CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

Substance Name: CARBOXIN (ISO); 2-methyl-Nphenyl-5,6-dihydro-1,4-oxathiine-3-carboxaamide; 5,6dihydro-2-methyl-1,4-oxathiine-3-carboxanilide

EC Number: 226-031-1

CAS Number: 5234-68-4

Index Number: Not Assigned

Contact details for dossier submitter:

UK CLP Competent Authority

Chemicals Regulation Directorate Health and Safety Executive Bootle Merseyside L20 7HS United Kingdom

Version number: 2

Date: September 2016

CONTENTS

Part A.

1	PI	ROPOSAL FOR HARMONISED CLASSIFICATION AND LABELLING	. 5
	1.1	SUBSTANCE	5
	1.2	HARMONISED CLASSIFICATION AND LABELLING PROPOSAL	5
	Prop	POSED HARMONISED CLASSIFICATION AND LABELLING	7
2	B	ACKGROUND TO THE CLH PROPOSAL	9
	2.1	HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING	9
	2.2	SHORT SUMMARY OF THE SCIENTIFIC JUSTIFICATION FOR THE CLH PROPOSAL	9
		CURRENT HARMONISED CLASSIFICATION AND LABELLING	
	2.4	CURRENT SELF-CLASSIFICATION AND LABELLING	10
3	Л	USTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL	11

Part B.

S	CIENTIFI	C EVALUATION OF THE DATA	
1	IDEN	TITY OF THE SUBSTANCE	
	1.2 Сом <i>1.2.1</i>	IE AND OTHER IDENTIFIERS OF THE SUBSTANCE IPOSITION OF THE SUBSTANCE <i>Composition of test material</i> SICO-CHEMICAL PROPERTIES	
2	MANU	JFACTURE AND USES	16
	2.2 IDE	NUFACTURE	
3	CLAS	SIFICATION FOR PHYSICO-CHEMICAL PROPERTIES	17
	3.1 PHY 3.1.1 3.1.2 3.1.3	SIO-CHEMICAL PROPERTIES Summary and discussion of physiochemical properties Comparison with criteria Conclusions on classification and labelling	
4	HUMA	NN HEALTH HAZARD ASSESSMENT	
	4.1 Tox 4.1.1 4.1.2 4.1.3	ICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION) Non-human information Human information Summary and discussion on toxicokinetics	
	4.2 Act 4.2.1 4.2.2	TE TOXICITY Non-human information Human information	
	4.2.3 4.2.4 4.2.5	Summary and discussion of acute toxicity Comparison with criteria Conclusions on classification and labelling	
	4.3.1 4.3.2	CIFIC TARGET ORGAN TOXICITY – SINGLE EXPOSURE (STOT SE) Summary and discussion of Specific target organ toxicity – single exposure Comparison with criteria	
	<i>4.3.3</i> 4.4 IRRI	Conclusions on classification and labelling	

4.4.1 Skin irritation	22
4.4.1.1 Non-human information	
4.4.1.1 Non-human miormation	
4.4.1.2 Futural information 4.4.1.3 Summary and discussion of skin irritation	
4.4.1.4 Comparison with criteria4.4.1.5 Conclusions on classification and labelling	
4.4.2 Eye irritation	
4.4.2.1 Non-human information	
4.4.2.2 Human information	
4.4.2.3 Summary and discussion of eye irritation	
4.4.2.4 Comparison with criteria.	
4.4.2.5 Conclusions on classification and labelling	
4.4.3 Respiratory tract irritation	
4.4.3.1 Non-human information	
4.4.3.2 Human information	
4.4.3.3 Summary and discussion of respiratory tract irritation	
4.4.3.4 Comparison with criteria	
4.4.3.5 Conclusions on classification and labelling	
4.5 CORROSIVITY	
4.5.1 Non-human information	24
4.5.2 Human information	
4.5.3 Summary and discussion of corrosivity	
4.5.4 Comparison with criteria	
4.5.5 Conclusions on classification and labelling	
4.6 SENSITISATION	
4.6.1 Skin sensitisation	
4.6.1.1 Non-human information	
4.6.1.2 Human information	
4.6.1.3 Summary and discussion of skin sensitisation	
4.6.1.4 Comparison with criteria	26
4.6.1.5 Conclusion on classification and labelling	
4.6.2 Respiratory sensitisation	
4.6.2.1 Non-human information	26
4.6.2.2 Human information	
4.6.2.3 Summary and discussion of respiratory sensitisation	
4.6.2.4 Comparison with criteria	26
4.6.2.5 Conclusions on classification and labelling	26
4.7 REPEATED DOSE TOXICITY	
4.7.1 Non-human information	
4.7.1.1 Repeated dose toxicity: oral	
4.7.1.2 Repeated dose toxicity: inhalation	
4.7.1.3 Repeated dose toxicity: dermal	
4.7.1.4 Repeated dose toxicity: other routes	
4.7.1.5 Human information	
4.7.1.6 Other relevant information	
4.7.1.7 Summary and discussion of repeated dose toxicity	
4.8 SPECIFIC TARGET ORGAN TOXICITY – REPEATED EXPOSURE (STOT RE)	
4.8.1 Summary and discussion of repeated dose toxicity findings relevant for classification as STO	
4.8.2 Comparison with criteria of repeated dose toxicity findings relevant for classification as STO	
4.8.3 Conclusions on classification and labelling of repeated dose toxicity findings relevant for classification	
as STOT RE	
4.9 GERM CELL MUTAGENICITY (MUTAGENICITY)	
4.9.1 Non-human information	45
4.9.1.1 In vitro data	
4.9.1.2 In vivo data	45
4.9.2 Human information	
4.9.3 Other relevant information	
4.9.4 Summary and discussion of mutagenicity	
4.9.4 Summary and discussion of mulageneity	
4.9.6 Conclusions on classification and labelling	
4.10 CARCINOGENICITY	
4.10.1 Non-human information	
4.10.1.1 Carcinogenicity: Oral	
4.10.1.2 Carcinogenicity: inhalation	C 1

