CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

Substance Name: Etofenprox

EC Number: 407-980-2

CAS Number: 80844-07-1

Index Number:

Contact details for dossier submitter:

Umweltbundesamt GmbH

on behalf of

AT Competent Authority

Federal Ministry of Agriculture, Forestry, Environment and Water Management

Version number: 3

Date: 22. Dec. 2011

CONTENTS

Part A.

1	Р	ROPOSAL FOR HARMONISED CLASSIFICATION AND LABELLING	8
	1.1	SUBSTANCE	8
	1.2	HARMONISED CLASSIFICATION AND LABELLING PROPOSAL	
	1.3	PROPOSED HARMONISED CLASSIFICATION AND LABELLING BASED ON CLP REGULATION AND/OR I)SD CRITERIA
		10	
2	B	BACKGROUND TO THE CLH PROPOSAL	
	2.1	HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING	
	2.2	SHORT SUMMARY OF THE SCIENTIFIC JUSTIFICATION FOR THE CLH PROPOSAL	16
	2.3	CURRENT HARMONISED CLASSIFICATION AND LABELLING	17
	2.	.3.1 Current classification and labelling in Annex VI, Table 3.1 in the CLP Regulation	17
	2	.3.2 Current classification and labelling in Annex VI, Table 3.2 in the CLP Regulation	17
	2.4	CURRENT SELF-CLASSIFICATION AND LABELLING	17
	2.	.4.1 Current self-classification and labelling based on the CLP Regulation criteria	17
	2.	.4.2 Current self-classification and labelling based on DSD criteria	17
3	J	USTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL	
		Part B.	
S	CIEN	TIFIC EVALUATION OF THE DATA	
1	Π	DENTITY OF THE SUBSTANCE	
	1.1	NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE	
	1.2	COMPOSITION OF THE SUBSTANCE	
	1	.2.1 Composition of test material	
	1.3	PHYSICO-CHEMICAL PROPERTIES	
2	N	IANUFACTURE AND USES	
	2.1	Manufacture	
	2.2	Identified uses	23
3	C	CLASSIFICATION FOR PHYSICO-CHEMICAL PROPERTIES	24

1.1 [INS	ERT HAZARD CLASS WHEN RELEVANT AND REPEAT SECTION IF NEEDED]	24
1.1.1	Summary and discussion of [Insert physic-chemical hazard class]	
1.1.2	Comparison with criteria	
1.1.3	Conclusions on classification and labelling	

4 HUMAN HEALTH HAZARD ASSESSMENT	
4.1 TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)	25
4.1.1 Non-human information	
4.1.2 Human information	
4.1.3 Summary and discussion on toxicokinetics	
4.2 Acute toxicity	
4.2.1 Non-human information	
4.2.2 Human information	
4.2.3 Summary and discussion of acute toxicity	
4.2.4 Comparison with criteria	
4.2.5 Conclusions on classification and labelling	
4.3 SPECIFIC TARGET ORGAN TOXICITY – SINGLE EXPOSURE (STOT SE)	
4.4 IRRITATION	
4.4.1 Skin irritation	
4.4.1.1 Non-human information	
4.4.1.2 Human information	
4.4.1.3 Summary and discussion of skin irritation	
4.4.1.4 Comparison with criteria	
4.4.1.5 Conclusions on classification and labelling	
4.4.2 Eye irritation	
4.4.2.1 Non-human information	
4.4.2.2 Human information	
4.4.2.3 Summary and discussion of eye irritation	
4.4.2.4 Comparison with criteria	
4.4.2.5 Conclusions on classification and labelling	
4.4.3 Respiratory tract irritation	
4.5 CORROSIVITY	
4.6 SENSITISATION	
4.6.1 Skin sensititsation	
4.6.1.1 Non-human information	
4.6.1.2 Human information	
4.6.1.3 Summary and discussion of skin sensitisation	
4.6.1.4 Comparison with criteria	
4.6.1.5 Conclusions on classification and labelling	
4.6.2 Respiratory sensitisation	
4.7 REPEATED DOSE TOXICITY	
4.7.1 Non-human information	
4.7.1.1 Repeated dose toxicity: oral	41

4	.7.1.2	2 Repeated dose toxicity: inhalation	42
4	.7.1.3	Repeated dose toxicity: dermal	42
4	.7.1.4	Repeated dose toxicity: other routes	43
4.7.2	2	Human information	43
4.7	3	Other relevant information	43
4.7.4	4	Summary and discussion of repeated dose toxicity	43
4.7	5	Summary and discussion of repeated dose toxicity findings relevant for classification according to 44) DSD
4.7.0	6	Comparison with criteria of repeated dose toxicity findings relevant for classification according to	DSD
		44	
4.7.2	7	Conclusions on classification and labelling of repeated dose toxicity findings relevant for classific	cation
acco	ordin	g to DSD	44
4.8 S	PECI	FIC TARGET ORGAN TOXICITY (CLP REGULATION) – REPEATED EXPOSURE (STOT RE)	45
4.8.	1	Summary and discussion of repeated dose toxicity findings relevant for classification as STO	T RE
acco	ordin	g to CLP Regulation	45
4.8.2	2	Comparison with criteria of repeated dose toxicity findings relevant for classification as STOT RE.	45
4.8	3	Conclusions on classification and labelling of repeated dose toxicity findings relevant for classific	cation
as S	TOT	RE	45
4.9 C	GERM	I CELL MUTAGENICITY (MUTAGENICITY)	45
4.9.	1	Non-human information	45
4	.9.1.1	In vitro data	45
4	.9.1.2	2 In vivo data	46
4.9.2	2	Human information	47
4.9	3	Other relevant information	47
4.9.4	4	Summary and discussion of mutagenicity	47
4.9.	5	Comparison with criteria	47
4.9.0	6	Conclusions on classification and labelling	47
4.10	СА	RCINOGENICITY	48
4.11	No	ON-HUMAN INFORMATION	48
4.12	СА	RCINOGENICITY: ORAL	48
4	.12.1.	.1 Carcinogenicity: inhalation	52
4	.12.1.	.2 Carcinogenicity: dermal	52
4.12	2.2	Human information	52
4.12	2.3	Other relevant information	52
4.12	2.4	Summary and discussion of carcinogenicity	52
4.12	2.5	Comparison with criteria	53
4.12	2.6	Conclusions on classification and labelling	54
4.13	То	XICITY FOR REPRODUCTION	54

4.13.1	Effects on fertility	
4.13.1.1	Non-human information	54
4.13.1.2	Human information	54
4.13.2	Developmental toxicity	
4.13.2.1	Non-human information	54
4.13.2.2	Human information	54
4.13.3	Other relevant information	
4.13.4	Summary and discussion of reproductive toxicity	
4.13.5	Comparison with criteria	
4.13.6	Conclusions on classification and labelling	
4.14 Отн	ER EFFECTS	
4.14.1	Non-human information	
4.14.1.1	Neurotoxicity	63
4.14.1.2	Immunotoxicity	64
4.14.1.3	Specific investigations: other studies	64
4.14.1.4	Effects on breast fed children	64
4.14.1.5	Human information	64
4.14.2	Summary and discussion	
4.14.3	Comparison with criteria	
4.14.4	Conclusions on classification and labelling	
5 ENVIRO	NMENTAL HAZARD ASSESSMENT	
5.1 Degrai	DATION	
5.1.1 Si	tability	
5.1.2 B	iodegradation	
5.1.2.1	Biodegradation estimation	
5.1.2.2	Screening tests	
5.1.2.3	Simulation tests	
1.1.4 Si	ummary and discussion of degradation	
5.2 ENVIRO	NMENTAL DISTRIBUTION	77
5.2.1 A	dsorption/Desorption	
5.2.2 V	olatilisation	
5.2.3 D	istribution modelling	
5.3 Aquat	IC BIOACCUMULATION	
5.3.1 A	quatic bioaccumulation	
5.3.1.1	Bioaccumulation estimation	
5.3.1.2	Measured bioaccumulation data	
5.3.2 S	ummary and discussion of aquatic bioaccumulation	
522 E	ish	82

	5.3.3.1 Short-term toxicity to fish	82
	5.3.3.2 Long-term toxicity to fish	83
	5.3.4 Aquatic invertebrates	. 84
	5.3.4.1 Short-term toxicity to aquatic invertebrates	84
	5.3.4.2 Long-term toxicity to aquatic invertebrates	85
	5.3.5 Algae and aquatic plants	. 86
	5.3.6 Other aquatic organisms (including sediment)	. 87
5.	.4 Comparison with criteria for environmental hazards (sections $5.1 - 5.4$)	.90
5.	.5 Conclusions on classification and labelling for environmental hazards (sections $5.1 - 5.4$)	.91
	Proposed classification and labelling according to Reg. (EU) No 1272/2008, Table 3.2 (proposed by RMS)	. 93
6	OTHER INFORMATION	.94
7	REFERENCES	.95
8	ANNEXES	134

Part A.

1 PROPOSAL FOR HARMONISED CLASSIFICATION AND LABELLING

1.1 Substance

Substance name:	Etofenprox;			
	2-(4-ethoxyphenyl)-2-methylpropyl 3- phenoxybenzyl ether			
EC number:	407-980-2			
CAS number:	80844-07-1			
Annex VI Index number:	n.a.			
Degree of purity:	min. 970 g/kg			
Impurities:	The manufacturer has requested that all impurities remain confidential since it may provide an indication on the possible method of manufacturing. Information on impurities is provided in the confidential Annex.			

Table 1:Substance identity

The minimum degree of purity has been derived from the results of a 5-batch-analysis. The concentrations of Etofenprox measured in this study lay in the range of 97.2 to 99.0 % (w/w). After discussion at the Biocides Technical Meeting the experts agreed upon 97.0 % (w/w) as minimum purity.

1.2 Harmonised classification and labelling proposal

Table 2:	The current Annex	VI entry and	the proposed	harmonised	classification
----------	-------------------	--------------	--------------	------------	----------------

	Directive 67/548/EEC
CLP Regulation (including	(Dangerous
criteria according to 2 nd	Substances Directive;

	ATP of CLP)	DSD)
Current entry in Annex VI, CLP Regulation	Not currently in Annex VI, table 3.1 of the CLP Regulation	Not currently in Annex VI, table 3.2 of the CLP Regulation
Current proposal for consideration by RAC	 STOT Rep. Exp.2; H373 - May cause damage to organs (liver, kidney) H362 – May cause harm to breast-fed children Aquatic acute 1 (M=100) Aquatic chronic 1 (M=1000) H400 – Very toxic to aquatic life H410 – Very toxic to aquatic life with long lasting effects 	N; Dangerous for the environment R50-53 SCL: N; R50-53: $C_n \ge 0.25\%$; N; R51-53: $0.025\% \le C_n < 0.25\%$; R52-53: $0.0025\% \le C_n < 0.025\%$
Resulting harmonised classification (future entry in Annex VI, CLP Regulation)	STOT Rep. Exp.2; H373 - May cause damage to organs (liver, kidney) H362 – May cause harm to breast-fed children Aquatic acute 1 (M=100) Aquatic chronic 1 (M=1000) H400 – Very toxic to aquatic life H410 – Very toxic to aquatic life with long lasting effects	N; Dangerous for the environment R50-53 SCL: N; R50-53: $C_n \ge 0.25\%$; N, R51-53: $0.025\% \le C_n < 0.25\%$; R52-53: $0.0025\% \le C_n < 0.025\%$

1.3 Proposed harmonised classification and labelling based on CLP Regulation and/or DSD criteria

CLP Annex I ref	Hazard class	Proposed classification	Proposed SCLs and/or M- factors	Current classification ¹⁾	Reason for no classification ²⁾
2.1.	Explosives	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
2.2.	Flammable gases	n.a.	n.a.	currently not	data lacking
2.3.	Flammable aerosols	n.a.	n.a.	currently not	data lacking
2.4.	Oxidising gases	n.a.	n.a.	currently not classified	data lacking
2.5.	Gases under pressure	n.a.	n.a.	currently not	data lacking
2.6.	Flammable liquids	n.a.	n.a.	currently not classified	data lacking
2.7.	Flammable solids	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
2.8.	Self-reactive substances and mixtures	n.a.	n.a.	currently not	conclusive but not sufficient for classification
2.9.	Pyrophoric liquids	n.a.	n.a.	currently not	data lacking
2.10.	Pyrophoric solids	n.a.	n.a.	currently not	data lacking
2.11.	Self-heating substances and mixtures	n.a.	n.a.	currently not	data lacking
2.12.	Substances and mixtures	n.a.	n.a.	currently not	conclusive but not

	which in contact with water	ſ		classified	sufficient for
	emit flammable gases				classification
2.13		n.a.	n.a.	currently n	ot data lacking
2.13.	Oxidising liquids			classified	dutu lucking
				classificu	
2.14.		n.a.	n.a.	currently n	ot conclusive but not
	Oxidising solids			classified	sufficient for
					classification
2.15		n.a.	n.a.	currently n	ot conclusive but not
2.10.	Organic perovides			classified	sufficient for
	Organic peroxides			classified	alassification
					classification
2.16.	Substance and mixtures	n.a.	n.a.	currently n	ot data lacking
	corrosive to metals			classified	
3.1.		n.a.	n.a.	currently n	ot conclusive but not
	Acute toxicity - oral			classified	sufficient for
				clussified	classification
					classification
		n.a.	n.a.	currently n	ot conclusive but not
	Acute toxicity - dermal			classified	sufficient for
					classification
		n.a.	n.a.	currently n	ot conclusive but not
	Acute toxicity - inhalation			classified	sufficient for
	Tede toxicity initiation			classified	alassification
					classification
3.2.		n.a.	n.a.	currently n	ot conclusive but not
	Skin corrosion / irritation			classified	sufficient for
					classification
3.3.		n.a.	n.a.	currently n	ot conclusive but not
	Serious eye damage / eye			classified	sufficient for
	irritation			•••••••	classification
					classification
3.4.	Respiratory sensitisation	n.a.	n.a.	currently n	ot data lacking
				classified	
3.4.		n.a.	n.a.	currently n	ot conclusive but not
	Skin sensitisation			classified	sufficient for
					classification
		na	na		
3.5.	Germ cell mutagenicity	11.a.	11.a.	currently n	ot conclusive but not
				classified	sufficient for

						classification	
3.6.	Carcinogenicity	n.a.	n.a.	currently classified	not	conclusive but sufficient classification	not for
3.7.	Reproductive toxicity	n.a.	n.a.	currently classified	not	conclusive but sufficient classification	not for
3.8.	Specific target organ toxicity –single exposure	n.a.	n.a.	currently classified	not	conclusive but sufficient classification	not for
3.9.	Specific target organ toxicity – repeated exposure	STOT Rep. Exp. 2 H373: May cause damage to organs <or all="" organs<br="" state="">affected, if known> through prolonged or repeated exposure <state of<br="" route="">exposure if it is conclusively proven that no other routes of exposure cause the hazard>.</state></or>	n.a.	currently classified	not		
3.10.	Aspiration hazard	n.a.	n.a.	currently classified	not	conclusive but sufficient classification	not for
3.11.	Risk for breast fed babies	H362 – May cause harm to breast-fed children	n.a.	currently classified	not	n.a.	
4.1.	Hazardous to the aquatic environment	Aquatic Acute 1 H400: Very toxic to aquatic life Aquatic Chronic 1 H410: Very toxic to aquatic life with long lasting effects.	M=100 M=1000	currently classified	not		

5.1.	Hazardous to the ozone layer	n.a.	n.a.	currently not	data lacking
				classificu	

¹⁾ Including specific concentration limits (SCLs) and M-factors

²⁾ Data lacking, inconclusive, or conclusive but not sufficient for classification

Labelling: (Including criteria according to 2nd ATP of CLP)

GHS Pictograms:

Signal word: Warning

Hazard statements:

H362 - May cause harm to breast-fed children

H373 - May cause damage to organs (liver, kidney)

H410 - Very toxic to aquatic life with long lasting effects

Precautionary statements:

- P201 Obtain special instructions before use.
- P260 Do not breathe dust/fume/gas/mist/vapours/spray.
- P263 Avoid contact during pregnancy/while nursing.
- P264 Wash thoroughly after handling
- P270 Do not eat, drink or smoke when using this product
- P273 Avoid release to the environment

P308 + 313 - IF exposed or concerned: Get medical advice/attention

- P314 Get medical advice/attention if you feel unwell.
- P391 Collect spillage

P501 - Dispose of contents/container in accordance with local/regional/ national/international regulation (to be specified).

Proposed notes assigned to an entry: none

Hazardous property	Proposed classification	Proposed SCLs	Current classificatio n ¹⁾	Reason for no classification ²⁾
Explosiveness	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
Oxidising properties	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
Flammability	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
Other physico-chemical properties	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
[Add rows when relevant]				
Thermal stability	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
Acute toxicity	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
Acute toxicity – irreversible damage after single exposure	n.a.	n.a.	currently not	conclusive but not sufficient for classification
Repeated dose toxicity	n.a.	n.a.	currently not	conclusive but not sufficient for classification
Irritation / Corrosion	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
Sensitisation	n.a.	n.a.	currently not	conclusive but not sufficient for classification
Carcinogenicity	n.a.	n.a.	currently not	conclusive but not sufficient for classification
Mutagenicity – Genetic toxicity	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
Toxicity to reproduction – fertility	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification

Table 4:Proposed classification according to DSD

Toxicity to reproduction – development	n.a.	n.a.	currently not classified	conclusive but not sufficient for classification
Toxicity to reproduction – breastfed babies.	n.a.	n.a.	currently not	conclusive but not sufficient for classification
Effects on or via lactation				
Environment	N; R50-53 Dangerous for the environment; Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.	SCL: N; R50-53: $C_n \ge 0.25\%$; N; R51-53: 0.025% $\le C_n <$ 0.25%; R52-53: 0.0025% $\le C_n <$ 0.025%;	currently not classified	n.a.

1) Including SCLs

²⁾ Data lacking, inconclusive, or conclusive but not sufficient for classification

Labelling:

Labelling symbol:

Indication of danger: N - dangerous for the environment

R-phrases:

R50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment

S-phrases:

S60 - this material and its container must be disposed of as hazardous waste

S61 - avoid release to the environment. Refer to special instructions/safety data sheets

2 BACKGROUND TO THE CLH PROPOSAL

2.1 History of the previous classification and labelling

There is no current classification for Etofenprox according to Annex I of Council Directive 67/548/EEC.

No REACH registration dossier was available for this substance until 23 September 2011.

2.2 Short summary of the scientific justification for the CLH proposal

Human toxicology:

STOT RE, category 2, H373 - May cause damage to organs (liver, kidney): Weight of Evidence evaluation: Classification for H373 is required in case subchronic NOAELs are between 10 and 100 mg/kg bw day. Due to large dosing step in the 90 day rat study the respective LOAEL of 120 mg/kg bw day (liver histology, weight, disfunction) may be well below 100 mg/kg bw (NOAEL at 20 mg/kg bw day). The maternal LOAEL of the developmental neurotoxicity study is with 79 mg/kg bw/day below 100 (transient retardation of gestation weight gain by 14% from day 6 to 10). The LOAEL in the 2-year rat study at 26 mg/kg bw day (liver histopathology effects) and in the 2-year mouse study at 10 mg/kg bw day (kidney histopathology effects) are well below 100 mg/kg bw day, also if multiplied by 2 for accounting the longer exposure duration.

H362 – May cause harm to breast-fed children: Potential for accumulation in fat and haemorrhage effect in lactated rats observed in reproduction toxicity studies. However the observed effects are not considered to be specific developmental toxic effects but due to the naturally high ratio of milk uptake to bodyweight

(No classification for R48/20/21/22 (Danger of serious damage to health by prolonged exposure), is proposed since the guidance value for R48/20/21/22 is 50 mg/kg bw day, which is lower compared to the guidance value of 100 mg/kg bw day for H373, and consequently the overall weight of evidence summarized below in 1.5.3. does not appear sufficient for classification with R48/20/21/22.

No classification for R64 (May cause harm to breastfeed babies) is proposed, since R64 may only be applied in addition to other human health R phrases. No other human health R phrases are applicable.)

Environment:

Acute aquatic toxicity: $L(E)C_{50}$ values: 0.01 – 0.001 mg/L; lowest EC_{50} value (daphnia) =0.0012 mg/L

Chronic aquatic toxicity: NOEC values: 0.01 – 0.00001 mg/L; lowest chronic NOEC (daphnia) =0.000054 mg/L;

Fate & behaviour: not rapidly degradable; $logP_{ow} = 6.9$; BCF >1000

According to the above cited data it is proposed

- To classify the substance with Aquatic Acute 1, M factor =100, since the lowest EC_{50} value =0.0012 mg/L.
- To classify the substance with Aquatic Chronic 1, M factor =1000, since the substance is not rapidly degradable and the lowest chronic NOEC value =0.000054 mg/L.
- To classify the substance with N;R50/53 and to apply SCLs, because all acute $L(E)C_{50}$ values < 1 mg/L and the substance is not readily biodegradable with a log P_{ow} =6.9 and a BCF =2565.

2.3 Current harmonised classification and labelling

2.3.1 Current classification and labelling in Annex VI, Table 3.1 in the CLP Regulation

No current classification and labelling

2.3.2 Current classification and labelling in Annex VI, Table 3.2 in the CLP Regulation

No current classification and labelling

2.4 Current self-classification and labelling

2.4.1 Current self-classification and labelling based on the CLP Regulation criteria

No current self-classification and labelling

2.4.2 Current self-classification and labelling based on DSD criteria

<u>Hazard symbol:</u> N <u>Indication of danger:</u> Dangerous for the environment <u>Labelling symbol:</u>

<u>Risk phrases</u>: R50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment

Safety phrases: S2 Keep out of the reach of children

S13 Keep away from food, drink and animal feedingstuffsS27/28 After contact with skin, take off immediately all contaminated clothing, and wash immediately with plenty of water.S36/37/39 Wear suitable protective clothing, gloves and eye/face protection

3 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL

Biocides: No need for justification.

Also conclusion for non-classification for the various endpoints is of utmost importance for European harmonisation. RMS proposals for classification and non-classification were not discussed in detail within the European Biocides Technical Meetings.

Part B.

SCIENTIFIC EVALUATION OF THE DATA

1 IDENTITY OF THE SUBSTANCE

1.1 Name and other identifiers of the substance

EC number:	407-980-2
EC name:	3-phenoxybenzyl-2-(4-ethoxyphenyl)-2- methylpropyl ether
CAS number (EC inventory):	not attributed
CAS number:	80844-07-1
CAS name:	Benzene, 1-[[2-(4-ethoxyphenyl)-2- methylpropoxy]methyl]-3-phenoxy
IUPAC name:	2-(4-ethoxyphenyl)-2-methylpropyl 3- phenoxybenzyl ether
CLP Annex VI Index number:	not applicable
Molecular formula:	$C_{25}H_{28}O_3$
Molecular weight range:	376.47 g/mol

Table 5:Substance identity

Structural formula:

1.2 Composition of the substance

See confidential Annex. (concerns Table 6-8)

Current Annex VI entry: No current Annex VI entry.

1.2.1 Composition of test material

See confidential Annex.

1.3 Physico-chemical properties

Property	Result	Method	Reference
Melting point	$37.4 \pm 0.1^{\circ}\mathrm{C}$	OECD 102; EEC A.1	Tognucci, 1999
Boiling point	not determinable, degradation at about 200°C	OECD 103; EEC A.2	Tognucci, 1998a
Density	$1.172 \text{ g/cm}^3 \text{ at } 20.7^{\circ}\text{C} \pm 0.1^{\circ}\text{C}$	OECD 109; EEC A.3	Tognucci, 1998b
Vapour pressure	 8.13 x 10⁻⁷ Pa at 25°C 2.16 x 10⁻³ Pa at 80°C 7.01 x 10⁻³ Pa at 90°C 	OECD 104; EEC A.4	Tognucci, 2000
Henry's Law Constant	0.0136 Pa x m ³ /mol at 25°C	calculation	Tognucci, 2000
Physical state	thermodynamically stable state: crystalline solid; metastable state: supercooled liquid		Shimono, 2002a Mirbach, 2006
Physical state	solid (pure) or liquid (manufactured)		Shimono, 2002a
Colour	white (pure) or amber (man.)		Shimono, 2002b
Odour	slight aromatic odour (pure) or aromatic odour (manufactured)		Shimono, 2002c
Absorption spectra	- UV/VIS absorption spectra: similar at pH values from 1 to 12; absorption maximum at 273 nm.	OECD 101	Tognucci, 1998c
	in agreement with proposed structure.		

