity as well as toxic effects of Sb containing compounds, a possible cumulative exposure to the toxicophore through various III-valent Sb compounds cannot be excluded.

References:

Clayton, G.D., F.E. Clayton (eds.) Patty's Industrial Hygiene and Toxicology. Volumes 2A, 2B, 2C, 2D, 2E, 2F: Toxicology. 4th ed. New York, NY: John Wiley & Sons Inc., 1993-1994., p. 1905.

Huang, H., Shu, S.C., Shih, J.H., Kuo, C.J. and Chiu, I.D. (1998) Antimony trichloride induces DNA damage and apoptosis in mammalian cells. Toxicology 129(2-3), 113-123.

Kuroda, K., Endo, G., Okamoto, A., Yoo, Y.S. and Horiguchi, S. (1991) GENOTOXICITY OF BERYLLIUM, GALLIUM AND ANTIMONY IN SHORT-TERM ASSAYS. Mutation Research 264(4), 163-170.

Marmo, E., Matera, M.G., Acampora, R., Vacca, C., De Santis, D., Maione, S., Susanna, V., Chieppa, S., Guarino, V., Servodio, R., Cuparencu, B. and Rossi, F. (1987) Prenatal and postnatal metal exposure: Effect on vasomotor reactivity development of pups. Experimental research with antimony trichloride, thallium sulfate, and sodium metavanadate. Current Therapeutic Research - Clinical and Experimental 42(5), 823-838.

Rossi, F., Acampora, R., Vacca, C., Maione, S., Matera, M.G., Servodio, R. and Marmo, E. (1987) Prenatal and postnatal antimony exposure in rats: effect on vasomotor reactivity development of pups. Teratogenesis, Carcinogenesis, and Mutagenesis 7(5), 491-496.

5.4. Preliminary indication of information that may need to be requested to clarify the concern

oxtimes Information on toxicological properties	Information on physico-chemical properties	
\square Information on fate and behaviour	\Box Information on exposure	
\square Information on ecotoxicological properties	\Box Information on uses	
Information ED potential	 Other (provide further details below) 	

In the substance evaluation it will be assessed if a read across to diantimony trioxide and/or antimony metal is justified and thus if antimony trichloride may also have cancerogenic and developmental effects. Information on toxicological properties is needed in order to assess the read across.

Due to the low tonnage only very limited information on the uses exist. If the substance evaluation indicates that risks for workers arise, further information on the uses might be necessary.

5.5. Potential follow-up and link to risk management

Harmonised C&L	□ Restriction	□ Authorisation	Other (provide further details)		
Depending on the outcome of the substance evaluation and further studies a harmonized classification.					