4.10.2 Human information 51 4.10.3 Other relevant information 52 4.10.4 Summary and discussion of carcinogenicity 52 4.10.5 Comparison with criteria 53 4.11.1 Effects on fertility 54 4.11.1 Effects on fertility 56 4.11.1 Non-human information 56 4.11.1 Human information 56 4.11.1 Non-human information 56 4.11.2 Human information 56 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.12 Other relevant information 58 5.1.1 Stability 58 5.1.2 Biodegradation estimation 60 5.1.2.1 Biodegradation estimation 60		4.10.1.3	Carcinogenicity: dermal	51
4.10.4 Summary and discussion of carcinogenicity 52 4.10.5 Comparison with criteria 53 4.11 TOXICITY FOR REPRODUCTION 54 4.11.1 Effects on fertility 56 4.11.1 Non-human information 56 4.11.2 Developmental toxicity 56 4.11.2 Developmental toxicity 56 4.11.2.1 Non-human information 56 4.11.2.1 Non-human information 57 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1.1 Stability 58 5.1.2 Biodegradation 60 5.1.2.3 Simulation tests 60 5.1.2 Stability 58 5.1.2 Stability 56 5.1.3 Simulation tests 60		4.10.2	Human information	51
4.10.5 Comparison with criteria 53 4.11 TOXICITY FOR REPRODUCTION 54 4.11.1 Effects on ferrility 56 4.11.1.1 Effects on ferrility 56 4.11.2 Developmental toxicity 56 4.11.2 Developmental toxicity 56 4.11.2 Developmental toxicity 56 4.11.2 Developmental toxicity 56 4.11.3 Other relevant information 56 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.12 Other EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1.1 Stability 58 5.1.2 Biodegradation estimation 60 5.1.2.3 Simulation 60 5.1.3 Summary and discussion of degradation 63 5.2.4 Adsorption/Desorption 64 5.1.3 Summary and dis		4.10.3		
4.11 TOXICTY FOR REPROUCTION 54 4.11.1 Effects on fertility 56 4.11.1 Non-human information 56 4.11.2 Developmental toxicity 56 4.11.2 Developmental toxicity 56 4.11.2 Developmental toxicity 56 4.11.2 Non-human information 57 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1.1 Biodegradation 60 5.1.2 Biodegradation 60 5.1.2 Simulation tests 60 5.1.3 Summary and discussion of degradation 60 5.1.3 Summary and discussion of degradation 60 5.1.2 Biodegradation estimation 60 5.1.3 Summary and discussion of degradation 61 5.2 <		4.10.4	Summary and discussion of carcinogenicity	52
4.11.1 Effects on fertility 56 4.11.11 Non-human information 56 4.11.2 Developmental toxicity 56 4.11.2 Duman information 56 4.11.2 Non-human information 57 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.11.6 Conclusions on classification and labelling 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1 DEGRADATION 58 5.1.1 Stability 58 5.1.2 Biodegradation estimation 60 5.1.2.3 Studiation estimation 60 5.1.2 Biodegradation estimation 60 5.1.3 Studino tests 60 5.1.3 Studino tests 60 5.1.4 Studino tests 60 5.1.3 Studino tests 60 5.1.4 Adsorption/Desorption 64				
4.11.1.1 Non-human information 56 4.11.2 Human information 56 4.11.2 Developmental toxicity 56 4.11.2.1 Non-human information 57 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.11.6 Conclusions on classification and labelling 57 4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1.1 Biodegradation 50 5.1.2 Biodegradation 60 5.1.2.1 Biodegradation 60 5.1.2.2 Strement ests 60 5.1.3 Summary and discussion of degradation 63 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3.1 Aquatic bioaccumulation 64 5.4.1 Long-term toxicity to fish 65 5.4.1 Long-term toxicity		4.11 Tox		
4.11.12 Human information 56 4.11.2.1 Non-human information 56 4.11.2.1 Non-human information 56 4.11.2.2 Human information 57 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1.1 Stability 58 5.1.2 Biodegradation estimation 60 5.1.2.3 Simulation tests 60 5.1.2.4 Biodegradation estimation 60 5.1.2.3 Sumulary and discussion of degradation 61 5.1.2.4 Surmary and discussion of degradation 62 5.1.2 Summary and discussion of degradation 63 5.1.2 Summary and discussion of degradation 64 5.2.1 Hold Substain 64 5.2.2 Volatilisation 64 5.3.1<		4.11.1		
4.11.2 Developmental toxicity 56 4.11.2.1 Non-human information 57 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.11.6 Conclusions on classification and labelling 57 4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1.1 Dedgradation 60 5.1.2 Biodegradation estimation 60 5.1.2.1 Biodegradation estimation 60 5.1.2 Stability 58 5.1.2 Sinulation tests 60 5.1.2.3 Simulation tests 60 5.1.3 Summary and discussion of degradation 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3.3 Aquatic bioaccumulation 64 5.4.1 Fish 65 5.4.1 Fish 65 </td <td></td> <td></td> <td></td> <td></td>				