Table 9: Summary of physico - chemical properties

Solubility in water:	- bidistilled water: 22.5 μ g/l - buffer at pH 4: 5.2 μ g/l - buffer at pH 9: 12.0 μ g/l (measured at 20 ± 0.5°C) Solubility estimated to increase by ca. 4.9%/ °C	OECD 105; EEC A.6	Kunz, 2000 Mirbach, 2004a
Dissociation constant:	not applicable: etofenprox has no sites which can either be protonated or dissociate at pH 3 to 10 (expert statement)		Schmiedel, 1998
Solubility in organic solvents:	- Methanol: 4.9 g/100ml - Ethanol: 9.8 g/100ml - Acetone: 87.7 g/100ml - Ethylacetate: 83.7 g/100ml - Hexane: 66.7 g/100ml - Heptane: 62.1 g/100ml - Xylene: 85.6 g/100ml - Toluene: 86.2 g/100ml - Dichloromethane: 92.4 g/100ml (measured at $20^{\circ}\text{C} \pm 1^{\circ}\text{C}$) Solubility estimated to increase by ca. $4.9\%/^{\circ}\text{C}$	OECD 105	Tognucci, 1998d Mirbach, 2004a
Partition coefficient n- octanol/water:	Log $P_{OW} = 6.9$ / Log Pow estimated to increase by ca. 1%/ °C	OECD 107 and 117; EEC A.8	Tognucci, 1998e Mirbach, 2004b
Thermal stability:	no decomposition up to 150°C	OECD 113	Tognucci, 1998f

Flammability:	not flammable; no auto-flammability up to the melting point	EEC A.10 EEC A.16	Dublaski, 1991a; Dublaski, 1991b
Flash point:	no flash recorded at temperatures up to 110°C	EEC A.9	Bates, 2001a
Surface tension:	90% aqueous solution: 68.12 mN/m at 20.1°C	EEC A.5	Dublaski, 1991c
Viscosity:	not applicable		
Explosive properties:	not explosive	EEC A.14	Bates, 2001b
Oxidising properties:	not oxidising	EEC A.17	Bates, 2001c

2 MANUFACTURE AND USES

2.1 Manufacture

Biocides: Does not need to be specified for the CLH proposal.

2.2 Identified uses

Product type 08: Wood preservatives

Product type 18: Insecticides

3 CLASSIFICATION FOR PHYSICO-CHEMICAL PROPERTIES

Property	Result	Method	Reference
Thermal stability:	no decomposition up to 150°C	OECD 113	Tognucci, 1998f
Flammability:	not flammable; no auto-flammability up to the melting point	EEC A.10 EEC A.16	Dublaski, 1991a; Dublaski, 1991b
Flash point:	no flash recorded at temperatures up to 110°C	EEC A.9	Bates, 2001a
Explosive properties:	not explosive	EEC A.14	Bates, 2001b
Oxidising properties:	not oxidising	EEC A.17	Bates, 2001c

 Table 10:
 Summary table for relevant physico-chemical studies

1.1 [Insert hazard class when relevant and repeat section if needed]

No classification is proposed based on available data.

1.1.1 Summary and discussion of *[Insert physic-chemical hazard class]*

No classification is proposed based on available data.

1.1.2 Comparison with criteria

No classification is proposed based on available data.

1.1.3 Conclusions on classification and labelling

No classification is proposed based on available data.

4 HUMAN HEALTH HAZARD ASSESSMENT

4.1 Toxicokinetics (absorption, metabolism, distribution and elimination)

A comprehensive evaluation of the absorption, distribution, metabolism and excretion of [¹⁴C]-etofenprox has been performed in young adult male and female rats using an approximate 1:1 mixture of [1-¹⁴C-propyl]-etofenprox and [α -¹⁴C-benzyl]-etofenprox. Single oral doses of 30 and 180 mg/kg and multiple oral doses of 30 mg/kg were employed. Since little or no [1-¹⁴C-propyl]-etofenprox and [α -¹⁴C-benzyl]-etofenprox was eliminated in expired air, the main experiments were performed without the collection of expired air. Further studies were performed in pregnant and lactating females to evaluate the placental and milk transfer of single oral doses of 30mg/kg etofenprox. The metabolism of [¹⁴C]-etofenprox has also been investigated in the dog. An investigative study was also performed to determine if the plant metabolite, 2-(4-ethoxyphenyl)-2-methylpropyl 3-phenoxybenzoate (α -CO), was formed *in vivo* by the rat.

Hawkins et al. (1985a, document IIIA 6.2/01) demonstrated that single oral dose levels of 30 and 180mg/kg etofenprox are extensively absorbed from the gastrointestinal tract of male and female rats. A minimum of 54.1 and 53.3% administered dose is absorbed at 30mg/kg and 45.8 and 38.1% administered dose at 180mg/kg, in males and females, respectively. Maximum mean plasma concentrations (5.20 / 5.03 µg equiv/mL at 30 mg/kg, 17.3 / 16.4 µg equiv/mL at 180 mg/kg) occur 3 to 5 hours post-treatment in both sexes at both dose levels. The ratios of AUC values for a dose interval of 6 are 3.3 and 3.8 in males and females, respectively. Excretion proceeds rapidly, predominantly via the feces, and is almost complete within 5 days of administration. Fecal excretion amounts to 86.4 - 90.4% dose, whereas urinary elimination amounts to 6.3 - 10.7% administered dose in both sexes at both 30 and 180 mg/kg (see table 3.1.). The bulk of fecal elimination occurs within 72 hours of administration. Tissue distribution is extensive after multiple low doses but brain levels are uniformly low relative to blood plasma concentration. Tissue concentrations peak 4 hours after the last of 7 daily doses, and are highest in fat (94.2 - 101µg equiv/g), adrenal glands (41.4 - 43.4 µg equiv/g), liver (22.3 -30.5 µg equiv/g), ovaries (23.9 µg equiv/g), and thyroid gland (12.9 - 18.7 µg equiv/g). All other tissues, except for GI tract, showed maximum tissue concentrations $\leq 8.84 \ \mu g \ equiv/g \ compared with plasma concentrations of 5.39 - 6.93 \ \mu g$ equiv/g. Tissue concentrations decline rapidly in all tissues except fat in which concentrations at 240 hours are 25.0 -45.2 µg equiv/g, with estimated half-lives of approximately 5 and 8.5 days in males and females, respectively. The results of qualitative whole body autoradiography (QWBA) are consistent with the quantitative findings in all tissues except pancreas. The pancreas of both sexes had relatively high concentrations of etofenprox at 4 hours post-treatment (25.1 / 30.8 µg equiv/g, in males / females), but QWBA suggested very low levels. The discrepancy between the methods of estimation is considered to reflect contamination of the pancreas samples with fat in the quantitative estimation. Etofenprox is transferred via the placenta to the fetus but placental and fetal concentrations are low relative to maternal plasma concentration and elimination from these tissues is rapid. Unchanged etofenprox is actively secreted into maternal milk and is ingested by pups producing a concentration ratio of > 20 (pup stomach contents / maternal plasma). However, transfer to milk decreases markedly on cessation of dosing.

TLC of fecal extracts from animals treated with $[1^{-14}C$ -propyl]-etofenprox or $[\alpha^{-14}C$ -benzyl]-etofenprox indicated that cleavage of the etofenprox molecule is not a significant metabolic process. Unchanged etofenprox occurred at 6.6 / 14% (males / females at 30mg/kg) and 22.6 / 29.0% (males / females at 180mg/kg) administered dose 72 hours after a single oral dose. Two major metabolites of etofenprox accounting for a total of 28.7 – 38.9% administered dose are formed *in vivo* from the O-deethylation of the ethoxyphenyl moiety and by ring hydroxylation of the phenoxybenzyl moiety. Desethyletofenprox occurs at up to 25.1% and 4'-hydroxyetofenprox at up to 13.8% administered dose and are subsequently eliminated in bile and urine as glucuronide or sulphate conjugates. Other than unchanged etofenprox, none of the other components detected in fecal extracts were qualitatively identified. More than 90% of the radioactivity in fat is unchanged etofenprox, with very minor amounts of desethyletofenprox and 4'-hydroxyetofenprox and 4'-hydroxyetofenprox. The major components in liver extracts are unchanged etofenprox, desethyletofenprox and non-mobile radioactivity considered to represent conjugates. Most of the components of urine are non-mobile during TLC but enzyme hydrolysis releases up to 1.5 and 2.0% administered dose of 2 unidentified metabolites.

Table 11a:Mean excretion of radioactivity after a single oral dose of 30 or 180mg/kg[14C]-etofenprox, and AUC values determined from themean concentrations ofradioactivity in the plasma (Hawkins et al., 1985a; main study; see document IIIA 6.2/01,Table A6_2_01-3).

Matrix	Time	% administered dose				
	(hrs post-dose)	301	ng/kg	1801	ng/kg	
		Male	Female	Male	Female	
Urine	0 - 8	4.5	2.9	1.8	1.6	
	8 - 24	4.3	3.6	4.3	3.0	
	24 - 48	1.2	0.9	1.4	1.0	
	48 - 72	0.4	0.3	0.4	0.5	
	72 - 96	0.2	0.1	0.1	0.1	
	96 - 120	0.1	0.1	0.1	0.1	
	0 - 120	10.7	7.9	8.1	6.3	
Cagewash	120	0.1	0.1	0.1	0.1	
Feces	0 - 24	38.2	35.7	42.6	45.9	
	24 - 48	37.7	38.4	35.1	19.1	
	48 - 72	7.7	9.6	8.0	16.9	
	72 - 96	3.2	1.6	2.3	7.4	
	96 - 120	1.2	1.1	1.0	1.1	
	0 - 120	88.0	86.4	89.0	90.4	
G. I. tract ^a	120	0.5	0.6	0.4	0.5	
Liver	120	0.07	0.04	0.06	0.05	
Kidneys	120	0.005	0.004	0.004	0.005	
Carcass	120	2.8	2.9	3.8	3.4	
Total	0 - 120	102.2	97.9	101.5	100.7	
AUC		93	83	308	315	
(ug.hr/mL)						

^a including contents

Burri (non key study: Burri 2001a) identified 4 metabolites in fecal extracts in addition to unchanged etofenprox. 2-(4-ethoxyphenyl)-2-methylpropyl 3-(4-hydroxyphenoxy)-benzyl ether (4'-OH) occurred at up to 8.84% dose, 3-phenoxybenzyl 2-(4-hydroxyphenyl)-2-methylpropyl ether (DE) at up to 9.17% dose, 3-hydroxybenzyl 2-(4-ethoxyphenyl)-2-methylpropyl ether (DP) at up to 4.65% dose, and 3-phenoxybenzyl alcohol (m-PB-alc) at 0.45% dose. Seven unidentified fractions at 0.10 - 1.72% dose were also apparent. Unchanged etofenprox and 2-(4-ethoxyphenyl)-2-

methylpropyl 3-phenoxybenzoate (α -CO) do not occur in urine, but 2 identified and 4 unidentified metabolites occur. The major metabolite fractions occur at 7.85% dose (unidentified), 1.36% dose (3-phenoxybenzoic acid, m-PB-acid) and 1.97% dose (unidentified). The other unidentified metabolites and 4'-OH-PB-acid occurred at up to 0.36% dose. Fourteen identified and unidentified metabolites can be separated in organic extracts of liver, in total accounting for 25.9% of liver radioactivity. Identified metabolites were DE, DP, m-PB-acid, m-PB-aci and 4'-OH-PB-acid, each of which accounted for 0.8 to 1.5% recovered dose. Nine unidentified metabolites each occurred at 0.8 to 7.1% recovered dose. Although Burri (2001a) did not detect the putative metabolite α -CO in feces, liver, fat and urine, the occurrence of 3-phenoxybenzoic acid and 3-(4-hydroxyphenoxy) benzoic acid in liver and urine suggests that α -CO may be a transient metabolite of etofenprox. Tomoda (1986, non key study) demonstrated the presence of α -CO in both faeces and urine at very low levels (0.0018 and 0.0009% administered dose, respectively), suggesting the presence of the oxidative metabolic pathway, and concluded that α -CO undergoes rapid hydrolysis to form 3-phenoxybenzoic acid (PB-acid).

Burri (non key study: Burri 2001b) demonstrated the presence of the metabolites m-PB-acid and 4'-OH-PB-acid following the dosing of labelled α -CO. These metabolites are also seen following the metabolism of etofenprox and this is taken as evidence that α -CO is a transient metabolite in the metabolism of etofenprox.

With the exception of a slightly lower degree of oral absorption at high dose levels, the biokinetics and metabolism of etofenprox in the rat are not influenced by dose level, dose regimen and sex.

Single oral doses of 30 mg/kg etofenprox are substantially, but not completely, absorbed from the GI tract of the dog (non key study: Hawkins *et. al.*, 1985b). The speed of oral absorption is variable but appears to be faster in the female. It is excreted rapidly and predominantly in the feces, in which 89.5% administered dose is excreted. A mean of 86.7% of the total fecal excretion is eliminated during the first 24 hours after administration. Urinary excretion including cagewash accounts for 6.20% administered dose, most of which is eliminated during the first 24 hours. Plasma half lives are in the range 8.6 - 17 hours, assuming first order kinetics. Very high concentrations of radioactivity occur in the bile of both sexes (1036 / 815 μ g equiv/g, males / females) indicating the importance of biliary excretion. The highest tissue concentrations occur in the liver (3.1 - 9.6 μ g equiv/g wet weight). The rate and routes of elimination are similar in males and females. Unchanged etofenprox is the major component of feces (48.5 - 59.0% administered dose), but it does not occur in bile. Two metabolites occur in feces and bile, resulting from the O-deethylation of the ethoxyphenyl moiety and the ring-hydroxylation of the phenoxybenzyl moiety of etofenprox. In total these metabolites amount to 6.1 / 4.6% recovered dose in feces and 40.5 / 37.3% recovered dose in enzymatically hydrolysed bile, in males and females, respectively. Fat and liver contain >80% and 11 - 18% recovered dose, respectively, as unchanged etofenprox. Most of the components in liver (59 / 56% recovered dose in males / females) are polar compounds.

A proposed metabolic pathway in the rat is shown in Figure 3.1. (non key study: Burri et al. 2001)

An *in vivo* dermal absorption study of etofenprox has been performed in the male rat. Direct dermal absorption of etofenprox into the systemic circulation amounts to no more than 5,5% of applied doses up to 250 μ g/cm². Indirect

absorption, representing etofenprox localized in the skin initially, accounts for a substantially greater proportion of an applied dose, but the maximum total dermal absorption (direct + indirect) amounts to $\leq 27,5\%$ of the applied dose (Thalaker, 1999). Since the integrated direct uptake increased till the last analysed time point of 96h but the actual direct uptake starts decreasing after 38h after washing it would be in line with the guidance on dermal absorption provided by the European Commission document Sanco/222/2000 rev. 6 (November 27, 2002) to include a proportion of the indirect absorption into the direct dermal absorption value. The static levels of etofenprox in the skin (i.e. indirect absorption) from 10 hours to 96 hours suggest very limited mobilisation into the general circulation, at the most 36.9% disappearance (from 10 - 96 hours at 50 μ g/cm²) of skin localised etofenprox. Applying this to the higher indirect absorption value (22.6% - normalised value) of the 250 μ g/cm² group gives a proportion of 8.33% of applied dose to be added to the (normalized) direct absorption of 5.5%, which amounts to 13,8% of total dermal absorption for the active substance etofenprox. However these absorption data were generated for the active substance and not for the biocidal product. Therefore the assessment of etofenprox - exposure via the product is carried out with a 100% dermal absorption rate. In order to evaluate the effect of the dermal absorption rate on the exposure, an additional calculation was performed employing a 13.8% dermal absorption rate based on the data for the active substance. For the assessment of secondary exposure to etofenprox the dermal uptake rate of 13.8% was used, since it was not expected that solvents and other ingredients will substantially influence the uptake rate of etofenprox from dry wood.

For further details please see the attached study summaries.

Proposed metabolic pathway for Etofenprox in the rat:

¹⁴CO2 + conjugates

4.1.1 Non-human information

See chapter 4.1.

4.1.2 Human information

See chapter 4.1.

4.1.3 Summary and discussion on toxicokinetics

See chapter 4.1.

4.2 Acute toxicity

The acute toxicity of etofenprox has been evaluated using all practicable routes of human exposure that might lead to systemic exposure, and by a number of other parenteral routes. Thus, acute studies have been performed in the rat and mouse by the oral, dermal, subcutaneous and intraperitoneal routes and, in rats only, by inhalation. The acute toxicity of etofenprox has also been investigated in the dog. Since the original acute oral and dermal toxicity studies in the rat were performed more than 20 years ago before the universal adoption of Good Laboratory Practice, limit tests by these routes of administration have been performed according to the latest applicable guidelines. A summary of the acute studies is shown in Table 11b. (key studies highlighted bold).

Route	Guideline	Species, strain	Dose levels	Result	Reference
		Sex, No/group	Duration of		
			exposure		
Oral	OECD	Rat, Sprague	0 and 2000 mg/kg	$LD_{50} > 2000$	Oda (2003a)
	guideline no.	Dawley,	14 days post-	mg/kg	→ Document IIIA
	420 (1992) ≡	5 males and 5	exposure		6.1.1
	92/69/EEC	females /group			
	method B.1				
	bis				
dermal	OECD	Rat, Sprague	0 and 2000 mg/kg	LD ₅₀ > 2000	Oda (2003b)
	guideline no.	Dawley,	14 days post-	mg/kg ^a	→ Document IIIA
	402 (1987) ≡	5 males and 5	exposure		6.1.2
	92/69/EEC	females /group			
	method B.3				
Oral	In house	Rat, Sprague	20 and 40 mL/kg	$LD_{50} > 42.88g/kg^*$	Hashimoto (1982a)
dermal	methodology,	Dawley,	2 mL/kg	$LD_{50} > 2.14g/kg^*$	
Subcutaneous	exceeded the	10 males and 10	15 and 30 mL/kg	$LD_{50} > 32.16g/kg*$	
Intraperitoneal	requirements	females / group	20 and 40 mL/kg	$LD_{50} > 42.88g/kg$	
	for acute	/ administration	14 days post-		
	toxicity	route	exposure		
	testing in		r r r r r r r r r r r r r r r r r r r		
	67/548/EEC				
Oral	Not	Mouse, ICR,	50 and 100 mL/kg	$LD_{50} > 107.2g/kg^*$	Hashimoto (1982b)
dermal	applicable -	10 males and 10	1 and 2 mL/kg	$LD_{50} > 2.14g/kg*$	

 Table 11b:
 Summary table of relevant acute toxicity studies

Subcutaneous	no EU	females / group	25 and 50 mL/kg	LD ₅₀ > 53.6g/kg*	
Intraperitoneal	regulatory	/ administration	6.25; 12.5; 25 and	$LD_{50} > 53.6g/kg$	
	requirement	route	50 mL/kg	(M), 13.4g/kg (F)	
			14 days post-		
			exposure		
Inhalation	92/69/EEC	Rat, Sprague	0 and 5.88 mg/L	4-hour $LC_{50} >$	Jackson, <i>et al</i> .
	(method B.3)	Dawley,	14 days post-	5.88mg/L	(1983)
		5 males and 5	exposure		→ Document IIIA
		females / group			6.1.3
Oral	Not	Dog, Beagle,	5000 mg/kg	$LD_{50} > 5.0g/kg$	Harling, <i>et al</i> .
	applicable -	1 male and 1	14 days post-		(1985a)
	no EU	female/group	exposure		
	regulatory				
	requirement				

a.... value used for risk assessment

* The reviewer considers that a proportion of the oral, dermal and subcutaneous administered doses would not have been available for systemic absorption, and the LD₅₀ values are lower than the specified values.

Etofenprox exhibits a very low order of acute oral and parenteral toxicity in the rat and mouse, and low acute oral toxicity in the dog. The acute oral and dermal LD₅₀ values in rats of both sexes are > 2000mg/kg and no deaths or adverse clinical signs occur at the limit dose level (Oda, 2003a, 2003b). The estimated acute oral LD₅₀ value in the dog is > 5000mg/kg (Harling, *et al*, 1985a). The acute 4-hour inhalation LC₅₀ value in the rat is > 5.88mg/L (Jackson *et al.*, 1983) for a respirable aerosol in air (95.3% of particles < 5.5μ m).

For further details please see the attached study summaries.

4.2.1 Non-human information

See chapter 4.2.

4.2.2 Human information

No information available.

4.2.3 Summary and discussion of acute toxicity

See chapter 4.2.

4.2.4 Comparison with criteria

The acute oral LD50 values were above 2000 mg/kg bw, which is above the LD50 range that may lead to classification in CLP category 4 (300 to 2000 mg/kg bw) or DSD category 3 (200 to 2000 mg/kg bw).

The acute dermal LD50 values were above 2000 mg/kg bw, which is above the LD50 range that may lead to classification in CLP category 4 (1000 to 2000 mg/kg bw) or DSD category 3 (400 to 2000 mg/kg bw).

The acute inhalation LD50 values were above 5 mg/L, which is above the LD50 range that may lead to classification in CLP category 4 (dust, mist 1 to 5 mg/L) or DSD category 3 (1 to 5 mg/L).

4.2.5 Conclusions on classification and labelling

No classification necessary.

4.3 Specific target organ toxicity – single exposure (STOT SE)

No specific target organ toxicity was identified, no classification is necessary.

4.4 Irritation

4.4.1 Skin irritation

4.4.1.1 Non-human information

Table 12a. Summary table of relevant skin mination studie	Table 12a:	Summary	table of	relevant sk	in irritation	studies
---	------------	----------------	----------	-------------	---------------	---------

Species, strain	Method	EU index score*	Reversibility	Result	Reference
Sex, No tested		(Mean 24 - 72 hrs)	yes/no		
Rabbit, Japanese White	92/69/EEC	0.1	yes	Non-irritant	Kashima (1985a)
6 males	(method B.4),				→ Document IIIA
	4-h exposure				6.1.4.s

* EU index score = total erythema and edema score at the 24, 48 and 72hr intervals / no. of observation intervals

Table 12b Individual skin irritation and EU index sco	ores.
---	-------

Animal number	Indiv	EU index			
	30 minutes	24 hours	48 hours	72 hours	score*
1	0 / 0	0 / 0	0 / 0	0 / 0	0.0
2	0 / 0	0 / 0	0 / 0	0 / 0	0.0

3	0 / 0	0 / 0	0 / 0	0 / 0	0.0
4	0 / 0	0 / 0	0 / 0	0 / 0	0.0
5	0 / 0	0 / 0	0 / 0	0 / 0	0.0
6	0 / 0	0 / 0	1 / 0	1 / 0	0.6
Total score (erythema + edema)	0	0	1	1	Mean (24 - 72 hrs)
					0.1

* EU index score = total erythema and edema score at the 24, 48 and 72hr intervals / no. of observation intervals For further details please see the attached study summaries.

4.4.1.2 Human information

No information available.

4.4.1.3 Summary and discussion of skin irritation

See chapter 4.4.

4.4.1.4 Comparison with criteria

Etofenprox is non-irritant to skin based on the CLP and DSD classification system, since neither the overall mean index score nor any individual score was greater than or equal to 2.3 (CLP) or 2 (DSD) and inflammation did not persist to the end of the observation period in more than one animal and no pronounced variability was observed between the test animals. Consequently, etofenprox does not require classification with regard to skin irritation according to the CLP Regulation, including the 2nd ATP and not according to DSD criteria.

4.4.1.5 Conclusions on classification and labelling

No classification necessary.

4.4.2 Eye irritation

4.4.2.1 Non-human information

 Table 13a:
 Summary table of relevant eye irritation studies

Species, 1 strain	Method	Average Score (24 - 72hr)			Reversibility yes/no	Result	Reference	
Sex, No tested		Cornea opacity	Iris lesion	Erythema	Edema			
Rabbit, 9 Japanese (White J	92/69/EEC (method B.5)	0.00	0.00	0.44	0.00	yes	Non-irritant	Kashima (1985b) → Document IIIA 6.1.4.e

Table 13b: Group mean irritation scores

	Cornea	Iris	Conju	nctiva
			erythema	edema
Score (average of animals investigated)	0 to 4	0 to 2	0 to 3	0 to4
60 min	0.00	0.00	1.00	0.17
24 h	0.00	0.00	0.83	0.00
48 h	0.00	0.00	0.50	0.00
72 h	0.00	0.00	0.00	0.00
Average 24h, 48h, 72h	0.00	0.00	0.44	0.00
Area affected	n.a.	n.a.	no data	no data
Maximum average score (including area affected, max 110)	n.a.	n.a.	no data	no data
Reversibility	n.a.	n.a.	с	с
average time for reversion	n.a.	n.a.	48-72 hr	1-24 hr

n.a.: not applicable

c:completely reversible

Table 13c: Individual irritation scores.

Observation	Time (hr)		Mean					
	post-dose	1	2	3	4	5	6	score
Corneal opacity	1	0	0	0	0	0	0	0.0
Iris lesion		0	0	0	0	0	0	0.0
Conjunctival erythema		1	1	1	1	1	1	1.0
Conjunctival edema		0	0	0	0	1	0	0.17
Corneal opacity	24	0	0	0	0	0	0	0.0
CLH REPORT FOR ETOFENPROX

Iris lesion		0	0	0	0	0	0	0.0
Conjunctival erythema		1	0	1	1	1	1	0.83
Conjunctival edema		0	0	0	0	0	0	0.0
Corneal opacity	48	0	0	0	0	0	0	0.0
Iris lesion		0	0	0	0	0	0	0.0
Conjunctival erythema		0	0	1	1	0	1	0.50
Conjunctival edema		0	0	0	0	0	0	0.0
Corneal opacity	72	0	0	0	0	0	0	0.0
Iris lesion		0	0	0	0	0	0	0.0
Conjunctival erythema		0	0	0	0	0	0	0.0
Conjunctival edema		0	0	0	0	0	0	0.0

For further details please see the attached study summaries.

4.4.2.2 Human information

No information available.

4.4.2.3 Summary and discussion of eye irritation

See chapter 4.4.2

4.4.2.4 Comparison with criteria

Etofenprox produces transient minimal conjunctival erythema in some animals up to 48 hours after application. However, the individual and group mean irritation scores do not meet the criteria for classification as irritating to the eyes (at least in 2 of 3 animals a positive response of corneal opacity or iritis score ≥ 1 or conjunctival redness or oedema score ≥ 2 calculated as the means scores following grading at 24, 48 and 72 hours and which fully reverses within the observation period of 21 days). Therefore, etofenprox does not require classification for eye irritation according to the CLP Regulation 1272/2008, including the 2nd ATP.

The criteria for classification according to DSD are slightly higher (redness score equal to or higher than 2.5), thus etofenprox does also not fulfil the DSD criteria for eye irritation.

4.4.2.5 Conclusions on classification and labelling

No classification necessary.

4.4.3 Respiratory tract irritation

No data available.

4.5 Corrosivity

Etofenprox is not irritating and consequently also not corrosive.

4.6 Sensitisation

4.6.1 Skin sensititsation

4.6.1.1 Non-human information

Etofenrpox was negative in a guinea pig maximization test based on a zero incidence of sensitization (Kobayashi, 1985).

Species, strain Sex, No tested		Method	Number of animals sensitized / total number of animals	Result	Reference
Guinea	pigs,	equivalent to	0/20	No dermal sensitizer	Kobayashi, K. (1985)
English H	Harley,	92/69/EEC			→ Document IIIA 6.1.5
20 males/g	group	(method B.6)			

 Table 15:
 Summary table of relevant skin sensitisation studies

In contrast, all 20 animals treated with DNCB (dinitrochlorobenzene) showed skin reaction grades ranging from grade 1 (mild or loosely scattered erythema) to grade 3 (severe erythema and edema) at the 24, 48 and 72-hour observation periods. Therefore, the sensitization incidence was 100% for the positive control material, DNCB, demonstrating the sensitivity of the animal strain employed to a strong skin sensitizer.

For further details please see the attached study summaries.

4.6.1.2 Human information

No information available.

4.6.1.3 Summary and discussion of skin sensitisation

See chapter 4.6.

4.6.1.4 Comparison with criteria

The guinea pig maximisation test indicates no skin sensitising properties: With intradermal induction of a 20% mixture in corn oil and Freund Adjuvance, 0 from 20 animals scored positive. The criterion indicated in the CLP Regulation table 3.4.4. for category 1B (\geq 30% response at > 1% intradermal induction dose) is not met.

The DSD criteria are less differentiated (for adjuvant test a response of at least 30% of the animals is required). However also according to the DSD criteria no classification is required.

4.6.1.5 Conclusions on classification and labelling

No classification necessary.

4.6.2 Respiratory sensitisation

No information available.

4.7 Repeated dose toxicity

4.7.1 Non-human information

4.7.1.1 Repeated dose toxicity: oral

Table 17a:	Summary	table of	relevant	repeated	dose	toxicity	studies
	•					•/	

Study	NO(A)EL	LOAEL ^b	Target organs / main effects	Reference
Species / strain	(mg/kg bw/day)	(mg/kg bw/day)		
Sex, No/group				
Dose levels				
13-week dietary toxicity;	20 (males) ^a	120	Liver, thyroid:	Green et al.
Rat / Sprague-Dawley-	23 (females)	142	\downarrow weight gain (F), liver	(1983 a)
derived rats (CD strain);			dysfunction (both sexes),	\rightarrow document
20 males and 20 females			hepatocyte enlargement (F), \uparrow	IIIA 6.4.1.1_1
/group;			liver weight (both sexes), \uparrow	
0, 50, 300, 1800, 10800ppm			thyroid weight (M) and \downarrow T4	
			(M). At 734/820mg/kg	
			bw/day: ↑ thyroid	
			microfollicles in both sexes	
			and prolonged clotting time in	
			males	
13-week dietary toxicity;	375 (males) ^a	1975	Liver, kidney,	Green et al.
Mouse / Swiss mice (CD-1	390 (females)	2192	hemolymphoreticular system:	(1983b)
strain);			\uparrow mortality, \downarrow weight gain, \downarrow	document
20 males and 20 females			food utilisation,	IIIA 6.4.1.1_2
/group;			histopathological alterations	
0, 50, 500, 3000, 15000ppm			in kidneys, liver and	
			lymphoreticular system	

^aNOAEL considered for risk assessment

^b lowest observed adverse effect level

For further details please see the attached study summaries.

4.7.1.2 Repeated dose toxicity: inhalation

Study Species / strain	NO(A)EL	LOAEL ^b	Target organs / main effects	Reference
Species / strain	(ing/kg bw/uay)	(ing/kg bw/uay)		
Sex, No/group				
Dose levels				
13-week inhalation toxicity;	> 0.042mg/L	0.21mg/L	Liver, adrenals, thyroid:	Coombs et al.
Rat / Wistar rats (Crl:COBS	(both sexes)		\uparrow liver and kidney weights	(1985)
WI BR strain;			and minimal increase of	\rightarrow document
15 males and 15 females			cortical thickness in adrenals	IIIA 6.4.3.1
/group;			of females	
0, 0.042, 0.21, 1.01mg/L			At 1.01mg/L:	
			Minimal hepatocyte	
			enlargement, minimal	
			increase of microfollicles in	
			thyroid and of cortical	
			thickness in adrenals	

Table 17b: Summary table of relevant repeated dose toxicity studies

^aNOAEL considered for risk assessment

^b lowest observed adverse effect level

For further details please see the attached study summaries.

4.7.1.3 Repeated dose toxicity: dermal

Table 17c: Summary table of relevant repeated dose toxicity studies

Study	NO(A)EL	LOAEL ^b	Target organs / main effects	Reference
Species / strain	(mg/kg bw/day)	(mg/kg bw/day)		
Sex, No/group				
Dose levels				
4-week dermal toxicity;	> 1000	-	No target organs identified.	Killeen (2000)
Rabbit / New Zealand	(both sexes)		Non-adverse effects:	\rightarrow document
White;			Minor, localized, reversible	IIIA 6.3.2
10 males and 10 females			skin irritation	
/group;				
0, 400, 650, 1000mg/kg/day				

^a NOAEL considered for risk assessment

^b lowest observed adverse effect level

For further details please see the attached study summaries.

4.7.1.4 Repeated dose toxicity: other routes

No information available.

4.7.2 Human information

No information available.

4.7.3 Other relevant information

No other relevant information available.

4.7.4 Summary and discussion of repeated dose toxicity

The short-term oral toxicity of etofenprox has been evaluated in the rat and mouse by dietary administration at concentrations up to 15000ppm for 13 weeks. The parenteral toxicity of etofenprox has been investigated in a 4-week dermal study in the rabbit at dose levels up to 1000mg/kg bw/day and in a 13-week study by inhalation in the rat at aerosol concentrations up to 1.01mg/L, the highest technically achievable concentration for 13 weeks.

The short-term oral toxicity of etofenprox has not been investigated in the dog because a 52-week study in this species is available (Harling, *et al.*, 1985b) in which the liver was identified as the only target organ. The NOEL values in this study were 33.4 / 32.2mg/kg bw/day, with LOEL values for minimal hepatic effects of 352 / 339 mg/kg bw/day in males / females, respectively. Since the short-term (13-week) and long-term (104-week) LOEL values in male and female rats were 120 / 142 and 25.5 / 34.3mg/kg bw/day, respectively, the rat is considered to be more sensitive than the dog. Furthermore, the thyroid was not identified as a target organ in the dog. A summary of the short-term toxicity studies is shown in Table 17 (key studies highlighted bold).

The liver and thyroid gland were identified as unequivocal target organs in the rat by oral administration (Green, *et al.*, 1983a). The hepatic response was characterised by hepatocyte enlargement and clinical evidence suggestive of liver dysfunction affecting fat metabolism and, in males only, the synthesis of blood clotting factors. The effect on the thyroid gland was characterised by an increase in the number of thyroid microfollicles in both sexes and reduced levels of circulating thyroxine in males. Similar histomorphological effects in the liver and thyroid occurred after inhalation administration (Coombs, *et al.*, 1985), but there was no clinical evidence of effects on blood clotting time or circulating thyroxine levels. Although adrenal gland weights were increased at the highest dose level in the 13-week oral study, there was no evidence of functional or morphological alterations. In contrast, elevated adrenal weights in the 13-week

inhalation study were accompanied by an increase in adrenal cortical thickness.

The liver was also identified as a target organ in the mouse, which exhibited a similar response to the rat, but at a substantially higher dose level. The kidneys and haemolymphoreticular system were identified as target organs in the mouse at high dose levels (Green, *et al.*, 1983b). The kidneys exhibited cortical scarring, tubular dilatation and widespread tubular basophilia, accompanied by elevated plasma urea nitrogen concentration, suggestive of renal dysfunction. Effects on the haemolymphoreticular system comprised mildly reduced RBC count, haemoglobin concentration and haematocrit values, increased cellularity of the splenic white pulp, lymph node reactivity and reduced thymic cellularity.

Dermal application of etofenprox for 28 days did not produce any evidence of systemic toxicity (Killeen, 2000). However, minor local skin irritation occurred which showed evidence of reversibility.

The lowest NOEL value in short-term toxicity tests is 20mg/kg bw/day, determined in the 13-week oral study in the male rat.

4.7.5 Summary and discussion of repeated dose toxicity findings relevant for classification according to DSD

See chapter 4.10. and 4.11.

4.7.6 Comparison with criteria of repeated dose toxicity findings relevant for classification according to DSD

See chapter 4.10. and 4.11..

4.7.7 Conclusions on classification and labelling of repeated dose toxicity findings relevant for classification according to DSD

No classification for R48/20/21/22 (Danger of serious damage to health by prolonged exposure), is proposed since the guidance value for R48/20/21/22 is 50 mg/kg bw day, which is lower compared to the guidance value of 100 mg/kg bw day for H373, and consequently the overall weight of evidence summarized below in 4.8 does not appear sufficient for classification with R48/20/21/22.

No classification for R64 (May cause harm to breastfeed babies) is proposed, since R64 may only be applied in addition to other human health R phrases. No other human health R phrases are applicable.

4.8 Specific target organ toxicity (CLP Regulation) – repeated exposure (STOT RE)

4.8.1 Summary and discussion of repeated dose toxicity findings relevant for classification as STOT RE according to CLP Regulation

See chapter 4.8.2.

4.8.2 Comparison with criteria of repeated dose toxicity findings relevant for classification as STOT RE

STOT RE category 2, H373 - May cause damage to organs (liver, kidney) is proposed based on a weight of evidence evaluation: Classification for H373 is required in case subchronic NOAELs are between 10 and 100 mg/kg bw day. Due to large dosing step in the 90 day rat study the respective LOAEL of 120 mg/kg bw day (liver histology, weight, disfunction) may be well below 100 mg/kg bw (NOAEL at 20 mg/kg bw day). The maternal LOAEL of the developmental neurotoxicity study is with 79 mg/kg bw/day below 100 (transient retardation of gestation weight gain by 14% from day 6 to 10). The LOAEL in the 2-year rat study at 26 mg/kg bw day (liver histopathology effects) and in the 2-year mouse study at 10 mg/kg bw day (kidney histopathology effects) are well below 100 mg/kg bw day, also if multiplied by 2 for accounting the longer exposure duration.

H362 – May cause harm to breast-fed children: Potential for accumulation in fat and haemorrhage effect in lactated rats observed in reproduction toxicity studies. However these effects are not considered to be specific developmental toxic effects but due to the naturally high ratio of milk uptake to bodyweight.

4.8.3 Conclusions on classification and labelling of repeated dose toxicity findings relevant for classification as STOT RE

STOT RE category 2, H373 - May cause damage to organs (liver, kidney) is proposed.

4.9 Germ cell mutagenicity (Mutagenicity)

4.9.1 Non-human information

4.9.1.1 In vitro data

Etofenprox has been evaluated in a battery of genotoxicity studies comprising *in vitro* gene mutation assays in bacterial and mammalian cells, *in vitro* and *in vivo* clastogenicity studies, and an *in vitro* unscheduled DNA synthesis assay. A summary of the test battery and results is shown in Table 18 (key studies highlighted bold).

Test system / Study	Concentration range or dose	Resu	lt	Reference
	levels tested	+ 89	- S9	
S. typhimurium (5 strains);	0, 0 (solvent), 200 -	_	_	Edwards & Forster (1985)
In vitro gene mutation assay	$3200\mu g/plate$ (± S9 in both			\rightarrow document IIIA 6.6.1
	assays)			
Human lymphocytes;	24-hr: 0 (solvent), 6.25 -	_	_	Bootman, Hodson-Walker &
In vitro cytogenicity test	50µg/mL (± S9)			Dance (1985a)
24-hour exposure,				→ document IIIA 6.6.2
substantial deviations from				
method (S9 activation less				
than 1 cell cycle; only 1				
harvest time; no repeat				
experiment)				
Hamster V79 HGPRT ^{+/-}	0 (solvent), 9.75 - 156µg/mL	_	_	Seeburg & Forster (1985a)
cells;	(± S9 in both assays)	_	_	\rightarrow document IIIA 6.6.3
In vitro gene mutation assay				
HeLa S3 cells;	0 (solvent), 9.75 - 156µg/mL	_	_	Seeburg & Forster (1985b)
In vitro UDS assay	(- S9)	-	-	
	0 (solvent), 2.44 - 39.0µg/mL			
	(+ S9) in both assays			

 Table 18a:
 Summary of genotoxicity studies on etofenprox.

- unequivocal negative result

For further details please see the attached study summaries.

4.9.1.2 In vivo data

Table 18b:	Summary	of geno	toxicity	studies	on etofenprox
------------	---------	---------	----------	---------	---------------

Test system / Study	Concentration range or dose	Result	Reference	
	levels tested			
Mouse;	24-hr: 0, 80, 400, 2000mg/kg	_	Bootman, Hodson-Walker &	
In vivo micronucleus test;	48-hr: 0, 2000mg/kg	_	Dance (1985b)	
24, 48, 72-hour sacrifices	72-hr: 0, 2000mg/kg	_	→ document IIIA 6.6.4	

For further details please see the attached study summaries.

4.9.2 Human information

No information available.

4.9.3 Other relevant information

No other relevant information available.

4.9.4 Summary and discussion of mutagenicity

Etofenprox does not produce gene mutations in prokaryotic (Edwards & Forster, 1985) or eukaryotic (Seeburg & Forster, 1985a) cells *in vitro*, either in the presence or absence of a mammalian metabolic activation system. It is not clastogenic in an *in vitro* cytogenetics assay in peripheral human lymphocytes (Bootman, Hodson-Walker & Dance, 1985a). Etofenprox does not influence unscheduled DNA synthesis in cultured human HeLa cells (Seeburg & Forster, 1985b) or in the *in vivo* mouse micronucleus test (Bootman, Hodson-Walker & Dance, 1985b). Despite the absence of an effect on the PCE/NCE ratio in the mouse micronucleus study, there is evidence from the tissue distribution study (Hawkins *et. al.*, 1985a, unpublished report no. HRC/MTC 68/84610, document IIIA6.2.1) that a low concentration of etofenprox is widely distributed in the bone marrow after administration of 7 doses of 30mg/kg/day. Therefore, the assay is considered a valid assessment of *in vivo* clastogenic activity.

Based on the absence of genotoxicity in bacterial and mammalian point mutation assays and in an *in vivo* clastogenicity study, an *in vivo* study in germ cells is not required. It is concluded that etofenprox and metabolites do not exhibit primary genotoxic properties at the DNA, gene and chromosome levels of organization in the test systems employed.

4.9.5 Comparison with criteria

See chapter 4.9. The three standard in vitro assays and the in vivo micronucleus assay is clearly negative, no further tests are required and no classification is necessary, neither according to CLP Regulation, nor according to the DSD criteria.

4.9.6 Conclusions on classification and labelling

No classification necessary.

4.10 Carcinogenicity

4.11 Non-human information

4.12 Carcinogenicity: oral

A 52-week dietary toxicity study in the dog and chronic dietary toxicity and carcinogenicity studies of at least 104 weeks duration in the rat and mouse have been performed on etofenprox. The etiology of one specific finding in the rat study was subsequently investigated in a mechanistic study in which the effects of etofenprox on the induction of specific hepatic microsomal enzymes and their influence on pituitary-thyroid homeostasis and thyroid morphology / cytology were examined. A summary of the studies is shown in Table 19a (key studies highlighted bold).

		<u> </u>		
Study	NOEL	LOAEL	Target organs / main effects	Reference
Species / strain	(mg/kg bw/day)	(mg/kg bw/day)		
Sex, No/group				
Dose levels				
52-week dietary toxicity	33.4 (m)	352	Liver:	Harling <i>et al</i> .
Dog / beagle	32.2 (f) ^a	339	Reversible minimal liver	(1985b)
4 males and 4 females/group			dysfunction, \uparrow liver weight,	→ document
0, 100, 1000, 10000 ppm			minimal swelling of	IIIA 6.5.2
			hepatocytes.	
110-week dietary toxicity /	Carcinogenicity	Carcinogenicity	Liver, thyroid:	Green <i>et al</i> .
carcinogenicity study;	> 187 (m)	-	At 25.2mg/kg bw/day: ↑	(1986 a)
Sprague-Dawley-derived	> 249 (f)	-	incidence of eosinophilic	→ document
rats (CD strain)	Thyroid effects:	Thyroid effects:	hepatocytes (males)	IIIA 6.5.1/01
50 males and 50	25.5 (m)	187 (m)	At 187 / 249mg/kg bw/day: \downarrow	
females/group	34.3 (f)	249 (f)	weight gain, \downarrow food	
0, 30, 100, 700, 4900 ppm	All effects:	All effects:	consumption, \uparrow liver, kidney,	
	3.7 (m) ^a	25.5	thyroid weights, hepatocyte	
	4.8 (f)	34.3	enlargement, \uparrow clotting time	
			(males), ↑ benign neoplastic	
			alterations of thyroid	
108-week dietary	Carcinogenicity:	Carcinogenicity:	Liver, Kidney:	Green et al.
toxicity / carcinogenicity	> 547 (m)	-	Histopathological alterations	(1986b)
study;	>616 (f)	-	in kidneys	\rightarrow document

 Table 19a:
 Summary table of relevant carcinogenicity studies:

CLH REPORT FOR ETOFENPROX

Swiss mice (CD1 strain)	All effects:	All effects:	At 4900ppm:	IIIA 6.5.1/02
52 males and 52	3.1 (m) ^a	10.4	\uparrow male mortality, \downarrow weight	
females/group	3.6 (f)	11.7	gain, minor haematological	
0, 30, 100, 700, 4900 ppm			effects, \uparrow liver weight	
4-week dietary investigative	81.2 ^b (m)	316 °	1° target organ: liver	Smith
study;	90.2 ^b (f)	380 °	2° target organ: thyroid	(2003b)
Sprague-Dawley-derived			↑ microsomal protein (m);	\rightarrow document
rats (Crl:CD(SD)IGS) BR			↑ hepatic UDPGT (m/f)	IIIA 6.10
strain)			↑ serum TSH (m/f)	
20 males and 250			\downarrow serum T4 (m)	
females/group			↑ thyroid proliferation (m)	
0, 1250, 5000, 20000 ppm			↑ liver weight (m/f)	
			liver hypertrophy (m/f)	

(m) males; (f) f emales

^a considered for risk assessment as NOAEL

^b lowest NOEL for the primary effect on liver

^c primary effect on liver not interpreted not as LOAEL but as LOEL

In the dog, the liver was identified as a target organ (Harling, *et al.*, 1985b), but the hepatic effects were minimal and reversible, and occurred only at dietary concentrations of 10000ppm, equivalent to dose levels of 352mg/kg bw/day in males and 339mg/kg bw/day in females. The effect comprised minor changes in serum clinical chemistry parameters, increased liver weight and, in some female animals, swelling of centrilobular hepatocytes. Since no other treatment-related adverse effects were evident in the study, an NOEL was established as 1000ppm, equivalent to dose levels of 33.4 and 32.2mg/kg bw/day in males and females, respectively.

No further target organs were identified in the long-term studies in rats and mice that had not been identified in shortterm toxicity studies. In the rat, the liver and thyroid gland were confirmed as target organs for non-neoplastic effects (Green, *et al.*, 1986a). Cystic follicles occurred at increased incidence in the thyroid of females after prolonged treatment at the highest dietary level of 4900ppm, equivalent to a dose level of 249mg/kg bw/day. Increased height of the thyroid follicular epithelium also occurred at this dose level after 26 weeks of treatment, but not subsequently. In males treated at 4900ppm (187mg/kg bw/day), the thyroid effect was confined to increased weight without histopathological correlate from week 26 to termination. There were no consistent effects on the levels of circulating thyroid hormones, although T_3 activity was reduced by approximately 33% in females at 4900ppm in week 25 only. The hepatic alterations were evident in both sexes at 4900ppm and comprised centrilobular hepatocyte enlargement after 26 and 106 weeks of treatment, but liver weight was increased at all necropsy intervals. Eosinophilic hepatocytes were a further histopathological feature in some animals of both sexes after prolonged treatment at 4900ppm during the first 6 months of treatment. An NOAEL value for all non-neoplastic effects was established in the rat as 100ppm, equivalent to dose levels of 3.7 and 4.8mg/kg bw/day in males and females, respectively.

In the mouse, the kidneys were identified as the main target organ (Green, *et al.*, 1986b). The renal lesion was evident at necropsy as an increased incidence of cortical scarring and pale coloration in both sexes and organ enlargement in males. The histological lesion was characterized by an increased incidence and severity of basophilic and dilated tubules. Dilated/cystic Bowman's capsules, dilated medullary tubules, focal loss of tubules, prominent interstitial papillary tissue and papillary mineralization were associated with the primary renal change. The lesion was confined to animals treated at 4900ppm at 52 weeks but was evident in some animals treated at 100ppm and higher after 104 weeks of treatment. The severity of the renal lesion in males treated at 4900ppm contributed to increased mortality in this group. Other treatment-related effects were confined to animals treated at 4900ppm and comprised reduced weight gain, minor haematological changes and increased liver weight without histopathological correlate. An NOAEL for all non-neoplastic effects was established as 30ppm, equivalent to dose levels of 3.1 and 3.6mg/kg bw/day in males and females, respectively.

Etofenprox did not induce frank carcinogenic effects in either the rat or the mouse, but in the rat, there was an increased incidence of a benign neoplasm of the thyroid, follicular cell adenoma at the highest applied dose of 4900ppm equivalent to dose levels of 186,7 and 249,1 mg/kg bw/day in males and females, respectively. The incidence for males –however- was borderline to statistical significance. Therefore, an NOEL value for thyroid effects in the rat was established as 700ppm, equivalent to dose levels of 25,5 and 34,3 mg/kg bw/ day in males and females, respectively. A NOEL for carcinogenic effects in the mouse was established as >4900ppm, the highest dose level employed, equivalent to dose levels of 546.9 and 615.5mg/kg bw/day in males and females, respectively, since the evidence for carcinogenic effects at this dose level was considered insufficient: Three males at 4900ppm and one male at 700ppm showed a renal neoplasm. However two of the neoplasms at the highest dose level were benign and the statistical evidence was not sufficient.