4.11.2.1 Non-human information 56 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.6 Conclusions on vith criteria 57 4.11.6 Conclusions on classification and labelling 57 4.11.6 Conclusions on classification and labelling 57 4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1.1 Stability 58 5.1.2 Biodegradation 60 5.1.2.1 Stodegradation estimation 60 5.1.2.2 Screening tests 60 5.1.3 Summary and discussion of degradation 63 5.2.4 Adsorption/Desorption 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3.1 Aquatic bioaccumulation 64 5.4.1 Short-term toxicity to fish 65 5.4.1 Short-term toxicity to fish 65 5.4.1 Short-term toxicity to fish 67 5.4.2				
4.11.2.2 Human information 57 4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1 DEGRADATION 58 5.1.1 Stability 58 5.1.2 Biodegradation 60 5.1.2.3 Simulation estimation 60 5.1.2.3 Simulation tests 60 5.1.3 Summary and discussion of degradation 60 5.1.3 Summary and discussion of degradation 61 5.2 Volatilisation 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3.1 Aquatic bioaccumulation 64 5.4.11 Short-term toxicity to fish 65 5.4.12 Long-term toxicity to fish 65 5.4.3 Aquatic invertebrates 67				
4.11.3 Other relevant information 57 4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1 DEGRADATION 58 5.1.1 Stability 58 5.1.2 Biodegradation 60 5.1.2.3 Situalitation tests 60 5.1.2.4 Biodegradation estimation 60 5.1.2 Stronmery and discussion of degradation 60 5.1.2.3 Simulation tests 60 5.1.2 Summary and discussion of degradation 64 5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3.4 Aquatic bioaccumulation 64 5.4 Aquatic bioaccumulation 64 5.4.1 Fish 65 5.4.1.1 Shont-term toxicity to fish 65 <td></td> <td></td> <td></td> <td></td>				
4.11.4 Summary and discussion of reproductive toxicity 57 4.11.5 Comparison with criteria 57 4.11.6 Conclusions on classification and labelling 57 4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1 DEGRADATION 58 5.1.1 Stability 58 5.1.2 Biodegradation 60 5.1.2.1 Biodegradation estimation 60 5.1.2.3 Simulation tests 60 5.1.3 Summary and discussion of degradation 60 5.1.3 Summary and discussion of degradation 61 5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption. 64 5.2.2 Volatilisation 64 5.2.1 Adsorption/Desorption. 64 5.2.2 Volatilisation 64 5.3.1 Aquatic bioaccumulation 64 5.3.1 Aquatic bioaccumulation 64 5.4.1 Short-term toxicity to fish 65 5.4.1.1 Short-term toxicity to fish				
4.11.5 Comparison with criteria			Summary and discussion of reproductive toxicity	57
4.11.6 Conclusions on classification and labelling				
4.12 OTHER EFFECTS 57 5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1 DEGRADATION 58 5.1.1 Stability 58 5.1.2 Biode gradation 60 5.1.2.1 Biode gradation estimation 60 5.1.2.3 Simulation tests 60 5.1.3 Summary and discussion of degradation 63 5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.2.1 Adsorption/Desorption 64 5.2.1 Adsorption/Desorption 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3.1 Aquatic Bioaccumulation 64 5.3.1 Aquatic toxicumulation 64 5.4.1 Short-term toxicity to fish 65 5.4.1.1 Short-term toxicity to aquatic invertebrates 67 5.4.2 Aquatic invertebrates 67 5.4.3 Algae and aquatic plants 67 5.4.4 </td <td></td> <td></td> <td></td> <td></td>				
5 ENVIRONMENTAL HAZARD ASSESSMENT 58 5.1 DEGRADATION 58 5.1.1 Stability 58 5.1.2 Biodegradation 60 5.1.2.1 Biodegradation estimation 60 5.1.2.2 Screening tests 60 5.1.3 Simulation tests 60 5.1.3 Simulation tests 60 5.1.3 Summary and discussion of degradation 63 5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3.1 Aquatic bioaccumulation 64 5.3.1 Aquatic bioaccumulation 64 5.3.1 Aquatic bioaccumulation 64 5.4 AQUATIC TOXICITY 65 5.4.1 Short-term toxicity to fish 65 5.4.1 Short-term toxicity to fish 65 5.4.2 Mort-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69				
5.1 DEGRADATION 58 5.1.1 Stability 58 5.1.2 Biodegradation 60 5.1.2.1 Biodegradation estimation 60 5.1.2.2 Screening tests 60 5.1.2.3 Simulation tests 60 5.1.3 Summary and discussion of degradation 63 5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3.1 Aquatic bioaccumulation 64 5.4 AQUATIC BIOACCUMULATION 64 5.3.1 Aquatic bioaccumulation 64 5.4.1 Fish 65 5.4.1 Fish 65 5.4.1 Fish 65 5.4.1.1 Short-term toxicity to fish 65 5.4.1.2 Long-term toxicity to fish 65 5.4.2 Aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms				
5.1.1 Stability	5	ENVIRO	NMENTAL HAZARD ASSESSMENT	58
5.1.2 Biodegradation 60 5.1.2.1 Biodegradation estimation 60 5.1.2.2 Screening tests 60 5.1.2.3 Simulation tests 60 5.1.3 Summary and discussion of degradation 63 5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.2.3 Aquatic bioaccumulation 64 5.3 Aquatic bioaccumulation 64 5.4 Aquatic bioaccumulation 64 5.4 Aquatic toxicity to fish 65 5.4.1 Fish 65 5.4.1 Short-term toxicity to fish 65 5.4.2 Long-term toxicity to fish 67 5.4.2 Long-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 Comparison WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71		5.1 DEGRA	DATION	58
5.1.2.1 Biodegradation estimation 60 5.1.2.2 Screening tests 60 5.1.2.3 Simulation tests 60 5.1.3 Summary and discussion of degradation 63 5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3 AQUATIC BIOACCUMULATION 64 5.4 Aquatic bioaccumulation 64 5.4 Aquatic bioaccumulation 64 5.4 AQUATIC TOXICITY 65 5.4.1 Fish 65 5.4.1.1 Short-term toxicity to fish 65 5.4.1.2 Long-term toxicity to fish 67 5.4.2 Aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 Comparison on Classification and Labelling for environmentat hazards (sections 5.1 – 5.4) 72				
5.1.2.2 Screening tests 60 5.1.2.3 Simulation tests 60 5.1.3 Summary and discussion of degradation 63 5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.2.2 Volatilisation 64 5.3 AQUATIC BIOACCUMULATION 64 5.4 Aquatic bioaccumulation 64 5.4 Aquatic toxicumulation 64 5.4 Aquatic toxicumulation 64 5.4 Aquatic toxicumulation 64 5.4.1 Short-term toxicity to fish 65 5.4.1.1 Short-term toxicity to fish 65 5.4.1.2 Long-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4)		5.1.2 B		
5.1.2.3 Simulation tests				
5.1.3 Summary and discussion of degradation 63 5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3 AQUATIC BIOACCUMULATION 64 5.3.1 Aquatic bioaccumulation 64 5.4 AQUATIC TOXICITY 65 5.4.1 Fish 65 5.4.1.1 Short-term toxicity to fish 65 5.4.1.2 Long-term toxicity to fish 67 5.4.2 Aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.2 Long-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES <				
5.2 ENVIRONMENTAL DISTRIBUTION 64 5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3 AQUATIC BIOACCUMULATION 64 5.3.1 Aquatic bioaccumulation 64 5.4 AQUATIC TOXICITY 65 5.4.1 Fish 65 5.4.1.1 Short-term toxicity to fish 65 5.4.1.2 Long-term toxicity to fish 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.2 Long-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71 5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES 74				
5.2.1 Adsorption/Desorption 64 5.2.2 Volatilisation 64 5.3 AQUATIC BIOACCUMULATION 64 5.3.1 Aquatic bioaccumulation 64 5.4.1 Aquatic bioaccumulation 65 5.4.1 Fish 65 5.4.1.1 Short-term toxicity to fish 65 5.4.1.2 Long-term toxicity to fish 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES 74				
5.2.2 Volatilisation		5.2 ENVIRU	NMENTAL DISTRIBUTION	04
5.3 AQUATIC BIOACCUMULATION 64 5.3.1 Aquatic bioaccumulation 64 5.4 AQUATIC TOXICITY 65 5.4.1 Fish 65 5.4.1 Short-term toxicity to fish 65 5.4.1.1 Short-term toxicity to fish 67 5.4.1.2 Long-term toxicity to fish 67 5.4.1.2 Long-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.2 Long-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71 5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES 74				
5.3.1 Aquatic bioaccumulation 64 5.4 AQUATIC TOXICITY 65 5.4.1 Fish 65 5.4.1 Short-term toxicity to fish 65 5.4.1.2 Long-term toxicity to fish 67 5.4.2 Aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.2 Long-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71 5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES 74				
5.4 AQUATIC TOXICITY 65 5.4.1 Fish 65 5.4.1.1 Short-term toxicity to fish 65 5.4.1.2 Long-term toxicity to fish 67 5.4.1.2 Long-term toxicity to fish 67 5.4.1.2 Long-term toxicity to fish 67 5.4.1.3 Short-term toxicity to aquatic invertebrates 67 5.4.2 Aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.2 Long-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71 5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES 74				
5.4.1 Fish 65 5.4.1.1 Short-term toxicity to fish 65 5.4.1.2 Long-term toxicity to fish 67 5.4.1.2 Long-term toxicity to fish 67 5.4.2 Aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.2 Long-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71 5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES 74				
5.4.1.1 Short-term toxicity to fish				
5.4.1.2 Long-term toxicity to fish				
5.4.2.1 Short-term toxicity to aquatic invertebrates 67 5.4.2.2 Long-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71 5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES 74		5.4.1.2		
5.4.2.2 Long-term toxicity to aquatic invertebrates 69 5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment) 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71 5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES 74		5.4.2 A		
5.4.3 Algae and aquatic plants 69 5.4.4 Other aquatic organisms (including sediment). 71 5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71 5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION. 73 7 REFERECNES 74				
5.4.4 Other aquatic organisms (including sediment)				
5.5 COMPARISON WITH CRITERIA FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 71 5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4) 72 6 OTHER INFORMATION 73 7 REFERECNES 74		5.4.3 A	Igae and aquatic plants	69
5.6 CONCLUSIONS ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS (SECTIONS 5.1 – 5.4)				
6 OTHER INFORMATION				
7 REFERECNES				
	6	OTHER I	NFORMATION	73
8 ANNEXES	7	REFERE	CNES	74
	8	ANNEXE	S	79