Smith (2003b) investigated the etiology of the increased incidence of rat thyroid follicular cell adenomas based on the observation that etofenprox produced increased liver weight and hepatic hypertrophy in the rat after short-term (Green, *et al.*, 1983a; Coombs, *et al.*, 1985 – see document A 6.4.1/01 and A 6.4.3.1) and long-term administration (Green, *et al.*, 1986a). Specifically, Smith (2003a) investigated the hypothesis that etofenprox produces as primary effect hepatic microsomal enzyme induction, ultimately leading to a secondary effect of increased thyroid follicular cell adenomas mediated by a physiological homeostatic mechanism. The study results, summarised in Table 19b, demonstrate that hepatic microsomal UDPGT activity and circulating TSH concentrations were increased in both sexes after 2 weeks (2w) of treatment.

Although TSH concentrations remained elevated after 4 weeks (4w) of treatment, they returned to normal

concentrations on withdrawal of treatment. Serum T4 concentrations in males were reduced by 44.4 and 23.3% after 2 and 4 weeks of treatment, respectively, but the effect was fully reversible within 4 weeks of treatment withdrawal. Similarly, mild thyroid cell proliferation, demonstrable in males only, was fully reversible after treatment withdrawal. Smith also demonstrated an equivocal increase in thyroid weight and reduced thyroid peroxidase activity.

Observation	Effect observed (+) / not observed (-) in:						
	Ν	Aales at (ppm):	Females at (ppm):			
	1250	5000	20000	1250	5000	20000	
\uparrow serum TSH concentration	+(2w/4w)	+(2w/4w)	+(2w/4w)	+(2w/4w)	+(2w/4w)	+(2w/4w)	
\downarrow serum T3 concentration	-	-	-	-	-	-	
\downarrow serum T4 concentration	-	-	+ (2w)	-	-	-	
↑ microsomal protein	-	-	+ (4w)	-	-	-	
↑ hepatic UDPGT (4-MUGT)	-	+ (2w)	+ (2w)	-	-	+ (2w)	
↑ hepatic UDPGT (p-NPGT)	-	+ (2w)	+ (2w)	-	+ (2w)	+ (2w)	
↓ thyroid peroxidase	± (4w)	± (4w)	± (4w)	± (4w)	± (4w)	± (4w)	
↑ hepatic BrdU labelling index	-	-	-	-	-	-	
↑ thyroid BrdU labelling index	-	-	+ (2w/4w)	-	-	-	
↑ liver weight	-	+ (2w/4w)	+ (2w/4w)	-	-	+ (2w/4w)	
↑ thyroid weight	-	-	± (2w/4w)	-	-	± (2w/4w)	
Liver hypertrophy	NE	NE	+ (2w)	NE	NE	+ (2w/4w)	
↑ hepatic multinucleated cells	NE	NE	+ (2w/4w)	NE	NE	+ (2w/4w)	
Thyroid histopathology	-	-	-	-	-	-	

Table 19b: Summary of findings from 4-week dietary investigative study, Smith (2003b)

(w) weeks

 \pm equivocal treatment-related effect; NE not evaluated

The results are consistent with the hypothesis that the primary effect of etofenprox is on the liver, manifested as increased hepatic microsomal enzyme induction, specifically UDPGT activity. Since UDPGT is known to be a major route of metabolism and elimination of circulating T4, increased circulating TSH concentration is considered to be a secondary, physiological response to reduced circulating T4 concentration. Similarly, the subsequent event observed by Smith (2003a), a mild stimulation of thyroid cell proliferation in males, is also considered to be a secondary, physiological response. There is evidence in the literature that a sustained elevation in circulating TSH concentration can lead initially to hypertrophy of thyroid follicular cells, followed by hyperplasia and ultimately a greater risk of

increased incidence of thyroid adenomas (McClain *et al.*, 1988¹; Marquardt & Schäfer 2004, p1252f²). Therefore, the data of Smith (2003a) present consistent support for the contention that the increased incidence of thyroid adenomas in the combined chronic toxicity/carcinogenicity study was a consequence of increased TSH concentration, rather than a direct effect of treatment with etofenprox. Notwithstanding the absence of an effect on circulating T4 concentration and thyroid cell proliferation in female rats, it is concluded that the increased incidence of thyroid adenomas in rats was mediated by an indirect, non-genotoxic mechanism with a clear NOEL for the primary effect on the liver of 81.2mg/kg bw/day. Furthermore the effect is considered less relevant to humans, since the human plasma levels of T4 are much higher and the turn over slower leading to a much more stable T4 concentration and therefore to a reduced positive feedback on TSH synthesis and hypertrophy of thyroid follicular cells.

For further details please see the attached study summaries.

4.12.1.1 Carcinogenicity: inhalation

No information available.

4.12.1.2 Carcinogenicity: dermal

No information available.

4.12.2 Human information

No information available.

4.12.3 Other relevant information

No other relevant information available.

4.12.4 Summary and discussion of carcinogenicity

See chapter 4.10.

¹ McClain, R.M., Posch, R.C., Bosakowski, T. and Armstrong, J.M. (1988). Studies on the mode of action for thyroid gland tumor promotion in rats by phenobarbital, Toxic. Appl. Pharmacol., 94:254 - 265.

² Marquart & Schäfer (editors) (2004). Lehrbuch der Toxikologie. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart; relevant chapter : Diether Neubert, p 1209f, in specific p1252f.

4.12.5 Comparison with criteria

According to CLP a classification for carcinogenicity may be based on strength of evidence (sufficient or limited) and additional considerations.

There was <u>insufficient</u> evidence for carcinogenicity in the <u>mouse study</u>: With three males in the high dose and the one male in the medium dose that a renal neoplasm was observed, however two of the neoplasms at the highest dose level were benign and the statistical evidence was not sufficient.

There was limited evidence for carcinogenicity in the rat study:

There was no significant treatment-related effect on the incidence of follicular carcinomas for either male or female rats.

In males for combined follicular tumors (adenoma and/or carcinoma), there was a significant positive trend with dose (p=0.009), although in the pairwise comparison there was no significant effect on incidence between the control and the 4900ppm dosage group (p=0.08).

In females for combined follicular tumors (adenoma and/or carcinoma), there was a significant effect on incidence between the control and the 4900 ppm dosage group (p=0.005) and this was supported by a significant trend test for positive trend (p<0.001). The increased incidence of thyroid follicular tumors in female rats treated with 4900 ppm was due to the increase in follicular adenomas.

Apart from the thyroid follicular tumors mentioned previously there was no deviation from the expected tumor profile for laboratory maintained rats of this strain.

In summary, in the light of the significant trend test for males, the significant though benign effect with females and the thyroid organ weight, marcroscopic and histological alterations it is prudent to assume that at the high doses of 187 (male) or 249 (female) mg/kg bw there is <u>limited evidence</u> of thyroid tumour development in rats.

However <u>additional considerations</u> apply that further reduce the overall level of concern: Results from a mechanistic study are consistent with the hypothesis that the primary effect of etofenprox is on the liver, manifested as increased hepatic microsomal enzyme induction with consequent T4 reduction, TSH increase and finally increased thyroid stimulation. This mode of action is based on an indirect, non-genotoxic mechanism with a clear NOEL, which is furthermore considered of very low relevance for humans due to the different T4 plasma kinetics.

Sex	Thyroid gland alteration	Incidence at (ppm):					
		0	30	100	700	4900	
Male	No. animals examined	50	50	50	50	50	
	Follicular cell carcinoma	0	0	1	3	2	
	Follicular cell adenoma	6	6	4	5	11	
	Follicular cell adenoma and/or	6	6	5	8	13	
	carcinoma						
Female	No. animals examined	50	50	50	50	50	

Table 19c : Thyroid gland alterations in the 2-year rat study (Green et al 1986a)

CLH REPORT FOR ETOFENPROX

Follicular cell carcinoma	0	0	0	2	1
Follicular cell adenoma	0	3	2	0	9
Follicular cell adenoma an	d/or 0	3	2	2	9*
carcinoma					

In principle the DSD criteria are very similar.

4.12.6 Conclusions on classification and labelling

No classification necessary, neither according to CLP regulation, nor according to the DSD criteria.

4.13 Toxicity for reproduction

4.13.1 Effects on fertility

4.13.1.1 Non-human information

See chapter 4.13.4

4.13.1.2 Human information

No information available.

- 4.13.2 Developmental toxicity
- 4.13.2.1 Non-human information

See chapter 4.13.4

4.13.2.2 Human information

No information available.

4.13.3 Other relevant information

No other information available.

4.13.4 Summary and discussion of reproductive toxicity

An extensive evaluation of the reproductive toxicity of etofenprox was undertaken in the rat and rabbit by oral administration. A summary of the reproductive studies is shown in Table 20a (key studies highlighted bold).

Study / species / dose levels	NO(A)EL	LO(A)EL	Main effects / target	Reference
	(mg/kg/day)	(mg/kg/day)	organs	
Oral (gavage) developmental/ fertility study; treatment of male PO: 9 weeks prior to	5000 ^a	> 5000	at \geq 12,5 \uparrow salivation and brown staining around mouth	Cozens et $al.$ (1985a) \rightarrow document IIIA
mating, mating, 20 days post mating; treatment of females: 2	250 ^b	5000	slightly lower litter size (not significant)	6.8.1.1/1
weeks prior to mating, mating, till day 7 of gestation; sacrifice of all animals at day 20 of gestation, analysis of P0 and F1 animals Rat; 0, 12.5, 250, 5000 mg/kg/day	5000 °	> 5000	-	
Oral (gavage) developmental/ fertility study: P0 treatment from d6 to d17 of pregnancy;	250 ^a	5000	 ↓ F0 maternal gestation weight gain (group mean bw 3.6% lower than control) 	Cozens et $al.$ (1985b) \rightarrow document IIIA
foetal analysis, follow up	5000 ^b	> 5000	-	6.8.1.1/2
without treatment to F2 weaning Rat; 0, 12.5, 250, 5000 mg/kg/day	250 °	5000	↓ F1 maternal gestation weight gain (4% lower than control	
Oral (gavage) peri / postnatal study: P0 treatment from d17 of pregnancy to d21 pp; follow up without treatment to F2	250 ^a	5000	at 5000 \downarrow F0 maternal gestation weight gain; at \geq 250 \uparrow salivation and brown staining around mouth	Cozens <i>et al.</i> (1985c) \rightarrow document IIIA 6.8.1.1/3
weaning	5000 ^b	> 5000	-	
Rat; 0, 12.5, 250, 5000 mg/kg/day	250 °	5000	↑ pup mortality, ↓ weight gain, tremor, haemorrhage, histopathological alterations in kidneys of F1	
Dietary multigeneration study;	37 ^{ad}	246	\downarrow weight gain, \uparrow liver,	Cozens <i>et al</i> .
Rat;			kidney and thyroid weights.	(1985d)
0, 100, 700, 4900ppm	37 ^{bd}	246	↑ pup mortality (minimal), ↓ pre-weaning weight gain.	→ document IIIA $6.8.2$

 Table 20a:
 Summary table of relevant reproductive toxicity studies

CLH REPORT FOR ETOFENPROX

	4.3 ^{cd}	30	↑ liver and kidney weights:	
			kidney lesions at 700ppm:	
			pre-weaning tremors /	
			abnormal gait	
			histopathological alterations	
			in liver kidneye and	
			themaid and \uparrow has the second	
			thyroid, and heart weight	
			at 4900ppm.	
Oral (gavage) developmental	10 ^a	50	\downarrow weight gain.	Bottomley (1985)
toxicity;	50 ^b	250	\uparrow slight post-implantation	
Rabbit;			loss.	
0, 10, 50, 250 mg/kg/day	250 °	> 250	-	
Oral (gavage) developmental	100 ^a	300	\downarrow weight gain / food cons.	Fisher (2000)
toxicity;	100 ^b	300	↑ slight post-implantation	\rightarrow document IIIA
Rabbit;			loss and \downarrow fetal weight gain.	6.8.1.2
0, 30, 100, 300 mg/kg/day	100 ^c	300	See above (b)	
Oral (dietary) developmental	28 ^a	79	Transient retardation of	Myers (2003)
neurotoxicity study; rat;			gestation weight, at 238:	\rightarrow document IIIA
28, 79, 238 mg /kg bw/day			changes in weight gain,	6.9.3
			increased rearing activity	
	> 238 ^b	> 238	-	
	28 ^c *	79	ocular lesions; at 238:	
			increased pup mortality,	
			subcutaneous haemorrhagic	
			lesions , <i>îauditory</i> startle	
			response amplitudes (F);	
			motor activity and latency to	
			peak startle response (M)	

^a NO(A)EL for effects on parental animals;

^b NOEL for reproductive effects;

- ^c NOEL for developmental and offspring effects;
- ^d equivalent to the lowest calculated dose level for either sex
- * considered as NOAEL for risk assessment

Although two developmental toxicity studies in the rabbit have been performed and submitted (Bottomley, 1985; Fisher, 2000), the most recent study is considered valid for human risk assessment since it was performed according to a more recent guideline specifying treatment from day 6 to day 28 of gestation. Conversely, the former study is

considered not relevant for human risk assessment, it was performed in groups of animals from different sources.

In the developmental rabbit study from Fisher 2000, embryotoxicity was confined to slightly increased postimplantation loss (10.1% vs. 4.3% in control) and reduced embryofetal weight gain (85% of control). However these effects were only observed in the high dose group of 300 mg/kg bw day that induced severe maternal toxicity in terms of reduced body weight (-10% compared to control), body weight loss (-2.9% from day 6 to 29) and reduced food consumption (-18.9% compared to control). At 300 mg/kg bw day also abortion and/or unscheduled death occurred in 4 dams (compared to 0, 1, 1 in control, low and mid dose). The nature and incidence of fetal malformations did not indicate an effect of treatment at any dose level. Some skeletal variations occurred at higher incidence compared to control, but these were either within the historical control range and without clear dose relationship (unossified 5th sternebra) or were apparent only at the high dose and considered as a consequence of intrauterine growth retardation (unossified talus) or were apparent only in the high dose and of numerically small difference to controls.

In the developmental/fertility rat study (Cozens, *et. al.*, 1985b) there were no treatment-related effects at any dose level on the nature and incidence of malformations, visceral anomalies and skeletal variants. Adverse effects on the outcome of pregnancy in this developmental study were confined to reduced maternal gestation weight gain at the high dose of 5000 mg/kg bw day resulting for P0 in 3.6% reduced body weight at day 20 of gestation and 3% at day 21 post partum and for P1 in 4% body weight at day 20. The physical, behavioral and sexual development of F1 progeny exposed *in utero* during the critical period of organogenesis were unaffected by treatment with etofenprox.

The NOEL values for developmental effects in this rabbit and rat studies were the same as the maternal NOEL values, indicating that the developing embryo is no more susceptible than the maternal animal.

Etofenprox does not produce selective developmental neurotoxicity in F1 progeny at dose levels that produce slight maternal toxicity in terms of transient decrease in weight gain from days 6-10 of gestation in mid and high dose (-14% compared to control, Myers, 2003, document III A 6.9/03). However, slightly impaired pre-weaning survival (offspring mortality between days 14 and 21: 5.7% high dose vs. 0.6% control; but offspring survival indices similar at weaning) and a low incidence of subcutaneous haemorrhagic lesions occur in progeny at the high dose of 238mg/kg bw/day, and low incidences of ocular lesions at the medium dose of 79 mg/kg bw/day. Since the ocular lesions were generally associated with intraocular haemorrhage, they may share a common aetiology with the subcutaneous lesions. Functional developmental effects with a possible relationship to treatment were confined to higher mean auditory startle response amplitudes and reduced habituation in female offspring and a clustering of differences in motor activity and latency to peak startle response in males at the high dose of 238mg/kg bw/day. In contrast histomorphological development of the central and peripheral nerve tissues were unaffected by treatment with etofenprox at the high dose of 238mg/kg bw/day. In summary the NOEL value for developmental effects in this rat study was the same as the maternal NOEL value (low dose 28 mg/kg bw day), indicating that the developing embryo is no more susceptible than the maternal animal.

In the peri/post-natal study, maternal exposure to high oral doses of 5000mg/kg bw/day during the latter part of

gestation and throughout lactation produces tremor, subcutaneous haemorrhage, reduced weight gain, increased neonatal mortality and renal dysfunction accompanied by histopathological alterations in the kidneys in F1 progeny (Cozens, *et al.*, 1985c). The main features of the induced renal lesions are cystic collecting ducts, focal fibrosis, cortical scarring and mineral deposits. Renal effects of this nature do not occur at this dose level in the treated maternal animals. The NOEL in F1 progeny in the peri/post-natal study is 250 mg/kg bw/day. Similar renal effects of treatment were confirmed in reared F1 progeny treated at diet concentrations of 4900ppm (267 - 753mg/kg bw/day) in the multigeneration study (Cozens *et. al.*, 1985d). Further effects on the F1 progeny identified in this study, comprising tremor, abnormal gait, increased heart weight, hepatocyte enlargement and increased height of the thyroid columnar epithelium, occur at 4900ppm only. However, since a single female offspring at 700ppm also showed cystic collecting ducts extending into the kidney cortex, the NOEL in F1 progeny is equivalent to minimum dose levels of 4,3 / 5,6 mg/kg bw/day in males and females, respectively, based on increased liver, kidney and thyroid weights at 4900ppm. Fertility and reproductive capacity are unaffected by treatment with etofenprox (Cozens *et al.*, 1985a).

Consideration of all reproductive data in rats revealed effects in progeny exposed *in utero* and during lactation that are not evident in adult rats that have not been exposed *in utero*/during lactation: Increased pup mortality, non-specific haemorrhagic lesion (generally subcutaneous but also ocular), renal toxicity, liver/thyroid/renal histopathology, functional neurological effects. Other effects occurring in rat offspring are those that also occur in parental animals, *viz.* changes in thyroid weight and morphology and increased liver and kidney weights.

The relevant NOEL values for rat offspring are presented in the Table below.

Study	Effect	NO(A)EL	LO(A)EL
		(mg/kg bw/day)	(mg/kg bw/day)
Peri-/post-natal	Increased pup mortality	250	5000
	Haemorrhagic lesions	250	5000
	renal histopathology	250	5000
Multigeneration	Increased pup mortality (F1+F2)	37	246
	Renal histopathology (F1) ^e	4.3 ^a	30
	Ocular/haemorrhagic lesions (F1+F2)	102	744
	Increased liver weight (F1+F2) ^e	12.9 ^c	90
	Increased kidney weight (F2b) ^e	5.6 ^b	40
	Liver/thyroid/(renal) (F1)	37	279
	histopathology		
Developmental	Ocular lesions	28.4*	79
neurotoxicity	Haemorrhagic lesions	79	238
	Increased pup mortality	79	238
	Functional neurological effects	79	238

Table 20b: Relevant NOEL values for rat offspring

^a one animal only with an isolated kidney lesion at 30 mg/kg bw/day;

^b minimal effect (7.2% increase) in F2b generation adult females only;

^c minor effect on liver weight (5.8 - 10.2% increase) in F1 and F2 weanling animals but not apparent in adult animals of these generations

^d in contrast to (^a) several animals show renal histopathology effects at 279 mg/kg bw/day

e considered too conservative values for hazard assessment and classification purposes

* NOAEL considered for risk assessment

For hazard assessment and classification purposes the three NOEL values for the multigeneration study (renal histopathology, increased liver and thyroid weight) marked ^e in the foregoing table, are regarded as not reliable enough since based on one animal only or on minimal and/or transient effects. Renal histopathological alteration in F1 progeny at 30mg/kg bw/day occurred in a single animal and was not accompanied by the inflammatory and degenerative changes seen at higher dose levels. Kidney weight differences at 40mg/kg bw/day were minimal (7.1% higher than controls) and occurred in female F2b progeny only. The kidney weights of F1a, F1b and F2a progeny of both sexes, and of male F2b progeny, were unaffected by treatment. Increased liver weight was minimal (up to 10.2% higher) in weanling F1 and F2 progeny at 90mg/kg bw/day and was transient in nature because increased liver weight was not apparent in F1b and F2b progeny reared to adulthood.

Increased pup mortality was evident in all of these studies. However in the peri-/post- natal study the effect was

significant only at 5000 mg/kg bw/day. Within the multigeneration study the effect was clustered within 2 complete litter losses, both in the high dose group (f: ca. 246 mg/kg bw/day), one litter from F0 females and one from F1b females, all towards the end of lactation. Finally within the developmental neurotoxicity study the effects were (not clustered by complete litter loss, but) clustered in the final week of lactation (in contrast to control pup deaths that occurred throughout lactation) in the high dose group (f: 238 mg/kg bw day) and were marginal (5.7% of pups died compared to 0.6% in control). Because the increased pup mortality occurred in all studies only at relatively high doses above 238 mg/kg bs/day and it was clustered within just 2 litters in the second study and marginal in the third study the effect was considered to be of low level of concern.

Therefore, for hazard assessment and classification the major concerns are ocular lesions at 79 mg/kg bw/day (developmental neurotoxicity study, starting between days 16-21 of age with the majority occurring after weaning; at termination days 63-67; 238/79/28,4/0 mg/kg bw/day: 13/5/2/1 pups of ca. 180 each) and subcutaneous haemorrhagic lesions at 238 mg/kg bw/day (developmental neurotoxicity study, at termination days 63-67; 238/79/28,4/0 mg/kg bw/day: 11/5/1/2 pups of ca. 180 each) and at 5000 mg/kg bw/day (peri-/post natal study, before weaning, around nose) and at 744 mg/kg bw/day (multigeneration study, F1 +F2 at necropsy, ocular and subcutaneous) and functional neurological effects within F1 adults at 238 mg/kg bw/day (higher mean auditory startle response amplitudes and reduced habituation in female offspring and a clustering of differences in motor activity and latency to peak startle response in males) and liver/thyroid/renal histopathological effects at 279 mg/kg bw/day in F1 adults (minor hepatocyte enlargement and vacuolisation and increased height of the thyroid columnar epithelium and renal lesions like primarily cystic collecting ducts, focal fibrosis, cortical scarring and mineral deposits.)

The above described effects were not observed within the F0 generation within the reproductive toxicity studies. However reduced clotting times, hepatocyte enlargement and other histopathological thyroid effects have been observed in rat adults at even lower concentrations of 187 mg/kg bw/day in the 110- week dietary study (Green et al. 1986a) and in the subchronic dietary rat study (Green et al. 1983a) at 120 (hepatocyte enlargement) and 734 mg/kg bw/day (thyroid effects and prolonged clotting time). Severe renal effects were observed in adult mice at 10.4 mg/kg bw/day in the 110-week dietary study (Green et al. 1986b) and at 1975 mg/kg bw/day in the 13-week dietary study. Therefore the above discussed effects are not considered to be specific developmental toxic effects but due to the naturally high ratio of milk uptake to bodyweight. The haemorragic effects, histological liver and thyroid effects and the functional neurological effects are considered minimal. Furthermore all discussed effects were observed only at relatively high doses (above 237 mg/kg bw/day for all effects except ocular haemorrhage at 79 mg/kg bw/day). Thus the described effects are not considered sufficient for classification for developmental toxicity. Nevertheless classification for effects via lactation shall be considered (H362).

The acceptable exposure levels (AEL) are derived from NOAELs below these, thus they cover the discussed effects.

For further details please see the attached study summaries.

4.13.5 Comparison with criteria

Reproductive Toxicity

According to CLP a classification for reproductive toxicity shall be based on a total weight of evidence evaluation for a specific property to produce an adverse effect on reproduction and substances shall not be so classified if such an effect is produced solely as a non-specific consequence of other toxic effects (see CLP Regulation, Annex I, point 3.7.2.2.1)

The results of the available developmental and fertility studies in rats and rabbits are summarized above (chapter 4.13.4).

Endpoints for fertility were unaffected by treatment with etofenprox.

With the developmental rabbit study at the high dose of 300 mg/kg bw day severe maternal toxicity was observed and the slight embryotoxicity and slight increase of skeletal variations at this dose were considered to be a consequence thereof. With the developmental rat study no significant developmental effects were observed.

Some effects were present in progeny exposed *in utero* and during lactation that are not evident in adult rats that have not been exposed *in utero*/during lactation. Such effects may indicate a need for classification for developmental toxicity. However these effects were significant only at (partly very) high doses and/or were inconsistent with parallel or subsequent cohorts findings and/or marginal in frequency/severity and/or clustered in two litters and/or were observed also in adults in other (non-reproductive) repeated dose studies and were consequently not considered as specific developmental toxicity but as a consequence of the naturally high ratio of milk uptake to bodyweight. The latter perspective is also supported by toxicokinetic findings indicating a potential for accumulation in fat and active secretion into milk with the consequence of a high concentration ratio between pup stomach content to maternal plasma content (see chapter 4.1.).

Lactation Effects

According to CLP a classification for lactation effects shall be based on a total weight of evidence evaluation based on results from one or two generation studies in animals which provide clear evidence of adverse effects in the offspring due to transfer in the milk or adverse effect on the quality of the milk and/or ADME studies that indicate the likelihood that the substance is present in potentially toxic levels in breast milk. Classification in the additional category for effects on or via lactation is considered irrespective of a classification into category 1A, 1B or 2.

The potential for accumulation in fat and active secretion into milk was observed within toxikokinetic studies (see chapter 4.1) and haemorrhage effects in lactated rats were observed in reproduction toxicity studies (see chapter 4.11). The observed effects are not considered to be specific developmental toxic effects but due to the naturally high ratio of milk uptake to bodyweight.

4.13.6 Conclusions on classification and labelling

No classification necessary for category 1A, 1B or 2 with regard to reproductive toxicity.

Classification with "H362: May cause harm to breast-fed children" is proposed.

(No classification according to the DSD criteria for R48/20/21/22 (Danger of serious damage to health by prolonged exposure) is proposed since the guidance value for R48/20/21/22 is 50 mg/kg bw day, which is lower compared to the guidance value of 100 mg/kg bw day for H373, and consequently the overall weight of evidence summarized in 1.5.3. does not appear sufficient for classification with R48/20/21/22.

No classification according to the DSD criteria for R64 (May cause harm to breastfeed babies) is proposed, since R64 may only be applied in addition to other human health R phrases. No other human health R phrases are applicable.)

4.14 Other effects

4.14.1 Non-human information

4.14.1.1 Neurotoxicity

No functional and neurohistopathological effects occur in the rat in response to the oral administration of single doses of up to 2000mg/kg etofenprox and mean dose levels of 604 and 690mg/kg bw/day for 13 weeks, in males and females, respectively (Smith, 2002 and 2003a). Similarly, etofenprox does not produce selective developmental neurotoxicity in F1 progeny at dose levels that produce slight maternal toxicity (Myers, 2003). However, slightly impaired pre-weaning survival and a low incidence of subcutaneous haemorrhagic lesions occur in progeny at 238mg/kg bw/day, and low incidences of ocular lesions at \geq 79mg/kg bw/day. Since the ocular lesions were generally associated with intraocular haemorrhage, they may share a common aetiology with the subcutaneous lesions. An overall NOEL was established as 28.4mg/kg bw/day. Functional developmental effects with a possible relationship to treatment were confined to higher mean auditory startle response amplitudes in female offspring and a clustering of differences in motor activity and latency to peak startle response in males at 238mg/kg bw/day. In contrast histomorphological development of the central and peripheral nerve tissues were unaffected by treatment with etofenprox at 238mg/kg bw/day, the highest dose level employed. The summary of the available neurotoxicity data is presented in Table 20c. (key studies highlighted bold).

Table 20c: Neurotoxicity data on etofenprox.

Study / species / dose levels	NO(A)EL	LOAEL	Target organs / main	Reference
			effects	

CLH REPORT FOR ETOFENPROX

	(mg/kg bw/day)	(mg/kg bw/day)		
Acute (gavage) neurotoxicity;	> 2000	-	No adverse effects, no	Smith (2002)
Rat;	(neurotoxicity and		evidence of	
0, 25, 125, 500, 2000 mg/kg	all effects)		neurotoxicity	
13-week (dietary) neuro-	< 149	149	Increased liver weight	Smith (2003a)
toxicity;	(all effects)		No evidence of	
Rat;	> 604	-	neurotoxicity	
0, 2500, 5000, 10000 ppm	(neurotoxicity)			
Developmental	28.4	79	Transient retardation	Myers (2003)
neurotoxicity;	(all effects)		of gestation weight,	→ Doc III A
Rat;			ocular lesions at 81	6.9/03
0, 250, 700, 2100 ppm			mg/kg bw/day;	
	79	238	↑ pup mortality, minor	
	(functional)		functional changes,	
	> 238	-	ocular and	
	(histological)		haemorrhagic lesions	
			at 238mg/kg bw/day	

4.14.1.2 Immunotoxicity

No information available.

4.14.1.3 Specific investigations: other studies

Not available.

4.14.1.4 Effects on breast fed children

The potential for accumulation in fat and active secretion into milk was observed within toxikokinetic studies (see chapter 4.1) and haemorrhage effects in lactated rats were observed in reproduction toxicity studies (see chapter 4.11). The observed effects are not considered to be specific developmental toxic effects but due to the naturally high ratio of milk uptake to bodyweight.

4.14.1.5 Human information

Comprehensive medical surveillance of male production operatives continually involved in the manufacture of

etofenprox for up to 5 years and 3 months demonstrated the absence of occupational adverse health effects (Yamazaki, 1992, document III A 6.12.1).

The Ohmuta factory of Mitsui Toatsu Chemicals, Inc. was producing 200 - 300t/annum etofenprox technical during the period 1987 – 1992 (exposure period between 11 and 63 months). The production line was operated by 21 male staff who worked in a triple shift pattern. The report documents the health assessments made on the production operatives. The staff were examined annually for blood biochemistry (GOT, GPT, Y-GPT, ALP, TTT, total cholesterol, neutral fat, blood glucose, urea nitrogen and uric acid) and also had an X-ray and ECG recorded. Twice yearly examinations were

performed for the following parameters: height, weight, vision, hearing, blood pressure, hematology (RBC, Hb, Ht and WBC), urinalysis (glucose, protein and occult blood) and other medical features (subjective and objective symptoms, lifestyle, family history, past history). Measured values were compared to normal range of values.

Although several different abnormal values were obtained from the 21 operators, there was no consistent pattern suggestive of an effect due to exposure to etofenprox. Individual values falling outside the normal ranges are summarised in the Table 20d below.

Table 20d:	Summary of	of abnormal	values in	production	line sta	ff -	etofenprox	(January
1987 - March	n 1992).							

ID	Age / sex	Exposure	Abnormal findings (and dates)
		period	
А	43 / M	01.87 - 03.92	Disturbance of vertebral disc (09.88 - 03.90)
			Neutral fat: 198mg/dL (09.90)
В	41 / M	01.87 - 03.92	No abnormalities detected
С	49 / M	07.87 - 03.92	Disturbance of conjunctiva (11.91 - 03.92)
D	21 / M	04.89 - 03.92	ALP: 263IU/L (11.89)
			Treated for keratitis (05.87 and 11.91)
Е	47 / M	11.87 - 03.92	WBC: 12200/mm ³ (11.89)
			WBC: 10500/mm ³ (09.90)
F	47 / M	07.87 - 03.92	Treated for duodenal ulcer (05.88 - 05.90)
			Treated for duodenal ulcer (05.91 - 03.92)
G	48 / M	07.87 - 03.92	Treated for neuralgia (11.88)
			Υ-GPT 110IU/L; GPT 67IU/L; neutral fat:307mg/dL (11.89)
			Migraine (05.90)
			GOT 46IU/L; GPT 83IU/L; neutral fat 235mg/dL; migraine
			(11.90)
			Migraine (05.91)
			Υ-GPT 107IU/L; GPT 58IU/L; neutral fat:228mg/dL;
			migraine (11.91)
			Migraine (03.92)
Η	44 / M	02.88 - 03.92	Treated for duodenal ulcer (11.90 - 03.92)
Ι	41 / M	01.87 - 03.92	No abnormalities detected
J	40 / M	10.87 - 03.92	No abnormalities detected
Κ	39 / M	10.88 - 03.92	Blood pressure: 138 / 98 (05.88)
			ALP 69IU/L; neutral fat 206mg/dL; uric acid 8.1mg/dL; blood
			pressure 158 / 96 (11.89)
			ALP 71IU/L; neutral fat 274mg/dL; uric acid 8.1mg/dL; blood
			pressure 150 / 96 (11.90)
			Blood pressure: 154 / 100 (05.91)
			ALP 71IU/L; neutral fat 274mg/dL; uric acid 8.1mg/dL
			Treated for gout (03.92)

CLH REPORT FOR ETOFENPROX

ID	Age / sex	Exposure	Abnormal findings (and dates)
.	42 (34		
L	43 / M	01.87 - 03.92	No abnormalities detected
Μ	45 / M	01.87 - 03.92	Blood pressure: 150 / 102, treated for hypertension (05.88,
			11.91, 03.92)
			Blood pressure: 142 / 98 - 158 / 108 (11.88 - 11.91)
			GPT 65IU/L; neutral fat 265mg/dL (11.89)
			GOT 45IU/L; GPT 60IU/L (11.90)
Ν	41 / M	01.87 - 03.92	Total cholesterol: 271mg/dL (11.89)
			Total cholesterol: 271mg/dL; neutral fat 174mg/dL (11.90)
			Neutral fat: 164mg/dL (11.91)
0	42 / M	01.87 - 03.92	Treated for cholelithiasis (05.88)
			Treated for allergic rhinitis (05.89)
			Neutral fat: 188mg/dL (11.89)
			Neutral fat: 193mg/dL (11.90)
Р	37 / M	07.87 - 03.92	No abnormalities detected
Q	35 / M	01.87 - 03.92	No abnormalities detected
R	49 / M	10.87 - 03.92	Under diabetic management and treated for hypertension from
			11.88.
			Blood pressure: 156 / 96 (11.88)
			Blood pressure: 150 / 106 (05.89)
			Blood pressure: 134 / 98; neutral fat 179mg/dL; blood glucose
			127mg/dL (11.89)
			Blood pressure: 160 / 100; neutral fat 202mg/dL; blood
			glucose 176mg/dL (11.90)
			Blood glucose 194mg/dL (11.91)
S	19 / M	04.91 - 03.92	No abnormalities detected
Т	42 / M	01.87 - 03.92	Urinary glucose positive (11.89, 11.90, 05.91)
U	24 / M	04.88 - 11.89	No abnormalities detected

4.14.2 Summary and discussion

See chapter 4.12.

4.14.3 Comparison with criteria

The functional neurological effects in the developemental neurotoxicity study were considered minimal, resulting only with high dose and covered by the study NOAEL based on maternal and covered by the critical NOAEL. The effects are considered insufficient for triggering a classification for reproductive toxicity (for respective discussion see 4.11.). The effects are also considered insufficient for triggering a classification for specific target organ toxicity, repeated exposure (STOT RE), since the LOAEL is above the guidance value of 100 mg/kg bw day for STOT RE category 2. The guidance value for R48/20/21/22 (Danger of serious damage to health by prolonged exposure) is even lower (50 mg/kg bw day), therefore also no classification according to DSD criteria is proposed.

According to CLP a classification for lactation effects shall be based on a total weight of evidence evaluation based on results from one or two generation studies in animals which provide clear evidence of adverse effects in the offspring due to transfer in teh milk or adverse effect on the quality of the milk and/or ADME studies that indicate the likelyhood that the substance is present in potentially toxic levels in breast milk. Classification in the additional category for effects on or via lactation is considered irrespective of a classification into category 1A, 1B or 2.

The potential for accumulation in fat and active secretion into milk was observed within toxikokinetic studies (see chapter 4.1) and haemorrhage effects in lactated rats were observed in reproduction toxicity studies (see chapter 4.11). The observed effects are not considered to be specific developmental toxic effects but due to the naturally high ratio of milk uptake to bodyweight

4.14.4 Conclusions on classification and labelling

Classification with "H362: May cause harm to breast-fed children" is proposed.

(No classification for R48/20/21/22 (Danger of serious damage to health by prolonged exposure), is proposed since the guidance value for R48/20/21/22 is 50 mg/kg bw day, which is lower compared to the guidance value of 100 mg/kg bw day for H373, and consequently the overall weight of evidence summarized in 1.5.3. does not appear sufficient for classification with R48/20/21/22.

No classification for R64 (May cause harm to breastfeed babies) is proposed, since R64 may only be applied in addition to other human health R phrases. No other human health R phrases are applicable.)

5 ENVIRONMENTAL HAZARD ASSESSMENT

Preliminary note: The results of the key studies are highlighted bold in all the tables throughout this chapter.

5.1 Degradation

Table 21: Summary of relevant information on degradation

See single subsections.

5.1.1 Stability

Hydrolysis

Etofenprox is hydrolytically stable in sterile buffer solutions at pH 4, 7 and 9 incubated for 5 days at 50°C in the dark. The metabolite [¹⁴C]- α -CO was found to be stable in aqueous buffer acetonitrile solution at pH 4 and 7, but was hydrolysed at pH 9 (35°C DT₅₀ 9.6 days; 45°C DT₅₀ 2.4 days) to form PENA and m-PBAcid.

Guideline	рН	Temperature [°C]	Initial TS concentration, C ₀ [μg /l]	Reaction rate constant, K _h [1/s x 10 ⁵]	Half- life, DT ₅₀ [h]	Coefficient of correlation, r ₂	Reference
Test substance:	¹⁴ C-et	ofenprox					
OECD 111 (1981); EEC C.7 (1992); OPPTS 835.2110	4, 7 and 9	50	2.659 (pH 4) 2.106 (pH 7) 2.712 (pH 9)	stable	stable *	stable	van der Gaauw (2001) → Doc III A 7.1.1.1.1/01
Test substance:	¹⁴ C-α-	·CO					
SETAC (March 1995) OECD 111 (1981) EPA OPPTS 835.2110 (1998)	4, 7 and 9	50 45 35 25	22	pH 4: Stable pH 7: Stable pH 9: k = 0.0162/day (extrapolated)	pH 4: Stable pH 7: Stable pH 9: DT ₅₀ = 42.8 days at 25 °C (extrapo lated)	Assuming first order kinetics: at 35 °C: $r^2 =$ 0.977 at 45 °C: $r^2 =$ 0.985	Clayton, McCorquodale & Paterson (2003) → Doc III A 7.1.1.1.1/02

Table 21a: Hydrolysis

* Rate of degradation too slow to compute a half-life.

Aqueous photolysis

Etofenprox was photo-degraded under simulated sunlight, with DT_{50} values of 4.7 and 7.9 days in sterile buffer solution and natural pond water, respectively. The metabolite α -CO was the major photo-degradate comprising 63.6% and 37.8% of applied radioactivity in sterile buffer and natural water, respectively. A second photo-degradate PENA was also seen but at the lower levels of 12.0 and 14.4% respectively in the two systems. In the dark control etofenprox was found to be stable. According to these results, direct phototransformation could be a factor contributing to the disappearance of etofenprox in the aquatic environment.

The photolysis study performed with the metabolite $[^{14}C]-\alpha$ -CO was terminated after 48 and 72 hours due to technical reasons (no significant degradation, indication for inhomogeneous test solution because of low water solubility and high adsorption to glass). However, no significant photo-degradation of $[^{14}C]-\alpha$ -CO occurred in buffered aqueous solution under artificial sunlight during the test phase.

For the risk assessment the DT_{50} of 4.7 days in the sterile buffer solution was used. Conversion to standard European conditions results in a DT_{50} (12°C) of 13.3 days.

Guideline	Initial molar TS concen- tration	Totalrecoveryoftestsubstance[%ofappl.a.s.]	Photolysis rate constant (k ^c _p)	Direct photo- lysis sunlight rate constant (k _{pE})	Reaction quantum yield (ϕ^c_E)	Half-life (t _{1/2E}) [days]	Reference
Test substance:	¹⁴ C-etofenp	rox					
SETAC (1995); OECD (97)21; OPPTS 835.2210; JMAFF, 16;	5.24 μg a.s./L	Buffer (pH7): 60.5-103%*, mean 89.35% Pond water: 43.5- 108.2%*, mean 86.02% Control: Day 2-7: 111.8 – 85.6%; Day 12: 71.2 and 59.1%; Day 15: 40.4 and 33.5%** (buffer and pond)	Buffer (pH7): - 0.148 Pond water: - 0.087	30° N: - 0.075, - 0.089, - 0.050, - 0.032 40° N: - 0.062, - 0.083, - 0.034, - 0.016 50°N: - 0.047, - 0.073, - 0.018, - 0.0005 (spring, summer, autumn, winter)	 buffer solution (pH 7): Φ = 0.248 natural pond water: Φ = 0.147 	- buffer solution (pH 7): $DT_{50} = 4.7$ days (1 st order) - natural pond water: $DT_{50} = 7.9$ days (1 st order)	van der Gaauw (2003) → Doc III A 7.1.1.1.2 / 01
Test substance:	¹⁴ C- <i>α</i> -CO						
SETAC (1995); OECD draft guideline (Aug 2000); EPA, Sub- division N, Paragraph 161-2 (Oct 1982)	not calculated (ca. 23 µg/l)	169.45% after 48 h	not deter- mined	not determined	not deter- mined	the test substance did not undergo photolysis	Clayton, McCorquo- dale (2003) → Doc III A 7.1.1.1.2 / 02

Table 21b: Photolysis in water

* Values < 75% were not used for DT50 calculation.

** There was no significant degradation observed in these samples

Photo-oxidation of etofenprox in air

The vapour pressure of etofenprox was determined to be 8.13 x 10^{-7} Pa at 25°C and the Henry's Low Constant 0.0136 Pa x m³/mol at 25°C (Tognucci, 2000, Document III A 3.2). Because of these very low values, no volatilisation and thus no significant amounts of etofenprox are to be expected in air.

Additionally, the photochemical oxidative degradation of etofenprox was calculated using the computer simulation software AopWin. An overall OH rate constant of $62.16 \times 10^{-12} \text{ cm}^3/\text{molecule-sec}$ was determined, resulting in an estimated half-life in air of 2.07 hours (Bates, 2001d, Document III A 7.3.1). According to these results, an accumulation of etofenprox in the air and a contamination by wet or dry deposition is not to be expected.

Photolysis in soil

¹⁴C-etofenprox dissipates with a calculated disappearance time DT₅₀ of 19.3 days. Up to 10 minor degradation products

were detected, six of which were characterised as α -CO, 4'-OH, DE, m-PB-acid, a mixture of PENA and EPMP and DP. None of the degradation compounds exceeded 7.7% of AR.

The mean recoveries of etofenprox were 98.2 % of AR. The amount of non-extractable radioactivity increased up to 45% of the AR at day 30. The amount of radioactivity evolved as ${}^{14}CO_2$ amounted to 7.4% after 30 days.

Dissipation of etofenprox was also observed in the dark control with a calculated DT_{50} of 22.2 days. No significant difference in the metabolic pathway was observed in both the irradiated and dark control samples (only one additional radioactive fraction was detected in the irradiated samples).

Disregarding dissipation in the dark control a direct photolysis rate constant of 0.0047 is obtained, yielding in a DT_{50} of 147 days. In general, the main pathways of dissipation of etofenprox in soil are its direct mineralization and binding to soil.

5.1.2 Biodegradation

5.1.2.1 Biodegradation estimation

No data available

5.1.2.2 Screening tests

The biodegradability of etofenprox was investigated in two ready biodegradability studies. In a Closed Bottle test a degradation rate of 17% was reached after 28 days. In this test etofenprox was investigated in concentrations above the water solubility. Therefore a second study (modified Sturm Test) was performed at a low concentration reflecting the low water solubility of the test substance. The DT_{50} for [¹⁴C –benzyl]-etofenprox was determined to be less than 2 days, assuming a first order degradation. However, polar metabolites were formed (52.2% AR after 28 days) and only 32% ultimate degradation (¹⁴CO₂) was measured after 28 days.

Due to the results of both studies etofenprox can be considered as being "not readily biodegradable". The Closed Bottle test was chosen as the key study, due to the fact that no reference substance had been investigated in the modified Sturm test.

An inherent biodegradation test was not considered necessary, since the results of the water/sediment studies show that etofenprox is partially degradable in the aquatic environment.
Guide-line	Test	Test para- meter	Inoculum			Additio-	Test	Degradation		Reference
0.000	type		Туре	Concen- tration	Adap- tation	dap- tion strate	substance concentra- tion	Incuba- tion period	Degree [%]	
OECD 301D (1982) EEC C.4-E (1984)	ready	oxygen consumption	Activa-ted sludge (60% ThOD)	30 mg dry weight/L	No	No	2 mg/L	28 days	17%	Thus, van der Laan- Straat-hof (1992) → Doc III A7.1.1.2.1/02
OECD 301B (1982) EEC Directive 79/831, Annex V, Part C.4-C	ready	¹⁴ CO ₂ evolution	Activa-ted sludge (60% ThCO ₂)	30 mg dry weight/L	No	No	0.0108 mg/L	28 days	32% ¹⁴ CO ₂	Thus, van der Laan- Straathof & Keetelaar- Jansen (1993) → Doc III A7.1.1.2.1

Table 21c: Biodegradation

¹ Test on ready biodegradability according to OECD criteria

5.1.2.3 Simulation tests

Degradation in soil

An aerobic degradation study in 4 soils at 20°C and in one soil at 10°C was performed using a radio-labelled mixture of $[2^{-14}C$ -propyl]etofenprox and $[\alpha^{-14}C$ -benzyl]etofenprox at a minimum expected concentration of 0.3 mg/kg dry soil, assuming an even distribution in the top 10 cm soil layer and 1.0 g/cm³ soil density (Völkl, 2001 and Völkl, 2002 and 2003 first and second amendment to the report, see document III A 7.2.2.1).

Proposed metabolic pathway: Etofenprox is initially degraded in soil by one of four different routes:

- Oxidation resulting in α -CO
- Hydroxylation of the benzene ring leading to 4'-OH
- De-ethylation resulting in DE
- Cleavage of the ether linkage between the two benzene rings to give DP

Once formed, these four metabolites do not accumulate and degrade to CO_2 (38.2 - 45.6% ¹⁴CO₂ was liberated after 120 days of incubation; n=4) and bound residues incorporate into the organic matter of the soil. It could be shown that the level of bound residues reached its maximum at day 55 in soil I and II (55.8 and 57.0% AR), in soils III and IV with a low organic carbon content the maximum was reached at day 92 (47.9 and 49.9% AR). The amount of bound residues decreased quite slowly (54.5, 52.8, 42.8 and 46.3% of AR at day 120) by further mineralization to carbon dioxide. Also the formation of PENA, EPMP and m-PB-acid could be shown. None of the soil metabolites (except CO₂ and bound

residues) exceeded 10% AR.

Etofenprox is degraded in soil under aerobic conditions at 20°C with $DT_{50 lab}$ ranging from 7 days to 25 days and DT_{90} lab ranging from 22 days to 84 days (first order, n=4). In one soil incubated at 10°C, the DT_{50} was 13 days and the DT_{90} was 41 days (first order).

From the results at 20°C a geometric mean DT_{50} value of 12 days (n=4) was calculated. Conversion to standard European conditions results in a DT_{50} (12°C) of 22.8 days, which was used for further calculations in the risk assessment.