Part A

1 PROPOSAL FOR HARMONISED CLASSIFICATION AND LABELLING

1.1 Substance

Table 1:Substance identity

Substance name:	CARBOXIN
EC number:	226-031-1
CAS number:	5234-68-4
Annex VI Index number:	Not yet assigned
Degree of purity:	≥ 98.7 %
Impurities:	There are a number of impurities present which have been taken into account, but are not considered relevant to the harmonised classification and labelling proposal.

1.2 Harmonised classification and labelling proposal

Table 2:	The current Annex VI entry and the proposed harmonised classification

	CLP Regulation
Current entry in Annex VI, CLP Regulation	No current entry
Current proposal for consideration by RAC	Skin Sens. 1B; H317 – May cause an allergic skin reaction
	STOT RE 2; H373 – May cause damage to the kidneys through prolonged or repeated exposure
	Aquatic Acute 1; H400 – Very toxic to aquatic life (M = 1)
	Aquatic Chronic 2; H411 – Toxic to aquatic life with long lasting effects

Resulting harmonised classification (future entry in Annex VI, CLP	Skin Sens. 1B; H317 – May cause an allergic skin reaction
Regulation)	STOT RE 2; H373 – May cause damage to the kidneys through prolonged or repeated exposure
	Aquatic Acute 1; H400 – Very toxic to aquatic life (M = 1)
	Aquatic Chronic 2; H411 – Toxic to aquatic life with long lasting effects

Proposed harmonised classification and labelling

CLP Annex I ref	Hazard class	Proposed classification	Proposed SCLs and/or M-factors	Current classification	Reason for no classification ²⁾
2.1.	Explosives	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.2.	Flammable gases	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.3.	Flammable aerosols	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.4.	Oxidising gases	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.5.	Gases under pressure	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.6.	Flammable liquids	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.7.	Flammable solids	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.8.	Self-reactive substances and mixtures	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.9.	Pyrophoric liquids	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.10.	Pyrophoric solids	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.11.	Self-heating substances and mixtures	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.12.	Substances and mixtures which in contact with water emit flammable gases	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.13.	Oxidising liquids	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.14.	Oxidising solids	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.15.	Organic peroxides	Not classified	Not applicable	Not classified	Conclusive but not sufficient
2.16.	Substance and mixtures corrosive to metals	Not classified	Not applicable	Not classified	Conclusive but not sufficient
3.1.	Acute toxicity - oral	Not classified	Not applicable	Not classified	Conclusive but not sufficient
	Acute toxicity - dermal	Not classified	Not applicable	Not classified	Conclusive but not sufficient
	Acute toxicity - inhalation	Not classified	Not applicable	Not classified	Conclusive but not sufficient
3.2.	Skin corrosion / irritation	Not classified	Not applicable	Not classified	Conclusive but not sufficient
3.3.	Serious eye damage / eye irritation	Not classified	Not applicable	Not classified	Conclusive but not sufficient

Table 3:Proposed classification

3.4.	Respiratory sensitisation	Not classified	Not applicable	Not classified	Data lacking
3.4.	Skin sensitisation	Skin Sens. 1B; H317 – May cause an allergic skin reaction	Not applicable	Not classified	
3.5.	Germ cell mutagenicity	Not classified	Not applicable	Not classified	Conclusive but not sufficient
3.6.	Carcinogenicity	Not classified	Not applicable	Not classified	Conclusive but not sufficient
3.7.	Reproductive toxicity	Not classified	Not applicable	Not classified	Conclusive but not sufficient
3.8.	Specific target organ toxicity -single exposure	Not classified	Not applicable	Not classified	Conclusive but not sufficient
3.9.	Specific target organ toxicity – repeated exposure	STOT-RE 2; H373 – May cause damage to the kidneys through prolonged or repeated exposure	Not applicable	Not classified	
3.10.	Aspiration hazard	Not classified	Not applicable	Not classified	Conclusive but not sufficient
4.1.	Hazardous to the aquatic environment	Aquatic Acute 1; H400 – Very toxic to aquatic life Aquatic Chronic 2; H411 – Toxic to aquatic life with long lasting effects	M-= 1	Not classified	
5.1.	Hazardous to the ozone layer	Not classified	Not applicable	Not classified	Conclusive but not sufficient