Table 21d: Kinetics of degradation of etofenprox and its degradation products in soil (Völkl,2001; see document III A 7.2.2.1)

Soil	Senozan	Senozan	Gartenacker	Georgia	Cajon
Origin	France	France	Switzerland	USA	USA
Soil type (USDA classification)	Silt clay loam	Silt clay loam	Loam	Sandy loam	Sandy loam
Incubation temperature	20°C	10°C	20°C	20°C	20°C
Etofenprox					
DT ₅₀ (days)	7	13	8	14	25
DT ₉₀ (days)	22	41	28	46	84
Kinetic constant k1 (1/day)	0.1069	0.0556	0.0830	0.0502	0.0275
Correlation coefficient (r)	0.9958	0.9887	0.9964	0.9833	0.9885
α-CO					
DT ₅₀ (days)	12	34	13	37	45
DT ₉₀ (days)	40	113	44	122	150
Kinetic constant k1 (1/day)	0.0581	0.0205	0.0529	0.0189	0.0153
Correlation coefficient (r)	0.9341	0.9469	0.9622	0.9587	0.9474
4'-OH					
DT ₅₀ (days)	14	56	19	29	44
DT ₉₀ (days)	46	186	63	96	145
Kinetic constant k1 (1/day)	0.0499	0.0124	0.0366	0.024	0.0159
Correlation coefficient (r)	0.9754	0.949	0.9817	0.898	0.9022
DE					
DT ₅₀ (days)	*	*	*	32	41
DT ₉₀ (days)				105	137
Kinetic constant k1 (1/day)				0.0219	0.0167
Correlation coefficient (r)				0.9711	0.9897
DP					
DT ₅₀ (days)	24	63	17	43	66
DT ₉₀ (days)	78	209	56	144	219
Kinetic constant k1 (1/day)	0.0291	0.011	0.0414	0.0160	0.0105
Correlation coefficient (r)	0.9762	0.9706	0.9958	0.9745	0.9559

* Calculation of the kinetic is not possible due to the very low amounts detected (<1% of applied radioactivity)

Degradation in water/sediment systems

The degradation of etofenprox in water/sediment systems was investigated in 3 studies (Lewis, 2001 and 2002 and Mirbach 2005 documents III A 7.1.2.2.2/01, III A 7.1.2.2.2/02). The applied test substance concentration was about 33 μ g/100 mL of a mixture of radiolabelled [2-¹⁴C-propyl]etofenprox and [α -¹⁴C-benzyl]etofenprox corresponding to 200 g a.s./ha (maximum application rate). DT₅₀ values for etofenprox of 6.5 days (pond) and 20.1 days (lake) were calculated in the whole system and 2.1 days and 10.4 days in the water phase (first order kinetics, r² > 0.9; see table 4.1.1.4-1). In an amendment to the first study (Lewis, 2002) dissipation times of 6.5 days (DT₅₀) were reported for the whole system and 1.0 day for the water phase. In an additional study report DT₅₀ values of 17.9 days (pond), 32.2 days (lake) and 54.2 days (pond, amendment) for the sediment phase were calculated (Mirbach, 2005).

Immediately after application of etofenprox up to 70.1% were associated with the sediment. This was probably enhanced by the high organic carbon content of both sediments (7.3% pond, 5.1% lake). Only one significant metabolite, identified as 4'-OH, was detected in the water/sediment system. 4'OH was mainly found in sediment extracts in all incubation groups at the maximum levels of 14.4 to 21.4% AR at day 7 and 14, and thereafter, decreasing to \leq 10% of AR after 30 days of incubation. All other metabolites were below 10 % AR. The metabolism of etofenprox in water/sediment systems shows also the formation of bound residues (up to 30.8% AR after 99 days of incubation in the lake system and up to 28.9% in the pond at day 30 which decreased to 22.6% at day 59 and 99), that were not detailed characterised, and mineralization to CO₂ (up to 17.8 and 28.2% AR in Emperor Lake and Millstream pond systems).

The DT_{50} values of 4'-OH in the entire system were 29.7 days (pond) and 21.8 days (lake). In an amendment to the first study (Lewis, 2002; pond) a dissipation times of 57 days (DT_{50}) were also reported. In an additional study report DT_{50} values of 55.8 days (pond), 26.4 days (lake) and 86.2 days (pond, amendment) for the sediment phase were calculated (Mirbach, 2005).

The Emperor Lake system was also incubated under light/dark conditions, which resulted in a faster degradation rate for etofenprox (DT_{50} 2.1 days, DT_{90} 7.1 days) and a bit lower rate for 4'-OH (DT_{50} 27.0 days, DT_{90} 87.1 days).

<u>Proposed metabolic pathway:</u> The principal route of degradation of etofenprox is by hydroxylation to 4'OH and further metabolised to EPMP. Etofenprox can also be degraded to α -CO and y-CO and further to m-PB-acid or EPMP. Another minor path involves the cleavage of the ether linkage between the two benzene rings to give DP. The formation of bound residues and mineralization to CO₂ was also shown in the water/sediment study.

In a risk assessment the higher DT_{50} value for the water phase of 10.4 days (Lewis 2001) should be used for safety reasons, since the organic carbon content was high in all tested systems. Conversion to standard European conditions results in a DT_{50} value of 19.7 days.

Compound		Etofe	nprox	4'	ОН	Reference
Incubation system		Mill stream pond Emperor Lake M		Mill stream pond	Emperor Lake	
Water	DT ₅₀	2.1 [1.0]	10.4	Not determined	Not determined	Lewis (2001
phase	DT ₉₀	7.1 [3.2]	34.5	Not determined	Not determined	and [2002])
Sediment	DT ₅₀	17.9 [54.2]	32.2	55.8 [86.2]	26.4	\rightarrow Doc III A
phase	DT ₉₀	59.4 [180.0]	106.9	185.5 [286.4]	87.8	7.1.2.2.2 / 01
	DT ₅₀	6.5 [6.5]	20.1	29.7 [57]	21.8	Mirbach
Entire system	DT ₉₀	23.8 [143]	71.0	97.9 [185]	59.8	(2005)

Table 21e: Degradation of etofenprox in aquatic systems (DT₅₀ and DT₉₀, days)

1.1.4 Summary and discussion of degradation

See chapters 5.1.1. and 5.1.2.

5.2 Environmental distribution

5.2.1 Adsorption/Desorption

An adsorption/desorption screening test was performed in 1999 (Völkel, 1999, document III A 7.1.3). The distribution coefficients were determined, no adsorption isotherms were established. According to the results, etofenprox showed strong adsorption to soil particles. Only a maximum of 2.93% etofenprox could be desorbed.

A soil column leaching study (Warncke, 1998, document III A 7.2.3.2) was also performed, underlining the results obtained in the adsorption screening test, that etofenprox has a very low leaching potential (< 2% of application in the leachate).

For the risk assessment the arithmetic mean value of 10 832 ml/g (n=3; soil to aqueous ratio of 1:5) was used.

Guideline	Soil type	Sand	Clay	Silt	Org. C	pН	Adsorbed	K ¹	K _{aOC} ²	Reference
		(%)	(%)	(%)	(%)	(KCl)	a.s.		[mL/g]	
							[%]			
OECD	sandy loam	57.9	15.9	26.2	1.57	7.1	97.7	234	14923	Völkel W.
106										(1999)
(soil to	silt loam	11.8	19.4	68.8	3.80	6.9	98.3	343	9025	→ Doc III
aqueous										A 7.3.1
ratio of	loamy sand	81.9	5.1	13.0	2.29	6.0	97.3	196	8548	
1:5)										
								Mean	10832	
OECD	sandy loam	57.9	15.9	26.2	1.57	7.1	95.3	519	33067	
106										
(soil to	silt loam	11.8	19.4	68.8	3.80	6.9	97.0	836	22009	
aqueous										
ratio of	loamy sand	81.9	5.1	13.0	2.29	6.0	94.5	434	18968	
1:25)										
								Mean	24681	

Tuble and Tuble phone of concerpt on onco / ucboi phone if one bond	Table 21f: Adsor	rption of etofenpro	x onto / desor	ption from soils
---	------------------	---------------------	----------------	------------------

¹ K_a = Adsorption coefficient

 $^2\ K_{aOC}$ = Adsorption coefficient based on organic carbon content

5.2.2 Volatilisation

Table 21g: vapour pressure

Property	Results	Reference
Vapour pressure	8.13 x 10 ⁻⁷ Pa at 25°C	Doc. III-A 3;
	2.16 x 10 ⁻³ Pa at 80°C	Study A 3.2
	7.01 x 10 ⁻³ Pa at 90°C	

5.2.3 Distribution modelling

No data available

5.3 Aquatic Bioaccumulation

5.3.1 Aquatic bioaccumulation

5.3.1.1 Bioaccumulation estimation

No data available

5.3.1.2 Measured bioaccumulation data

Etofenprox has a potential for bioaccumulation as indicated by its high octanol / water partition coefficient (logPow of 6.9, Tognucci, 1998e).

The bio-concentration in aquatic organisms was studied experimentally. Bioaccumulation factors in a Bluegill sunfish were determined to be 1554, 7213 and 3951in edibles, non-edibles and whole fish, respectively, at test concentrations of 0.18 and 1.08 μ g/L The BCF is corrected for a whole body lipid content of 5%, the resulting whole body BCF in fish is 2565. However, the accumulation was reversible with depuration half-life of 9 – 16 days and 95% depuration on day 69.

The bio-concentration in terrestrial organisms was estimated by calculation, according to the TGD on risk assessment.

Guideline	Expo-	Log	Initial	Steady-	Uptake	Depurati	Depuration	Metabolites	Reference
	sure	P _{OW} of a.s.	concentra -tion of	state BCF	rate con- stant	on rate constant	time (DT ₅₀)		
			a.s.						
OECD	Flow-	6.9	Low dose:	edibles:	edibles:	edibles:	9 to 16 days	α-CO	Van Dijk
305	through		0.18 µg/L	1554	0.235	0.061		(1.3%)	(2002)
OPPTS	during								\rightarrow Doc III
850.1730	122		High	non-	non-	non-		DE (0.9%)	A 7.4.3.3.1
	days		dose:	edibles:	edibles:	edibles:			
			1.08 µg/L	7213	0.122	0.057		m-PB-acid	
								(3.2 - 4.8%)	
				whole	whole	whole			
				fish:	fish:	fish:			
				3951	0.170	0.044			
				(2565					
				corrected					
				for a lipid					
				content					
				of 5%)					

Table 22a: Measurements of aquatic bio-concentration of [14C]-etofenprox in Bluegill sunfish

Table 22b: Estimations on terrestrial bio-concentration

Basis for estimation	log P _{OW} (measured)	Estimated BCF for earthworms	Reference
$K_{ow} \approx 7940000$ (experimental data) and $RHO_{earthworm}$ = 1 kg _{wwt} .L ⁻¹ (default value)	6.9	$BCF_{earthworm} = (0.84 + 0.012K_{ow}) / (RHO_{earthworm})$ $= 95281$	TGD on risk assessment

5.3.2 Summary and discussion of aquatic bioaccumulation

The bioaccumulation factor corrected for a whole body lipid content of 5% in fish is 2565 in whole

fish.

Aquatic toxicity

5.3.3 Fish

5.3.3.1 Short-term toxicity to fish

In standard laboratory tests etofenprox is highly acutely toxic to fish, as indicated by the LC_{50} -values of 2.7 and 13.0 µg/L for Rainbow trout (*Oncorhynchus mykiss*) and Bluegill sunfish (*Lepomis macrochirus*), respectively.

The 96-hour LC_{50} and NOEC-values of the metabolite α -CO for fish were found to be higher than or equal to the limit concentration of 48 μ g/L.

Laboratory studies conducted with etofenprox technical and the metabolite α -CO to assess their toxicity to aquatic organisms are summarised in the following Tables.

Guideline	Species	Endpoint /	Exposure	e	Results µg	a.i./L	Remarks	Reference
		Type of	Design	Dura-	LC ₅₀	NOEC		
		test		tion				
Test substance: etofenprox technical								
US EPA	Rainbow	Mortality /	flow-	96 hours	2.7	0.66	5 concentra-	Machado
Section 72-	trout	acute	through				tions tested,	(1995 a)
1	(Oncorhyn-						deaths in all	\rightarrow Doc III
	chus						but the two	A 7.4.1.1/01
	mykiss)						lowest dose	
							groups	
US EPA	Bluegill	Mortality /	flow-	96 hours	13.0	6.9	5 concentra-	Machado
Section 72-	sunfish	acute	through				tions tested,	(1995b)
1	(Lepomis						deaths in the	
	macrochiru						two highest	
	<i>s</i>)						dose groups	
Test substan	ce: metabolite	α-CO						
OECD 203	Rainbow	Mortality /	flow-	96 hours	> 48	≥ 48	No mortality	Bätscher
Directive	trout	acute	through				at the limit	(2002a)
92/69/EEC	(Oncorhyn-						concentration	→ Doc III A
C.1	chus							7.4.3.1
US EPA	mykiss)							
OPPTS								
850.1075								

Table 23a: Acute toxicity to fish

5.3.3.2 Long-term toxicity to fish

The chronic toxicity of etofenprox was tested on the Rainbow trout over 21 days and the NOEC was determined to be $3.2 \mu g/L$. The toxicity of etofenprox on the early-life stage of fish was tested with the Zebra fish (*Brachydanio rerio*) and the NOEC determined to be 25 $\mu g/L$. (Zebra fish may well be less sensitive to the etofenprox than rainbow trout, which shows an acute LC₅₀-value of 2.7).

Guideline	Species	Endpoint /	Exposur	e	Results	μg	a.i./L	Remarks	Reference
		test	Design	Dura- tion	Effect	NOEC	LOEC		
OECD 204	Rainbow trout (Oncorhyn- chus mykiss)	Mortality, non-lethal effects (e.g. appearance, size and behaviour of the fish), growth / chronic	Semi- static	21 days	mortality	3.2	10*	5 concentra- tions tested, deaths in the highest dose group	Wilhelmy (1997)
OECD 210, OPPTS 850.1400	Zebra fish (Brachyda- nio rerio)	Mortality, non-lethal effects (e.g. eggs deve- lopment and hatch- ing rate, hatching time, deve- lopment juv. fish, etc.)	Flow through	40 days	mortality of larvae and juvenile fish	25	50	5 concentra- tions tested, deaths in the highest dose group	Peither (2005) → Doc III A 7.4.3.2

Table 23b: Chronic toxicity of etofenprox to fish

* 90% mortality on day 21

5.3.4 Aquatic invertebrates

5.3.4.1 Short-term toxicity to aquatic invertebrates

Etofenprox is highly toxic to *Daphnia magna* with an EC₅₀ of $1.2 \mu g/L$.

The 48-hour EC_{50} and NOEC-values of the metabolite α -CO were higher than or equal to the limit concentration of 44 μ g/L.

Guideline	Species	Endpoint / Type of	Exposure	Exposure I		µg a.i./L d)	Remarks	Reference	
		test	Design	Dura- tion	EC ₅₀	NOEC			
Test substance: etofenprox technical									
OECD	Daphnia	Mobility /	static	48 hours	1.2	0.089*	8 concentra-	Gries	
202-I	magna	acute	renewal				tions tested,	(2003)	
EC							treatment	→ Doc III	
Directive							related	A 7.4.1.2/01	
92/69/EEC,							immobilisation		
C.2							in the four		
							highest		
							concentrations		
Test substan	ce: metabolite	eα-CO							
OECD	Daphnia	Mobility /	static	48 hours	> 44	≥44	No immobilisa-	Bätscher	
202-I	magna	acute					tion at the limit	(2002b)	
EC							concentration	→ Doc III	
Directive								A 7.4.1.2/02	
92/69/EEC,									
C.2									
US EPA									
OPPTS									
850.1010									

Table 23c: Acute toxicity to aquatic invertebrates

* based on nominal concentrations and sublethal effects only

5.3.4.2 Long-term toxicity to aquatic invertebrates

The chronic toxicity to *Daphnia magna* was determined in a 21-day reproduction study using [¹⁴C]etofenprox and the NOEC, based on numbers of offspring per adult, was determined to be 0.054 μ g a.i./L.

Guideline	Species	Endpoint / Type of test	Exposure		Results µg a.i./L (measured)		Remarks	Reference
			Design	Dura-	Effect	NOEC		
				tion				
OECD 202	Daphnia	Reproduction	Semi-	21 days	Reproduc-	0.054	5 concentra-	Groeneveld
	magna	and mortality	static		tion		tions tested,	et al.
		/ chronic					effects obser-	(1993)
							ved in the 2	→ Doc III
							highest concen-	A 7.4.3.4
							trations	

Table 23d: Chronic toxicity of 14C-etofenprox to aquatic invertebrates

5.3.5 Algae and aquatic plants

Etofenprox is less toxic to algae, as shown by E_rC_{50} and E_bC_{50} values exceeding the water solubility (E_rC_{50} and E_bC_{50} >56.25 µg a.i./L).

The metabolite α -CO had no inhibitory effect on the growth of *Pseudokirchneriella subcapitata* up to its water solubility limit in test water (i.e. 42.5 µg/L at 20°C). Accordingly, the 96-hour EC₅₀ values for the inhibition of the biomass and growth rate were higher than the mean measured concentration of 53 µg/L.

Laboratory studies conducted with etofenprox technical and the metabolite α -CO to assess their toxicity to algae are summarised in the table below.

Guideline	Species	Type of	Exposur	·e	Results µ	g a.i./L (nor	ninal)		Remarks	Reference
		test	Design	Dura-	NOE _b C ¹	NOE _r C ²	$\mathbf{E_bC_{50}}^1$	$E_{r}C_{50}^{2}$		
Test substance	e: etolenprox									
OECD 201	Pseudo-	Growth	static	72	56.25	56.25	> 56.25	> 56.25	6 concentra-	Gries,
Directive	kirchne-	and bio-		hours					tions tested,	Purghart
92/69/EEC,	riella sub-	mass in-							no adverse	(2003)
C.3	capitata	hibition							effect on the	\rightarrow Doc III A
									biomass and	7.4.1.3 /01
									the growth	
									rate at the	
									highest con-	
									centration	
Test substance	e: metabolite	α-CO								
OECD 201	Pseudo-	Growth	static	96	≥ 53	≥53	> 53	> 53	No inhibitory	Bätscher
Directive	kirchne-	and bio-		hours					effect at the	(2002c)
92/69/EEC,	riella sub-	mass in-							limit	→ Doc III A
C.3	capitata	hibition							concentration	7.4.1.3 /02
US EPA										
OPPTS										
850.5400										

Table 23e: Growth inhibition to algae

¹ calculated from the area under the growth curve;

² calculated from growth rate;

³ calculated from the cell density

5.3.6 Other aquatic organisms (including sediment)

Aquatic microbial activity

The toxicity of etofenprox to aquatic microbial activity was measured in laboratory experiment with activated sludge, as described in Table 4.2.1-6. Up to and including the highest tested concentration of 100 mg a.i./L (nominal) the test item etofenprox had no significant inhibitory effect on the respiration rate of activated sludge. However, at 50 and 100 mg a.i./L an increase of 3.4 and 10.3% oxygen consumption compared to the control could be detected. All test concentrations were far above the water solubility limit of Etofenprox.

The 3 hour EC₅₀ is therefore greater than 100 mg a.i./L (nominal). The 3-hour NOEC for STP

micro-organisms was determined to be at least 100 mg/L (nominal).

Guide-	Inoculum	Endpoint /	Exposure	•	Results n	ng a.i./L	Remarks	Reference
line		Type of	Design	Dura-	NOEC or	EC ₅₀		
		test		tion	EC10			
OECD	Activated	Oxygen	Aerobic	3	≥ 100	> 100	5 concentrations	Czech P.
209	sludge from	consumptio	activated	hours	(nominal)	(nominal)	tested, no	(2002)
	predominant-	n /Bacterial	sludge				inhibitory effect	→ Doc III
	ly domestic	respiration	incubated				on the respiration	A 7.4.1.4
	wastewater	inhibition	under				rate of activated	
	treating plant		defined				sludge	
			conditions					

Table 23f: Inhibition of aquatic microbial activity by etofenprox

Sediment dwelling organisms

The acute and the chronic toxicity of etofenprox to *Chironomus riparius* was determined experimentally in static water-sediments systems, with application of the test item to the water column. The nominal 10-day EC₅₀-value of etofenprox for survival and body weight of larvae of *Chironomus riparius* was determined to be higher than 20.9 μ g/L, the highest concentration tested, and the NOEC was 3.8 μ g/L. In this chronic study, the nominal NOEC based on the development rate was also 3.8 μ g/L.

The sediment metabolite 4'-OH is less toxic to the invertebrate *Chironomus riparius* than etofenprox to the invertebrate daphia magna (the NOEC 198 times and the $EC_{50} < 42$ times). The 48-hour LC₅₀ of 4'-OH was 50.2 µg/L and the 48-hour NOEC 17.6 µg/L (acute test in static water).

Guideline	Species	Endpoint /	Exposure	2	Results µ	ıg a.i./L	Remarks	Reference
		Type of test			(nominal)			
			Design	Duration	EC ₅₀	NOEC		
Test substan	ce: etofenprox	technical						
OECD 219	Chironomus	survival/	static	10 days	> 20.9 ¹	3.8 ²	3 concentra-	Memmert
	riparius	body weight	water/se				tions tested,	(2002a)
		of the larvae	-diment				toxic effects	→ Doc III A
			system				observed at	7.4.3.5.1/01
							the highest	
							concentration	
Test substan	ce: metabolite	4'-OH						
OECD 202	Chironomus	immobility/	static	48 hours	50.2 ³	17.6 ³	5 concentra-	Memmert
OECD 219	riparius	acute					tions tested,	(2002b)
Directive							toxic effects	→ Doc III
92/69/EEC							observed at	A 7.4.3.5.1 /
C.2							the two	02
Proposal							highest	
for a BBA							concentra-	
Guideline							tions	

¹ based on the survival rate and the larval body weight, ² based on a significant reduction in body weight ³ mean measured

Table 2	23 h:	Chronic	toxicity	of etofen	prox to see	diment dw	elling or	ganisms

Guideline	Species	Endpoint /	Exposure	9	Results µ	ıg a.i./L	Remarks	Reference
/ Test		Type of test			(nominal)			
method			Design	Duration	Effect	NOEC		
OECD 219	Chironomus	development	static	25 days	reduced	3.8	3 concentra-	Memmert
Proposal	riparius	time/ rate	water/se		develop-		tions tested,	(2002c)
for a BBA		and	diment		ment rate		toxic effects	→ Doc III A
Guideline		emergence	system				observed at	7.4.3.5.1/03
		ratio of					the highest	
		midges*					concentration	

* not significant

5.4 Comparison with criteria for environmental hazards (sections 5.1 – 5.4)

<u>CLP:</u>

Aquatic Acute 1:

Aquatic acute toxicity: $L(E)C_{50}$ values for all three trophic levels are between 0.1 – 0.001 mg/L; Lowest $L(E)C_{50}$ value: EC_{50} (dapnia) =0.0012 mg/L

→ Classification with Aquatic Acute 1

→ M factor = 100

Studies used:

- Doc. III A7.4.1.1/01: Machado M.W. (1995 a), EPA, Subdivision E, Series 72, § 72-1
 -> LC₅₀ = 0.027 mg/L
- Doc. III A7.4.1.2/01: Gries T. (2003), OECD 202, Part1 (1984) EEC C.2 (1992) -> EC₅₀ = 0.0012 mg/L
- Doc. III A7.4.1.3/01: Gries T., Purghart V (2003), OECD 201 (1984) EEC C.3 (1992)
 -> E_rC₅₀ = >0.056 mg/L

Aquatic Chronic 1:

There are chronic data for all three trophic levels and Etofenprox is not rapidly degradable (17% biodegradation in a ready test; 18, 28 and 35% mineralization in a water/sediment simulation test; hydrolytically stable pH 4-9; photloysis in water $DT_{50} = 4.7$ days, but there are not enough data about the toxic effects of the two major metabolites and contribution to total removal will be quite low;).

Chronic NOEC values for all three trophic levels are between 0.01 and 0.00001 mg/L; Lowest chronic NOEC value: NOEC (daphnia) =0.000054 mg/L

- → classification with Aquatic Chronic 1
- → M factor = 1000

Studies used:

- Doc. III A7.1.1.2.1/02: Thus, van der Laan-Straat-hof (1992), OECD 301D (1982) EEC C.4-E (1984) -> 17% degradation in 28 days
- Doc. III A7.1.2.2.2/01: Lewis C.J. (2001), SETAC (1995) and Dir. 95/36/EC (1995) -> 28 and 18% mineralization in 99 days at 20°C
- Doc. III A7.1.2.2.2/02: Lewis C.J. (2002), SETAC (1995) and Dir. 95/36/EC (1995) -> 35% mineralization in 100 days at 20°C
- Doc. III A7.1.1.1/01: Van der Gaauw A. (2001), EEC C.7 (1992), OECD 111 (1981) and EPA OPPTS 835.2110 -> hydrolytically stable at pH 4,7 and 9 at 50°C
- Doc. III A7.1.1.1.2/01: Van der Gaauw A. (2003), Dirl 95/36/EEC and 94/37/EEC, SETAC

(1995), OECD guidande document (97)21, EPA OPPTS 835.2210 and Japan MAFF Guideline, 16 -> DT_{50} =4.7 days, but not enough data on toxic effects of two major metabolites

- Doc. III A7.4.3.2: Peither A (2005), OECD 210, OPPTS 850.1400 -> NOEC (fish) =0.025 mg/L
- Doc. III A7.4.3.4: Groenefeld A.H.C., Berends A.G., van der Laan J.M.Th., van Dijk N.R.M. (1993), OECD guideline 202 (OECD, 1984 and 1991) -> NOEC (crustacea) =0.000054 mg/L
- Doc. III A7.4.1.3/01: Gries T., Purghart V (2003), OECD 201 (1984) EEC C.3 (1992) -> NOE_rC = (algae) =0.056 mg/L

DSD:

Acute aquatic toxicity: $L(E)C_{50}$ values for all three trophic levels are between 0.1 - 0.001 mg/L; lowest $L(E)C_{50}$ value: EC_{50} (Dapnia) =0.0012 mg/L; the substance is not readily degradable, the measured logP_{ow} =6.9 and the measured BCF = 2565

R50/53:

- → classification with N; R50/53
- → SCL: N; R50-53: $C_n \ge 0.25\%$; N, R51-53: $0.025\% \le C_n < 0.25\%$; R52-53: $0.0025\% \le C_n < 0.025\%$;

Studies used:

- Doc. III A7.4.1.1/01: Machado M.W. (1995 a), EPA, Subdivision E, Series 72, § 72-1
 -> LC₅₀ (fish) =0.027 mg/L
- Doc. III A7.4.1.2/01: Gries T. (2003), OECD 202, Part1 (1984) EEC C.2 (1992) -> EC₅₀ (crustacea) =0.0012 mg/L
- Doc. III A7.4.1.3/01: Gries T., Purghart V (2003), OECD 201 (1984) EEC C.3 (1992)
 -> E_rC₅₀ (algae) >0.0056 mg/L
- Doc III A3.9/01; Tognucci A.; (1998); OECD 107 and 117; EEC A8; JMAFF; (HPLC method); logP_{ow} =6.9;
- Doc III A7.1.1.2.1/02: Thus, van der Laan-Straat-hof (1992), OECD 301D (1982)
 EECC.4-E (1984) -> 17% degradation in 28 days
- Doc III A7.4.3.3.1: van Dijk A. (2002), OECD 205 (1996) EPA OPPTS 850.1730 (Draft, 1996) -> BCF = 2565

5.5 Conclusions on classification and labelling for environmental hazards (sections 5.1

- 5.4)

Proposed classification according to Reg. (EU) No 1272/2008, Table 3.1 and Reg. (EU) No 286/2011(proposed by RMS)

Classification		Justification
Classification	Aquatic acute 1 (M=100)	$L(E)C_{50}$ values $\leq 1 \text{ mg/L}$ for all three trophic levels. Lowest available EC_{50} value =0.0012 mg/L.
Classification	Aquatic chronic 1 (M=1000)	Not rapidly degradable and chronic NOECs for all three trophic levels ≤0.1 mg/L. Lowest available chronic NOEC value =0.000054 mg/L.
Hazard	H400 - Very toxic to aquatic life	See above
statements	H410 – Very toxic to a aquatic life with long lasting effects	See above

Proposed labelling according to Reg. (EU) No 1272/2008, Table 3.1 and Reg. (EU) No 286/2011(proposed by RMS)

Labell	ing							
GHS I	Pictograms	GHS09						
Signal	words	Warning						
Hazard		H410 – Very toxic to a aquatic life with long lasting effects						
statem	ents							
nent	Prevention	P273 – Avoid release to the environment						
stater	Response	P391 – Collect spillage						
Precautionary	Storage	-						
	Disposal	P501 - Dispose of contents/container in accordance with local/regional/ national/international regulation (to be specified).						

CLH REPORT FOR ETOFENPROX

Proposed classification and labelling according to Reg. (EU) No 1272/2008, Table 3.2 (proposed by RMS)

Classification	n	Justification
Hazard symbol:	Ν	
Indication of danger:	Dangerous for the environment	
Labelling symbol:		
Risk phrases	R50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment SCL: N; R50-53: $C_n \ge 0.25\%$; N; R51-53: $0.025\% \le C_n < 0.25\%$; R52-53: $0.0025\% \le C_n < 0.025\%$;	All acute toxicity values are $\leq 1 \text{ mg/L}$ and the substance is not readily degradable. Lowest available EC ₅₀ value =0.0012 mg/L.
Safety phrases	S60-61 This material and its container must be disposed of as hazardous waste. Avoid release to the environment. Refer to special instructions /safety data sheets.	According to classification with N; R50-53 and labelling with N; R50/53 S- phrases S60-61 have to be applied on the label.

6 OTHER INFORMATION

No other informations

REFERENCES

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 2.7/01	Ramsay N.	2002 a	Etofenprox 5-batch analysis of etofenprox to fulfill the requirements of OPPTS guidelines 830.1700, 830.1750 and 830.1800 and EC council directive 94/37/EEC article 1.9 and 1.11 Inveresk Research, Report No. 20852 Landis Kane Consulting, Document No. 500-1-01 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 2.10.1 → B 6.6	Mirbach M.	2004	Etofenprox: estimation of the human exposure to etofenprox used in the wood preservative product SPU-01990-I. Landis Kane Consulting, Report No. 04- alpha-02 Landis Kane Consulting, Document No.500-5-93 not GLP, not published	Y	Mistui Chemic als. Inc.
A 2.10.2 → B 7.1/06	Rathey S.	2005 b	Estimation of the predicted environmental concentrations of etofenprox used in the wood preservative product SPU-01990-I. Landis Kane Consulting, Report No. 04- alpha-04/03 Landis Kane Consulting, Document No.500-7-46 Not GLP, not published	Y	Mitsui Chemic als, Inc.
A 3.1.1	Tognucci A.	1999	Determination of the melting point / melting range of etofenprox RCC Ltd, Report No. 718830 Landis Kane Consulting, Document No: 500-2-01 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 3.1.2	Tognucci A.	1998 a	Determination of the boiling point / boiling range of etofenprox RCC Ltd, Report No: 692730 Landis Kane Consulting, Document No. 500-2-02 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.1.3	Tognucci A.	1998 b	Determination of the relative density of etofenprox RCC Ltd, Report No. 692728 Landis Kane Consulting, Document No. 500-2-03 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.2	Tognucci A.	2000	Determination of the vapour pressure of etofenprox RCC Ltd, Report No. 751803 Landis Kane Consulting, Document No. 500-2-04 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.2.1 → A 3.2	Tognucci A.	2000	Determination of the vapour pressure of etofenprox RCC Ltd, Report No. 751803 Landis Kane Consulting, Document No. 500-2-04 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.3.1/01	Shimono S.	1999 a	Physical state of etofenprox (MTI-500) Mitsui Chemicals, Inc., LSL, Report No. not specified Landis Kane Consulting, Document No. 500-2-05 Not GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 3.3.1/02	Shimono S.	2002 a	Physical state of manufactured etofenprox (MTI-500) Physical state of etofenprox (MTI-500) Mitsui Chemicals, Inc., Life Science Laboratory, Report No. not specified Landis Kane Consulting, Document No. 500-2-24 Not GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.3.1/03	Mirbach M.	2006	Comments on the Physical State of Etofenprox Landis Kane Consulting, Report No. not specified Landis Kane Consulting, Document No. not specified Not GLP, unpublished	Y	Mistui Chemic als. Inc.
A 3.3.2/01	Shimono S.	1999 b	Color of etofenprox (MTI-500) Physical state of etofenprox (MTI-500) Mitsui Chemicals, Inc., Life Science Laboratory, Report No. not specified Landis Kane Consulting, Document No. 500-2-06 Not GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.3.2/02	Shimono S.	2002 b	Color of manufactured etofenprox (MTI- 500) Physical state of etofenprox (MTI-500) Mitsui Chemicals, Inc., Life Science Laboratory, Report No. not specified Landis Kane Consulting, Document No. 500-2-54 Not GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
А	Shimono	1999	Odor of etofenprox (MTI-500)	Y	Mitsui
3.3.3/01	S.	c	Physical state of etofenprox (MTI-500)		Chemic
			Mitsui Chemicals, Inc., Life Science		als, Inc.
			Laboratory, Report No. not specified		
			Landis Kane Consulting, Document No.		
			500-2-07		
			Not GLP, unpublished		
А	Shimono	2002	Odor of manufactured Etofenprox (MTI-	Y	Mitsui
3.3.3/02	S.	c	500)		Chemic
			Physical state of etofenprox (MTI-500)		als, Inc.
			Mitsui Chemicals, Inc., Life Science		
			Laboratory, Report No. not specified		
			Landis Kane Consulting, Document No.		
			500-2-55		
			Not GLP, unpublished		
A 3.4/01	Tognucci	1998	Determination of the NMR-, IR-,	Y	Mitsui
	А.	c	UV/VIS absorption and mass spectra of		Chemic
			etofenprox		als, Inc.
			and amendment dated October 13, 1999		
			Landis Kana Consulting Document No.		
			500 2 08		
			GIP unpublished		
A 3 4/02	Matsumoto	2002	Measurement of LIV-VIS absorption	Y	Mitsui
11 5. 1/02	T	2002 a	spectrum	1	Chemic
		u	of 4'-OH		als. Inc.
			Kurume Laboratory, Chemicals		,
			Evaluation and Research Institute,		
			Report No. 82072		
			Landis Kane Consulting, Document No.		
			500-2-09		
			GLP, unpublished		

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 3.4/03	Matsumoto T.	2002 b	Published of notMeasurement of UV-VIS absorptionspectrum of PENAKurume Laboratory, ChemicalsEvaluation and Research Institute,Report No. 82075Landis Kane Consulting, Document No.500-2-10GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.4/04	Tognucci A.	2003	Determination of the NMR-, IR, UV/VIS absorption and mass spectra of CEP RCC Ltd, Report No. 845212 Landis Kane Consulting, Document No. 500-2-56 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.4/05	Pouchert Ch.J., Behnke J.	1983	The Aldrich library of 13C and 1H FT NMR spectra Aldrich Chemical Company 1983 Landis Kane Consulting, Document No. 500-2-61 Not GLP, published	Ν	Public in- formati on
A 3.4/06	Pouchert Ch.J.	1985	The Aldrich library of FT-IR spectra Aldrich Chemical Company 1985 Landis Kane Consulting, Document No. 500-2-62 Not GLP, published	Ν	Public in- formati on
A 3.4/07	Heller S.R., Milne G.W.A.	1978	EPA / NIH mass spectral data base U.S. Department of Commerce, National Bureau of Standards 1978 Landis Kane Consulting, Document No. 500-2-63 Not GLP, published	Ν	Public in- formati on

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 3.5/01	Kunz C.	2000	Determination of the water solubility of ¹⁴ C-etofenprox at three pH values and amendment dated October 04, 2000 RCC Ltd, Report No. 755515 Landis Kane Consulting, Document No. 500-2-11 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.5/02	McCorquo- dale G.Y.	2002 a	Physico-chemical testing with [14C]- Alpha-CO: water solubility Inveresk Research, Report No: 21386 Landis Kane Consulting, Document No. 500-2-12 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.5/03	Matsumoto T.	2002 c	Determination of water solubility for 4'- OH by column elution method Kurume Laboratory, Chemicals Evaluation and Research Institute, Report No. 82070 Landis Kane Consulting, Document No. 500-2-13 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.5/04	Matsumoto T.	2002 d	Determination of water solubility for PENA by flask method Kurume Laboratory, Chemicals Evaluation and Research Institute, Report No. 82073 Landis Kane Consulting, Document No. 500-2-14 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 3.5/05	Mirbach M.	2004 a	Etofenprox: estimation of the temperature dependence of the solubility in water and organic solvents and of the partition coefficient octanol/water. Landis Kane Consulting, Report No. 04- alpha-18 Landis Kane Consulting, Document No.500-2-67 Not GLP, not published	Y	Mistui Chemic als. Inc.
A 3.6	Schmiedel U.	1998	Expert statement on the dissociation of MTI-500 (etofenprox) in water RCC Ltd, Report No. 692741 Landis Kane Consulting, Document No. 500-2-26 Not GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.7/01	Tognucci A.	1998 d	Determination of the solubility of etofenprox in organic solvents RCC Ltd, Report No. 692752 Landis Kane Consulting, Document No. 500-2-15 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.7/02 → A 3.5/05	Mirbach M.	2004 a	Etofenprox: estimation of the temperature dependence of the solubility in water and organic solvents and of the partition coefficient octanol/water. Landis Kane Consulting, Report No. 04- alpha-18 Landis Kane Consulting, Document No.500-2-67 Not GLP, not published	Y	Mistui Chemic als. Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 3.9/01	Tognucci A.	1998 e	Determination of the partition coefficient (N-octanol / water) of etofenprox and amendment dated October 13, 1999 RCC Ltd, Report No. 692763 Landis Kane Consulting, Document No. 500-2-16 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.9/02	McCorquo- dale G.Y.	2002 b	Physico-chemical testing with [14C]- Alpha-CO: partition coefficient Inveresk Research, Report No. 21024 Landis Kane Consulting, Document No. 500-2-17 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.9/03	Matsumoto T.	2002 e	1-Octanol/water partition coefficient test of 4'-OH (HPLC method) Kurume Laboratory, Chemicals Evaluation and Research Institute, Report No. 82071 Landis Kane Consulting, Document No. 500-2-18 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.9/04	Matsumoto T.	2002f	1-Octanol/water partition coefficient test of PENA (HPLC method) Kurume Laboratory, Chemicals Evaluation and Research Institute, Report No. 82074 Landis Kane Consulting, Document No. 500-2-19 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 3.9/05 → A 3.5/05	Mirbach M.	2004 a	Published or not Etofenprox: estimation of the temperature dependence of the solubility in water and organic solvents and of the partition coefficient octanol/water. Landis Kane Consulting, Report No. 04- alpha-18 Landis Kane Consulting, Document No.500-2-67	Y	Mitsui Chemic als. Inc.
A 3.10	Tognucci A.	1998f	Not GLP, not published Screening of the thermal stability in air of etofenprox RCC Umweltchemie AG, Report No. 692774 Landis Kane Consulting, Document No. 500-2-37 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.11/01	Dublaski A.	1991 a	Determination of the flammability of etofenprox in accordance with EEC- Guideline A.10 Battelle Europe, Report No. BE-P-32-91- A10-02 Landis Kane Consulting, Document No. 500-2-29 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.11/02	Dublaski A.	1991 b	Determination of the auto-flammability of etofenprox in accordance with EEC- Guideline A.16 Battelle Europe, Report No. BE-P-32-91- A16-02 Landis Kane Consulting , Document No. 500-2-30 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant)	Data Protection Claimed Y/ N	Owner
			Published or not		
A 3.12	Bates M.	2001 a	MTI-500: determination of the flash point - Amended final report from January 31, 2001	Y	Mitsui Chemic als, Inc.
			Covance Laboratories Ltd., Report No. 719/8-D2141		
			Landis Kane Consulting, Document No. 500-2-31 GLP, unpublished		
A 3.13	Dublaski	1991	Determination of the surface tension of	Y	Mitsui
	A.	с	etofenprox in accordance with EEC-		Chemic
			Guideline A.05		als, Inc.
			Battelle Europe., Report No. BE-P-32-		
			91-A05-02		
			Landis Kane Consulting, Document No.		
			500-2-33		
			GLP, unpublished		
A 3.15	Bates M.	2001	MTI-500: evaluation of the explosive	Y	Mitsui
		b	properties		Chemic
			- Amended final report from January 31, 2001		als, Inc.
			Covance Laboratories Ltd., Report No.		
			719/9-D2141		
			Landis Kane Consulting. Document No.		
			500-2-32		
			GLP, unpublished		

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 3.16	Bates M.	2001 c	MTI-500: determination of the oxidizing properties - Amended final report from January 31, 2001 Covance Laboratories Ltd., Report No. 719/11-D2141 Landis Kane Consulting, Document No. 500-2-34 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 3.17	Ohnuma K.	2004	Statement concerning the stability of etofenprox technical during storage and shipment. Mistui Chemicals, Inc., Document No. not specified Landis Kane Consulting, Document No. 500-2-66 Not GLP, unpublished	Ν	Mitsui Chemic als, Inc.
A 4.1/01	Ramsay N.	2002 b	Etofenprox – Validation of analytical methods to support 5-batch analysis of Etofenprox to fulfil the requirements of OPPTS Guidelines 830.1700, 830.1750 and 830.1800 and EC Council Directive 94/37/EEC Article 1.9 to 1.11. Inveresk Research, Report No. 21164 Landis Kane Consulting, Document No. 500-4-01 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 4.1/02	Dobrat W., Martijn A.	1995	Published or not CIPAC Handbook Volume G - Analysis of technical and formulated pesticides method etofenprox 471 Collaborative Int. Pesticides Analytical Council Ltd. 1995 Landis Kane Consulting, Document No. 500-4-02	N	Public in- formati on
A 4.2/01	Wolf S.	2003 a	Not GLP, publishedValidation of the residue analytical method for MTI-500 and α-CO in soil RCC Ltd, Report No. 811607 Landis Kane Consulting, Document No. 500-4-12	Y	Mitsui Chemic als, Inc.
A 4.2/02	Wolf S.	2003 b	GLP, unpublished Development and validation of the residue analytical method for MTI-500 and α-CO in air RCC Ltd, Report No. 811620 Landis Kane Consulting, Document No. 500-4-17 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 4.2/03	Wolf S.	2003 c	Validation of the residue analytical method for MTI-500 and α-CO in drinking, ground and surface water RCC Ltd, Report No. 811618 Landis Kane Consulting, Document No. 500-4-15 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 4.3/01	Wolf S.	2001	Validation of the residue analytical method for MTI-500 and α-CO in oil seed rape RCC Ltd, Report No. 789390 Landis Kane Consulting, Document No. 500-4-08 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 4.3/02	Wolf S.	2002	Validation of the residue analytical method for MTI-500 and α-CO in cabbage RCC Ltd, Report No. 814588 Landis Kane Consulting, Document No. 500-4-07 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 4.3/03	Wolf S.	2003 d	Validation of the residue analytical method for MTI-500 and α-CO in cucumber RCC Ltd, Report No. 789377 Landis Kane Consulting, Document No. 500-4-03 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 4.3/04	Class T.	2003 a	Etofenprox: independent laboratory validation of analytical methods used for the determination of residues of etofenprox in plant materials PTRL Europe GmbH, Report No. P 692 G Landis Kane Consulting, Document No. 500-4-40 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant)	Data Protection Claimed Y/ N	Owner
A 4.3/05	Wolf S.	2003 e	Published or not Development and validation of the residue analytical method for MTI-500 and α -CO in meat (ruminant and chicken), milk, fat (ruminant) and egg RCC Ltd, Report No. 791245 Landis Kane Consulting, Document No. 500-4-19	Y	Mitsui Chemic als, Inc.
A 4.3/06	Class T.	2003 b	GLP, unpublished Etofenprox: independent laboratory validation of an analytical method used for the determination of residues of etofenprox in foodstuffs of animal origin PTRL Europe, Report No: P/B 701 G Landis Kane Consulting, Document No. 500-4-41 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 5.3/01	Schuma- cher P., Fennert EM.	2003 a	Determination of toxic values against <i>Reticulitermes santonensis</i> De Feytaud according to EN 117 (08/90) without accelerated ageing procedure – test material SPU-01190-I; Material Testing Institute Brandenburg, Department 3 wood and wood protection, Germany; Report No. 3.2/03/8417/01 Landis Kane Consulting, Document No. 500-6-62 Not GLP, not published	Y	Spiess- Urania Chemic als GmbH
Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
-------------------------------------	---------------------------------------	-----------	--	---------------------------------------	--
A 5.3/02	Schuma- cherP., Fennert EM.	2003 b	Determination of toxic values against <i>Reticulitermes santonensis</i> De Feytaud according to EN 117 (08/90) after leaching procedure according to EN 84 (05/97) – test material SPU-01190-I; Material Testing Institute Brandenburg, Department 3 wood and wood protection, Germany; Report No. 3.2/03/8417/02 Landis Kane Consulting, Document No. 500-6-63 Not GLP, not published	Y	Spiess- Urania Chemic als GmbH
A 5.3/03	Schuma- cher P., Fennert EM.	2003 c	Determination of toxic values against larvae of <i>Hylotrupes bajulus</i> (L) according to EN 47 (08/90) without accelerated ageing procedure – test material SPU-01190-I; Material Testing Institute Brandenburg, Department 3 wood and wood protection, Germany; Report No. 3.2/03/8417/03 Landis Kane Consulting, Document No. 500-6-64 Not GLP, not published	Y	Spiess- Urania Chemic als GmbH

Section No / Referenc e No A 5.3/04	Author (s) Schuma- cherP., Fennert EM.	Xear 2003 d	TitleSource (where different from company) Company, Report No.GLP or GEP status (where relevant)Published or notDetermination of toxic values against larvae of Hylotrupes bajulus (L) according to EN 47 (08/90) after leaching procedure to EN 84 – test material SPU-01190-I; Material Testing	Data Protection Claimed Y/ N	Owner Spiess- Urania Chemic als GmbH
			Institute Brandenburg, Department 3 wood and wood protection, Germany; Report No. 3.2/03/8417/04 Landis Kane Consulting, Document No. 500-6-65 Not GLP, not published		
A 5.4	Nishimura K., Koba- yashi T., Fujita T.	1985	Symptomatic and neurophysiological activities of new synthetic non-ester pyrethroids, etofenprox, MTI-800, and related compounds Pesticide Biochemistry and Physiology Vol. 25, pp. 387 -395, 1986 Landis Kane Consulting, Document No. 500-3-01 Not GLP, published	Ν	Public in- formati on
A 6.1.1/01	Oda S.	2003 a	Acute oral toxicity study of etofenprox in rats Bozo Research Center Inc., Report No. B-5039 Landis Kane Consulting, Document No. 500-5-70, GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
А	Harling	1985	Ethofenprox (MTI-500) acute limit test of	Y	Mitsui
6.1.1/02	R.J.,	a	toxicity to dogs following a single oral		Chemic
	Burford P.,		administration Huntingdon Research		als, Inc.
	Heywood		Centre Ltd., Report No. MTC		
	R.		101/851185		
			Landis Kane Consulting, Document No.		
			500-5-07		
			GLP, not published		
А	Hashimoto	1982	Report on acute toxicity study of MTI-	Y	Mitsui
6.1.1/03	K.	а	500 (ethofenprox) in rats		Chemic
			Hatano Research Institute, Food and Drug		als, Inc.
			Safety Center, Report No. A-82-27~34		
			Landis Kane Consulting, Document No.		
			500-5-08		
			Not GLP, not published		
А	Hashimoto	1982	Report on Acute Toxicity Study of MTI-	Y	Mitsui
6.1.1/04	K.	b	500 (ethofenprox) in Mice		Chemic
			Hatano Research Institute, Food and Drug		als, Inc.
			Safety Center, Report No. A-82-35~42		
			Landis Kane Consulting, Document No.		
			500-5-09		
			Not GLP, not published		
А	Oda S.	2003	Acute dermal toxicity study of etofenprox	Y	Mitsui
6.1.2/01		b	in rats Bozo Research Center Inc., Report		Chemic
			No. B-5040		als, Inc.
			Landis Kane Consulting, Document No.		
			500-5-71		
			GLP, not published		