¹⁾ Including specific concentration limits (SCLs) and M-factors ²⁾ Data lacking, inconclusive, or conclusive but not sufficient for classification

Labelling:

<u>Pictogram(s):</u> <u>Signal word:</u> <u>Hazard statements:</u>	GHS07; GHS08; GHS09 Warning H317 - May cause an allergic skin reaction; H373 - May cause damage to the kidneys through prolonged or repeated exposure; H410 – Very toxic to aquatic life with long lasting effects
Precautionary statements:	Precautionary statements are not listed on Annex VI of CLP

Proposed notes assigned to an entry:

Not applicable

2 BACKGROUND TO THE CLH PROPOSAL

2.1 History of the previous classification and labelling

Carboxin is a pesticidal active substance and has been reviewed under Directive 91/414/EEC with the UK as the Rapporteur Member State (RMS). There is no existing entry on Annex VI of CLP and there have been no previous harmonised classification and labelling discussions for this substance. In accordance with Article 36(2) of the CLP Regulation, carboxin should now be considered for harmonised classification and labelling.

At the time of submission, the substance is not registered under REACH.

2.2 Short summary of the scientific justification for the CLH proposal

Carboxin is a systemic fungicide used as a seed treatment to control soil and seed borne diseases in cereals. Following peer-review of the Draft Assessment Report (DAR), EFSA concluded (EFSA Journal 2010;8(10):1857) that carboxin was of low acute oral, dermal and inhalation toxicity. It was not considered a skin or eye irritant. These conclusions are supported in the CLH report and it is not proposed to classify for these hazard classes. The criteria for classification as a skin sensitiser are met, with > 30% of animals responding to challenge with the substance in a standard Guinea pig maximisation test. Classification with Skin Sens. 1B; H317 – May cause an allergic skin reaction is proposed.

The target organ for repeated administration in rodents was the kidney, with the presence of lesions of the renal tubules, chronic nephritis and progressive nephropathy observed at, or below, doses relevant for classification. It is therefore proposed to classify Carboxin with **STOT-RE 2; H373 – May cause damage to the kidneys through prolonged or repeated exposure.**

Carboxin is not considered to be mutagenic and therefore no classification is proposed.

An increased incidence of hepatocellular carcinoma (above the historical control data) was noted in male rats, raising concern for classification with Carc 2 in the EFSA conclusion. However, when considering the low incidence observed (8% vs 2% in controls), the sex-specificity of the response, the lack of statistical significance, the absence of a respective response in liver adenomas and more importantly the "excessive toxicity" reported at this dose in males (75% mortality, clinical signs of toxicity, significant effects on terminal body weights [mean decrease of 17.3%] and on body weight gain [reduction of 23.4%] and the severe nephrotoxicity for which classification with STOT-RE 2 has already been proposed), it is concluded that these liver tumours are of no relevance to human health and therefore it is not proposed to classify for carcinogenicity.

There was no evidence of any adverse effects on sexual function, fertility or development in rats and rabbits and therefore no classification for reproductive toxicity is proposed.

Carboxin is considered not-rapidly degradable for the purpose of classification and labelling. Acute toxicity data for fish, invertebrates and algae are available. Algae are the most acutely sensitive trophic level with a carboxin 5-d E_rC_{50} of 0.45 mg a.s./l. Based on the acute ecotoxicity data available, with L(E)C₅₀ values < 1 mg/l, classification as Aquatic Acute 1; H400 – Very toxic to aquatic life is applicable with an acute M-factor of 1 based on $0.1 < L(E)C_{50} \le 1$ mg/l.

The long-term aquatic data suggest chronic toxicity in the range 0.1-1 mg/l. The carboxin algal 5-d NOErC is 0.107 mg a.s./l and the carboxin sulfone algal 72-h NOE_rC is 0.25 mg/l. This results in the classification Aquatic Chronic 2 based on > 0.1 NOEC \leq 1 mg/l for a non-rapidly degradable substance. A non-standard 17-d NOEC for *Daphnia* supports the Aquatic Chronic 2 classification. Adequate chronic toxicity data for fish are not available.

Given robust chronic endpoints are not available for fish and invertebrates, the surrogate approach to deriving chronic classification should be considered. Using the available acute data for fish and *Daphnia*, the most stringent chronic classification is Aquatic Chronic 2.

Overall classification as Aquatic Chronic 2; H411 – Toxic to aquatic life with long lasting effects is applicable.

2.3 Current harmonised classification and labelling

Carboxin is not currently listed in Annex VI to the CLP Regulation.

2.4 Current self-classification and labelling

At the time of submission there are a number of self-classification entries for carboxin in the C&L inventory. These are summarised below:

Classification		Labelling	
Hazard Class and Category Code(s)	Hazard Statement Code(s)	Hazard Statement Code(s)	Pictograms, Signal Word Code(s)
Acute Tox. 4	H302	H302	GHS07 Wng
Skin Sens. 1	H317	H317	
STOT RE 2	H373 (Kidney) (Dermal)	H373	GHS07 GHS09
Aquatic Acute 1	H400		GHS08 Wng
Aquatic Chronic 1	H410	H410	
Acute Tox. 4	H302	H302	
Acute Tox. 4	H312	H312	GHS07 Wng
Acute Tox. 4	H332	H332	
Not Classified			
Acute Tox. 4	H302	H302	GHS07
Acute Tox. 4	H312	H312	Wng

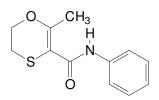
 Table 4: Classification and labelling in the C&L Inventory

3 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL

Carboxin is a pesticide active substance that has been reviewed under Directive 91/414/EEC with the UK as the RMS. In accordance with Article 36 (2) of the CLP Regulation carboxin is subject to harmonised classification and labelling and this proposal considers all hazard classes.

Part B

SCIENTIFIC EVALUATION OF THE DATA


1 IDENTITY OF THE SUBSTANCE

1.1 <u>Name and other identifiers of the substance</u>

EC number:	226-031-1
EC name:	Carboxin
CAS number (EC inventory):	5234-68-4
CAS number:	5234-68-4
CAS name:	1,4-Oxathiin-3-carboxamide, 5,6-dihydro-2- methyl-N-phenyl-
IUPAC name:	5,6-dihydro-2-methyl-1,4-oxathiine-3- carboxanilide*
CLP Annex VI Index number:	Not Assigned
Molecular formula:	$C_{12}H_{13}NO_2S$
Molecular weight range:	235.3

* As included in the EFSA conclusion

Structural formula:

1.2 <u>Composition of the substance</u>

Constituent	Typical concentration	Concentration range	Remarks
Carboxin	98.7 %	\geq 98.7%	

 Table 6:
 Constituents (non-confidential information)

Current Annex VI entry: N/A

Table 7: Impurities (non-confidential information)

Impurity	Typical concentration	Concentration range	Remarks
Confidential			

There are a number of process impurities in the substance. These impurities have been taken into consideration and are not considered to further impact on the classification proposed in this report. Further information on the impurities is considered confidential but full details are provided in the technical dossier.

Current Annex VI entry: N/A.

Table 8: Additives (non-confidential information)

Additive	Function	Typical concentration	Concentration range	Remarks
None				

Current Annex VI entry: N/A

1.2.1 Composition of test material

The tested material is considered to be equivalent to that outlined above for the purposes of classification and labelling.

1.3 **Physico-chemical properties**

Table 9: Summary of physico - chemical properties

The physiochemical properties of carboxin are summarised below. Reference should be made to the Draft Assessment Report – DAR – Volume 3, Annex B.2; Physical and Chemical properties – August 2006

All studies were conducted to appropriate quality standards and were considered adequate during the peer review of the active substance.

Property	Value	Reference	Comment (e.g. measured or estimated)
State of the substance at 20°C and 101,3 kPa	White, solid (Pure 99.9 %) Pale yellow solid (Techn. 97 %)	Riggs, 2001a (99.9%) Riggs, 2001b (97%)	OPPTS 830.6302 DAR B.2.1.7
Melting/freezing point	91 – 92 °C	Riggs, 2001a	Purity 99.9 % EEC A1(capillary method) DAR B.2.1.1
Boiling point	Substance decomposes at 210°C	Riggs, 2001a	OECD 103 DAR B.2.1.2
Relative density	1.45	Dunn, 2001	Purity 99.9 % EEC A3 (pycnometer) DAR B.2.1.4
Vapour pressure	2 x 10 ⁻⁵ Pa at 25 °C	Tremain, 2001 a	Purity 99.9 % EEC A4 (vapour pressure balance) DAR B.2.1.5
Surface tension	61.2 mN/m at 20 °C	Evans, 2001	Purity 98.2 % EEC A5 DAR B.2.1.24
Water solubility	0.15 g/l at pH 5 and 20 °C 0.13 g/l at pH 7 and 20°C 0.14 g/l at pH 9 and 20 °C	Riggs, 2001d	Purity 99.9 % OECD 105 (flask method) DAR B.2.1.11
Partition coefficient n- octanol/water	Log $P_{ow} = 2.3$ Range of pHs were not looked at due to the pKa being < 0.5 and the solubility in water not altering with pH.	Riggs, 2001 f	Purity 99.9 % EEC A8 (HPLC) DAR B.2.1.13