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 6.1.2/02 → A 6.1.1/03	Hashimoto K.	1982 a	Report on acute toxicity study of MTI- 500 (ethofenprox) in rats Hatano Research Institute, Food and Drug Safety Center, Report No. A-82-27~34 Landis Kane Consulting, Document No. 500-5-08 Not GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.1.2/03 → A 6.1.1/04	Hashimoto K.	1982 b	Report on acute toxicity study of MTI- 500 (ethofenprox) in mice Hatano Research Institute, Food and Drug Safety Center, Report No. A-82-35~42 Landis Kane Consulting, Document No. 500-5-09 Not GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.1.3	Jackson C.J., Hardy C.J., Clark G.C., Greg-son R.L., Lewis D.J., Gopinath C.	1983	MTI-500 Acute inhalation toxicity in rats 4 hour exposure Huntingdon Research Centre Ltd., Report No. MTC 60/821079 Landis Kane Consulting, Document No. 500-5-10 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.1.4.s	Kashima M., Ikeda H., Maru- yama Y., Ootsuka Y.	1985 a	MTI-500 Primary skin stimulation test in rabbits - Amendment No. 1 from October 28, 1991 Haruna Laboratory Nippon Experimental Medical Research Institute, Ltd., Report No. NEMRI-H-85-5 Landis Kane Consulting, Document No. 500-5-11 GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 6.1.4.e	Kashima M., Ikeda H., Maru- yama Y., Ootsuka Y.	1985 b	MTI-500 Primary ophthalmic stimulation test in rabbits - Amendment No. 1 from October 28, 1991 Haruna Laboratory Nippon Experimental Medical Research Institute, Ltd., Report No. NEMRI-H-85-55 Landis Kane Consulting, Document No. 500-5-12 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.1.5	Kobayashi K.	1985	MTI-500 Skin sensitization test in guinea pigs - Correction to translation from October 21, 2003 Oizumi Laboratory Nippon Experimental Medical Research Institute, Ltd., Report No. not specified Landis Kane Consulting, Document No. 500-5-13 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.2/01	Hawkins D.R., Kirk- patrick D., Ewen B., Midgley I., Biggs S.R., Whitby B.R.	1985 a	The biokinetics and metabolism of ¹⁴ C- ethofenprox in the rat Huntingdon Research Centre Ltd., Report No. HRC/MTC 68/84610 Landis Kane Consulting, Document No. 500-5-02 GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 6.2/02	Burri R.	2001 a	 [14C]-MTI-500: absorption, distribution, metabolism and excretion after single oral administration to male rats amendment dated November 30,2001 RCC Ltd, Report No. 801382 Landis Kane Consulting, Document No. 500-5-01 Not GLP, not published 	Y	Mitsui Chemic als, Inc.
A 6.2/03	Burri R.	2001 b	 [14C]-alpha-CO: absorption, distribution, metabolism and excretion after single oral administration to male rats RCC Ltd., Report No. 819832 Landis Kane Consulting, Document No. 500-5-45 Not GLP, not published 	Y	Mitsui Chemic als, Inc.
A 6.2/04	Hawkins D.R., Kirk- patrick D., Ewen B., Midgley I., Biggs S.R.	1985 b	The metabolism of ¹⁴ C-ethofenprox in dogs Huntingdon Research Centre Ltd., Report No. HRC/MTC 69/84583 Landis Kane Consulting, Document No. 500-5-04 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.2/05	Tomoda K.	1986	Metabolism study of ethofenprox (MTI- 500), metabolism in rat Mitsui Toatsu Chemicals, Inc., Report No. not specifed Landis Kane Consulting, Document No. 500-5-03 Not GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 6.2/06	Thalaker F.	1999	Dermal absorption of ¹⁴ C-etofenprox in male rats (preliminary and definitive phases) Covance Laboratories Inc., Report No. 6648-135 Landis Kane Consulting, Document No. 500-5-80 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.3.2	Killeen J.C.	2000	A 28-day repeated dose dermal toxicity study in rabbits with technical MTI-500 Ricerca, LLC Toxicology & Metabolism, Report No. 011077-1 Landis Kane Consulting, Document No. 500-5-18 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.4.1/01	Green O.P., Street A.E., Heywood R., Gopinath C., Almond R.H.	1983 a	Assessment of the toxicity of MTI-500 in rats during dietary administration for 13 weeks Re-issued amended pages on December 18, 1985 Huntingdon Research Centre Ltd., Report No. MTC 56/821067 Landis Kane Consulting, Document No. 500-5-14 GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc	Author (s)	Year	TitleSource (where different from company) Company, Report No.CL D on CED status (where relevant)	Data Protection Claimed	Owner
e No			GLP of GEP status (where relevant) Published or not	I / IN	
A 6.4.1/02	Green O.P., Heywood R., Street A.E., Gopinath C., Almond R.H.	1983 b	Assessment of the toxicity of MTI-500 to mice by dietary administration for 13 weeks Re-issued amended pages on December 18, 1985 Huntingdon Research Centre Ltd., Report No. MTC 55/821112 Landis Kane Consulting, Document No. 500-5-15	Y	Mitsui Chemic als, Inc.
A 6.4.3.1	Coombs D.W., Hardy C.J., Clark G.C., Street A.E., Gipson W.A., Go- pinath C., Reed L.E.	1985	GLP, not published Ethofenprox (MTI-500) 90-day inhalation study in rats Huntingdon Research Centre Ltd., Report No. MTC 81/841257 Landis Kane Consulting, Document No. 500-5-17 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.5.1/01 and A 6.7/01	Green O.P., Heaps C.J., Heywood R., Street A.E., Go- pinath C., Singh H., Gipson W.A.	1986 a	Ethofenprox (MTI-500) Potential tumorigenic and toxic effects in prolonged dietary administration to rats Huntingdon Research Centre Ltd., Report No. MTC 59/85581 Landis Kane Consulting, Document No. 500-5-24 GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant)	Data Protection Claimed Y/ N	Owner
A 6.5.1/02 and A 6.7/02	Green O.P., Heaps C.J., Heywood R., Street A.E., Go- pinath C., Imm S., Gipson	1986 b	Published or notEthofenprox(MTI-500)Potentialtumoregenicandtoxiceffectsinprolonged dietary administration to miceHuntingdon Research Centre Ltd., ReportNo.MTC 59/85582Landis Kane Consulting, Document No.500-5-25GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.5.2	W.A. Harling R.J., Burfort P., Street A.E., Heywood R., Majeed S.K., Gopinath C.	1985 b	Ethofenprox (MTI-500) Toxicity to dogs by repeated dietary administration for 52 weeks followed by a recovery period of 8 weeks Huntingdon Research Centre Ltd., Report No. MTC 71/85234 Landis Kane Consulting, Document No. 500-5-16 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.6.1	Edwards C., Forster R.	1985	Reverse mutation in <i>Salmonella</i> <i>typhimurium</i> Life Science Research, Roma Toxicology Centre, Report No. 162001-M-06185 Landis Kane Consulting, Document No. 500-5-19 GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 6.6.2	Bootman J., Hodson- Walker G., Dance C.A.	1985 a	<i>In vitro</i> assessment of the clastogenic activity of MTI-500, ethofenprox, in cultured human peripheral lymphocytes Life Science Research Ltd., Report No. 85/MT0017/430 Landis Kane Consulting, Document No. 500-5-21 Not GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.6.3/01	Seeburg A.H., Forster R.	1985 a	Gene mutation in Chinese hamster V79 cells: test substance MTI-500 Life Science Research, Roma Toxicology Centre, report No. 162002-M-06985 Landis Kane Consulting, Document No. 500-5-20 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.6.3/02	Seeburg A.H., Forster R.	1985 b	Unscheduled DNA synthesis in human cells cell line: Hela S3 Life Science Research, Roma Toxicology Centre, Report No. 162003-M-05785 Landis Kane Consulting, Document No. 500-5-23 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.6.4	Bootman J., Hodson- Walker G., Dance C.A.	1985 c	MTI-500, ethofenprox: Assessment of clastogenic action on bone marrow erythrocytes in the micronucleus test Life Science Research, Report No. 85/MT0016/406 Landis Kane Consulting, Document No. 500-5-22 Not GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 6.6.7/01	Cummins H.A., Gardner J.R.	1985 a	MTI-500 α-CO: Acute oral toxicity in the rat Life Science Research Ltd, Report No. 85/MT0018/474 Landis Kane Consulting, Document No. 500-5-38 GLP, not published	Υ	Mitsui Chemic als, Inc.
A 6.6.7/02	Cummins H.A., Gardner J.R.,	1985 b	MTI-500 α-CO: Acute percutaneous toxicity in the rat Life Science Research Ltd, Report No. 85/MT0019/473 Landis Kane Consulting, Document No. 500-5-39 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.6.7/03	Powell L.A.J., Coleman M., Hey- wood R., Gopinath C., Gibson W.A.	1987	MTI-500 α-CO Preliminary toxicity study in rats by dietary administration for 4 weeks Huntingdon Research Centre Ltd., Report No. MTC 140/87194 Landis Kane Consulting, Document No. 500-5-40 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.6.7/04	Powell L.A.J., Coleman M., Crock D., Gopi- nath C., Gibson W.A., Read R.M., An-derson A.	1988	MTI-500 α-CO Toxicity to rats by dietary administration for 13 weeks Huntingdon Research Centre Ltd., Report No. MTC 141/871458 Landis Kane Consulting, Document No. 500-5-41 GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)	Data Protection Claimed Y/ N	Owner
0110			Published or not	1/11	
A 6.6.7/05	Bootman J., May K.	1985 a	MTI-500 α-CO: Assessment of its mutagenic potential in amino-acid auxotrophs of <i>Salmonella typhimurium</i> and <i>Escherichia coli</i> to comply with the testing guidelines of the Japanese Ministry of Agriculture, Forestry and Fisheries (1985) Life Science Research, Report No. 85/MT0020/433 Landis Kane Consulting, Document No. 500-5-42	Y	Mitsui Chemic als, Inc.
			GLP, not published		
A 6.6.7/06	Bootman J., May K.	1985 b	MTI-500 α-CO: Assessment of its ability to cause lethal DNA damage in strains of <i>Escherichia coli</i> Life Science Research Limited, report No. 85/MT0022/504 Landis Kane Consulting, Document No. 500-5-44 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.6.7/07	Bootman J., Hodson- Walker G., Dance C.A.	1985 b	<i>In vitro</i> assessment of the clastogenic activity of MTI-500 α-CO in cultured human peripheral lymphocytes Life Science Research Limited, Report No. 85/MT0021/711 Landis Kane Consulting, Document No. 500-5-43 GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 6.8.1.1 /01	Cozens D.D., Hughes E.W., Clark R., Ander-son A.	1985 a	Effect of ethofenprox (MTI-500) on fertility and pregnancy of the rat Huntingdon Research Centre Ltd., Report No. MTC 66/84668 Landis Kane Consulting, Document No. 500-5-33 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.8.1.1 /02	Cozens D.D., Hughes E.W., An- derson A.	1985 b	Effect of ethofenprox (MTI-500) on pregnancy of the rat with rearing to maturation of the F1 generation Huntingdon Research Centre Ltd., Report No. MTC 64/85422 Landis Kane Consulting, Document No. 500-5-34 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.8.1.1 /03	Cozens D.D., Hughes E.W., Offer J., Anderson A.	1985 c	Effect of ethofenprox (MTI-500) on the peri and post natal period of the rat with rearing to maturation of the F1 offspring Huntingdon Research Centre Ltd., Report No. MTC 65/85423 Landis Kane Consulting, Document No. 500-5-35 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.8.1.2 /01	Bottomley A., Barton S.J., Masters R.E., Offer J., Parker C.A., Ander-son A., Dawe L.S.M.	1985	Effect of etofenprox (MTI-500) on pregnancy of the rabbit Re-issued amended pages on December 20, 1985 Huntingdon Research Centre Ltd., Report No. MTC 85(84)/85444 Landis Kane Consulting, Document No. 500-5-36 GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 6.8.1.2 /02	Fisher B.J.	2000	Rabbit developmental toxicity study with etofenprox Covance Laboratories Inc., Report No. 6648-146 Landis Kane Consulting, Document No. 500-5-37 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.8.2/01	Cozens D.D., Barton S.J., Offer J.M., Parker C.A., An- derson A.	1985 d	Effect of ethofenprox (MTI-500) on multiple generations of the rat Re-issued amended pages on January 07, 1985 Huntingdon Research Centre Ltd., Report No. MTC 67/85706 Landis Kane Consulting, Document No. 500-5-32 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.9/01	Smith P.B.	2002	Acute oral gavage neurotoxicity study with MTI-500 in rats Covance Laboratories Inc., Report No. 6648-154 Landis Kane Consulting, Document No. 500-5-06 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.9/02	Smith P.B.	2003 a	 13-week dietary neurotoxicity study with MTI-500 in rats Covance Laboratories Inc., Report No. 6648-153 Landis Kane Consulting, Document No. 500-5-47 GLP, not published 	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 6.9/03	Myers D.P.	2003	Etofenprox developmental neurotoxicity study in the rat by oral (dietary) administration Huntingdon Life Sciences, Report No. MTU 215/032731 Landis Kane Consulting, Document No. 500-5-48 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.9/04	Burton D.A.	2002	Etofenprox – Validation of an analytical method for the determination of Etofenprox in UAR VRF1 (VRF1) Diet Huntingdon Life Sciences Ltd., Report No. MTU/222/1023183 Landis Kane Consulting, Document No. 500-5-05 GLP, not published	Y	Mitsui Chemic als, Inc.
A 6.10	Smith P.B.	2003 b	4-week dietary investigative study on thyroid function and hepatic micriosomal enzyme induction with MTI-500 in rats Covance Laboratories Inc., Report No. 6648-156 Landis Kane Consulting, Document No. 500-5-83 GLP, not published	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 6.11/03	Kamiya J., Yoshiwara K., Saito S., Takahashi Y., Oseki K., Shimizu H., Kawa- zura H., Shiga Y., Yoshida M., Haya- kawa M.	1985	General pharmacology of MTI-500 Institute of Biological Sciences, Mitsui Pharmaceuticals Inc., Japanese Pharmacology & Therapeutics, Vol.13 (11), 229-244 (1985) Landis Kane Consulting, Document No. 500-5-46 Not GLP, published	Ν	Public in- formati on
A 6.12.1	Yamazaki Y.	1992	Health report from the Industrial Hygiene Section, Ohmuta Factory Mitsui Toatsu Chemicals, Inc., Report No. not specified Landis Kane Consulting, Document No. 500-5-49 not GLP, not published	Y	Mitsui Chemic als, Inc.
A 7.1.1.1.1 /01	van der Gaauw A.	2001	 ¹⁴C-etofenprox: hydrolysis at three different pH values RCC Ltd, Report No. 731158 Landis Kane Consulting, Document No. 500-2-20 GLP, unpublished 	Y	Mitsui Chemic als, Inc.
A 7.1.1.1.1 /02	Clayton M.A., McCorquo- dale G.Y., Paterson K.	2003	Hydrolytic stability of [¹⁴ C]-alpha-CO in buffered aqueous solution Inveresk Research, Report No. 21993 Landis Kane Consulting, Document No. 500-7-09 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 7.1.1.1.2 /01	van der Gaauw A.	2003	Aqueous photolysis of [¹⁴ C]-etofenprox under laboratory conditions and determination of quantum yield RCC Ltd, Report No. 755526 Landis Kane Consulting, Document No. 500-2-21 GLP unpublished	Y	Mitsui Chemic als, Inc.
A 7.1.1.1.2 /02	Clayton M.A., McCorquo- dale G.Y.	2003	Artificial sunlight photodegradation of [¹⁴ C]-alpha-CO in buffered aqueous solution Inveresk Research, Report No. 21971 Landis Kane Consulting, Document No. 500-7-10 Not GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.1.1.2.1	Thus J.L.G., van der Laan- Straathof J.M.Th., Keetelaar- Jansen W.A.J.	1993	Biodegradation of ¹⁴ C-etofenprox in an adapted modified Sturm test Solvay Duphar B.V., Report No. C.DNL.62.002 Landis Kane Consulting, Document No. 500-7-12 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.1.1.2.1 /02	Thus J.L.G., van der Laan- Straathof J.M.Th	1992	Determination of the biodegradability of etofenprox in a closed bottle test Solvay Duphar B.V., Report No. C.DNL.62.001 Landis Kane Consulting, Document No. 500-7-11 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 7.1.2.2.2 /01	Lewis C.J.	2001	(¹⁴ C)-MTI-500: degradation and retention in water-sediment systems and amendment dated July 22, 2002 Covance Laboratories Ltd., Report No. CLE 719/6-D2142 Landis Kane Consulting, Document No. 500-7-13 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.1.2.2.2 /02	Lewis C.J.	2002	(¹⁴ C)-MTI-500: recovery of radioactivity, isolation and analysis of a degradation product from a water-sediment system Covance Laboratories Ltd., Report No. CLE 719/14-D2149 Landis Kane Consulting, Document No. 500-7-14 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.1.2.2.2 /03	Mirbach M.	2005	Etofenprox: estimation of the degradation in sediment Landis Kane Consulting, Report No. 05- alpha-31 Landis Kane Consulting, Document No. 500-7-44 Not GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.1.3	Völkel W.	1999	Adsorption / desorption of MTI-500 (etofenprox) on three soils RCC Ltd, Report no: 663175 Landis Kane Consulting, Document No. 500-7-06 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 7.2.2.1	Völkl S.	2001	 ¹⁴C-etofenprox: degradation and metabolism in four soils incubated under aerobic conditions first amendment dated February 26, 2002 second amendment dated June 03, 2003 RCC Ltd, Report No. 728987 Landis Kane Consulting, Document No. 500-7-01 	Y	Mitsui Chemic als, Inc.
A 7.2.2.4	Mamouni A	2002 b	GLP, unpublished Photolysis of ¹⁴ C-MTI-500 on soil surface under laboratory conditions RCC Ltd, Report No. 800616 Landis Kane Consulting, Report No. 500-7-04 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.2.3.2	Warncke U.	1998	Leaching behaviour of etofenprox after application of Trebon 30 EC Urania Agrochem GmbH, Chemical Laboratories, Report No. C96VSI03 Landis Kane Consulting, Document No. 500-7-07 GLP, unpublished	Y	Spiess- Urania Chemic als GmbH
A 7.3.1	Bates M.	2001 d	MTI-500: estimation of the photochemical oxidative degradation - Amended final report from January 31, 2001 Covance Laboratories Ltd., Report No. 719/12-D2141 Landis Kane Consulting, Document No. 500-2-27 Not GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 7.4.1.1 /01	Machado M.W.	1995 a	Etofenprox technical - acute toxicity to Rainbow trout (<i>Oncorhynchus mykiss</i>) under flow-through conditions Springborn Laboratories Inc., Report No. 94-12-5625 Landis Kane Consulting, Document No. 500-8-05 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.4.1.1 /02	Machado M.W.	1995 b	Etofenprox technical - acute toxicity to Bluegill sunfish (<i>Lepomis macrochirus</i>) under flow-through conditions Springborn Laboratories Inc., Report No. 95-1-5653 Landis Kane Consulting, Document No. 500-8-07 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.4.1.1 /03	Bätscher R.	2002 a	Acute toxicity of α-CO to Rainbow trout (<i>Oncorhynchus mykiss</i>) in a 96-hour flow-through test RCC Ltd., Report No. 841573 Landis Kane Consulting, Document No. 500-8-09 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.4.1.2 /01	Gries T.	2003	Etofenprox technical: static renewal acute toxicity test with Daphnids (<i>Daphnia magna</i>) Springborn Smithers Laboratories (Europe) AG, Report No. 1045.000.110 Landis Kane Consulting, Document No. 500-8-51 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 7.4.1.2 /02	Bätscher R.	2002 b	Acute toxicity of α-CO to <i>Daphnia</i> <i>magn</i> a in a 48-hour immobilization test RCC Ltd, Report No. 841575	Y	Mitsui Chemic als, Inc.
			Landis Kane Consulting, Document No. 500-8-10 GLP, unpublished		
A 7.4.1.3 /01	Gries T., Purghart V.	2003	Etofenprox technical: static toxicity test with the freshwater algae <i>Pseudokirchneriella subcapitata</i> Springborn Smithers Laboratories (Europe) AG, Report No. 1045.000.430 Landis Kane Consulting, Document No. 500-8-52 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.4.1.3 /02	Bätscher R.	2002 c	Toxicity of α-CO to <i>Pseudokirchneriella</i> subcapitata (formerly Selenastrum capricornutum) in a 96-hour algal growth inhibition test RCC Ltd, Report No. 841577 Landis Kane Consulting, Document No. 500-8-11 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.4.1.4	Czech P.	2002	Toxicity of etofenprox to activated sludge in a respiration inhibition test RCC Ltd, Report No. 841615 Landis Kane Consulting, Document No. 500-8-50 GLP, unpublished	Y	Spiess- Urania Chemic als GmbH

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 7.4.3.1	Wilhelmy H.	1997	Etofenprox technical: fish (rainbow trout), prolonged toxicity test, 21 days (semi- static) Dr. U. Noack-Laboratorium, Report No. 970304SP Landis Kane Consulting, Document No. 500-8-13 GLP, unpublished	Y	Spiess- Urania & Mitsui Chemic als, Inc.
A 7.4.3.2	Peither A.	2005	Toxic effects of MTI-500 (Etofenprox) to zebra fish (<i>Brachydanio rerio</i>) in an early-life stage toxicity test ; RCC Ltd., Report no. 853517 Landis Kane Consulting, Document No. 500-8-66 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.4.3.3.1	van Dijk A.	2002	Bioconcentration: flow-through fish test with MTI-500 (Trebon) in Bluegill sunfish RCC Ltd, Report No. 762254 Landis Kane Consulting, Document No. 500-8-15 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.4.3.4	Groenefeld A.H.C., Berends A.G., van der Laan J.M.Th., van Dijk N.R.M.	1993	The chronic toxicity of ¹⁴ C-etofenprox to <i>Daphnia magna</i> Solvay Duphar B.V., Report No. C.DNL.51.007 Landis Kane Consulting, Document No. 500-8-18 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 7.4.3.5.1 /01	Memmert U.	2002 a	Effect of MTI-500 on larvae of <i>Chironomus riparius</i> in a 10-day toxicity test RCC Ltd, Report No. 803777 Landis Kane Consulting, Document No. 500-8-21 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.4.3.5.1 /02	Memmert U.	2002 b	Acute toxicity of 4'-OH to first - instar larvae of the midge <i>Chironomus riparius</i> RCC Ltd, Report No. 841579 Landis Kane Consulting, Document No. 500-8-12 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.4.3.5.1 /03	Memmert U.	2002 c	Effect of MTI-500 on the development of sediment-dwelling larvae of <i>Chironomus</i> <i>riparius</i> in a water-sediment system RCC Ltd, Report No. 803608 Landis Kane Consulting, Document No. 500-8-22 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.5.1.1	Kölzer U.	2003	Assessment of the side effects of etofenprox on the activity of the soil microflora Arbeitsgemeinschaft GAB Biotechnologie GmbH & IFU Umweltanalytik GmbH, Report No. 20031050/01-ABMF Landis Kane Consulting, Document No. 500-8-53 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	Title Source (where different from company) Company, Report No. GLP or GEP status (where relevant) Published or not	Data Protection Claimed Y/ N	Owner
A 7.5.1.2	Roberts N.L., Hakin B.	1989	The subacute toxicity (LC50) of etofenprox (MTI-500) to the earthworm (<i>Eisenia foetida</i>) Huntingdon Research Centre Ltd., Report No. MTF 2/881276 Landis Kane Consulting, Document No. 500-8-25 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.5.1.3	Büche, C.	2004	Terrestrial (non-target) plant test with MTI-500 30%EC: seedling emergence and seedling growth & vegetative vigour test. RCC Ltd., Report No. 853515 Landis Kane Consulting, Document No. 500-8-64 GLP, unpublished	Υ	Mitsui Chemic als, Inc.
A 7.5.3.1.1	Roberts N.L., Hakin B., Ander-son A.	1985	The acute toxicity (LD50) of MTI-500 (ethofenprox) to the Mallard duck Huntingdon Research Centre plc, Report No. MTC 77C/84793 Landis Kane Consulting, Document No. 500-8-01 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or pot	Data Protection Claimed Y/ N	Owner
A 7.5.3.1.2/ 01	Roberts N.L., Hakin B.	1984 a	The subacute dietary toxicity (LC50) of MTI-500 (etofenprox) to the Bobwhite quail - amended final report dated June 27, 1985 - signature pages added: August 21, 1985 Huntingdon Research Centre plc, Report No. MTC 77A/84795/2 Landis Kane Consulting, Document No. 500-8-02 GLP, unpublished	Y	Mitsui Chemic als, Inc.
A 7.5.3.1.2/ 02	Roberts N.L., Hakin B.	1984 b	The subacute dietary toxicity (LC50) of MTI-500 (etofenprox) to the Mallard duck - amended final report dated June 26, 1985 - signature pages added: August 21, 1985 Huntingdon Research Centre plc, Report No. MTC 77B/84795/2 Landis Kane Consulting, Document No. 500-8-03 GLP, unpublished	Υ	Mitsui Chemic als, Inc.
A 7.5.3.1.3	Rodgers M.H.	1996	MTI-500 Effects on reproduction in Bobwhite quail after dietary administration Huntingdon Life Sciences Ltd., Report No. MTC 270/962282 Landis Kane Consulting, Document No. 500-8-04 GLP, unpublished	Y	Mitsui Chemic als, Inc.

Section No / Referenc e No	Author (s)	Year	TitleSource (where different fromcompany) Company, Report No.GLP or GEP status (where relevant)Published or not	Data Protection Claimed Y/ N	Owner
A 7.5.6	Tanaka T.	2005	Insecticidal activity of the environmental metabolites of etofenprox. Mitsui Chemicals, Inc. Landis Kane Consulting, Document No. 500-8-67 Not GLP unpublished	Y	Mitsui Chemic als, Inc.

8 ANNEXES

Confidential Annex

Study Summaries