Flash point	Not applicable, substance is a solid and melting point > 40 °C		DAR B.2.1.21
Flammability	Not considered highly flammable – experience with handling and use suggests substance is not pyrophoric and does not emit flammable gases on contact with water.	Tremain, 2001 b	Purity 98.2 % EEC A10 DAR B.2.1.20
Explosive properties	Not explosive	Tremain, 2001 b	Purity 98.2 % EEC A14 DAR B.2.1.22
Self-ignition temperature	No self-ignition up to a temperature of 91 °C (melting point)	Tremain, 2001 b	Purity 98.2 % EEC A16 DAR B.2.1.20
Oxidising properties	Non-oxidising	Tremain, 2001 b	Purity 98.2 % EEC A17 DAR B.2.1.23
Dissociation constant	pKa = < 0.5 (no temperature given in DAR)	Thomas and Book, 1998	Purity 99.3 % OECD 112 DAR B.2.1.18

2 MANUFACTURE AND USES

2.1 Manufacture

This substance was manufactured outside of the EU (Canada) for use as a pesticidal active substance.

2.2 Identified uses

Carboxin is used within the EU as a fungicidal active substance, which is applied to the seeds of small grain cereals (wheat, barley, oats, rye and triticale) for control of seed and soil borne fungal diseases.

3 CLASSIFICATION FOR PHYSICO-CHEMICAL PROPERTIES

Table 10: Summary table for relevant physico-chemical studies

Method	Results	Remarks	Reference
Refer to table 9			

3.1 PHYSIO-CHEMICAL PROPERTIES

3.1.1 Summary and discussion of physiochemical properties

3.1.2 Comparison with criteria

In a standard study (EEC Method A10), carboxin was not determined to be flammable. Therefore, it does not meet the criteria for classification as a flammable solid. The self-ignition temperature was found to be > 91 °C. Further, experience in handling and use indicates that it is not a pyrophoric solid and does not emit flammable gas on contact with water.

In a standard study (EEC Method A14), carboxin did not exhibit any explosive properties. Therefore, it does not meet the criteria for classification as an explosive substance.

Finally, in a standard study (EEC Method A17), carboxin did not burn to completion and so it is not classified as an oxidising solid.

3.1.3 Conclusions on classification and labelling

Not classified - conclusive but not sufficient for classification

4 HUMAN HEALTH HAZARD ASSESSMENT

References are taken from the Draft Assessment Report – DAR – Carboxin – Volume 3, Annex B.6; toxicology and metabolism – August 2006 and the Addendum to the DAR August 2007.

4.1 Toxicokinetics (<u>Absorption</u>, <u>Metabolism</u>, <u>Distribution</u> and <u>Elimination</u>)

4.1.1 Non-human information

ADME of $[^{14}C]$ -carboxin (labelled at the benzene ring)

Following oral administration of a single dose of [¹⁴C]-carboxin in rats (5 or 150 mg/kg), extensive absorption of material was observed (approximately 81 %). Elimination of [¹⁴C]-carboxin was mainly through urinary excretion, primarily during the first 24 hours post dosing, suggesting rapid absorption from the gastrointestinal tract (77 – 82 %). Biliary metabolism as a route of elimination appeared to be less significant as only 6 – 11 % of the dose was recovered in the faeces. Increasing the dose from 5 to 150 mg/kg resulted in possible saturation of the excretion processes as the rate of urinary excretion in the higher dose group was lower than the 5 mg/kg group. Following oral administration of multiple doses of carboxin in rats (5 mg/kg, qd, 14 days) followed by a single dose of [¹⁴C]-carboxin (5 mg/kg), similar recovery to the single dose studies was observed with the rate and extent of recovery in urine being similar to the single dosed 5 mg/kg group.

At 72 h post-dosing the organs were collected and analysed for radioactivity. Tissue levels were low in all studies. The highest levels of radioactivity were found in the liver (0.21 %), red blood cells (0.12 %) and kidneys (0.02 %). [¹⁴C]-Carboxin was extensively metabolised (no parent compound detected in the urine samples or faecal sample). In urine, the key pathway involved oxidation to carboxin sulfoxide followed by *p*-hydoxylation of the phenyl ring to yield *p*hydoxylated carboxin sulfoxide. This metabolite was observed in all urine samples and there was no indication of any quantitative or sex differences. Hydrolysis of the amide bond of *p*-hydoxylated carboxin followed by *N*-acetylation, yielded 4-acetamidophenol and 4-acetamidophenol glucuronide. 4-Acetamidophenol was only identified in the urine of high dose males, suggesting saturation of glucuronide conjugation at high doses. Minor pathways included; further oxidation of carboxin sulfoxide to form carboxin sulfone, *N*-acetylation of liberated aniline to form acetanilide or substitution on the aniline ring resulting in *N*-acetyl cysteinyl conjugate of aniline.

In a follow-up study conducted by McManus *et al*, 1993 enzymatic hydrolysis of the urine samples with β -glucuronidase confirmed the presence of a glucoronide. Due to the low level of faecal excretion, it was not considered feasible to try to identify the faecal metabolites.

ADME of $[^{14}C]$ -carboxin (labelled at the oxathiine ring)

A second guideline oral ADME study (Gupta *et al*, 2006) was conducted in Sprague-Dawley rats to further investigate the fate of the oxathiine ring. This study revealed a similar pattern of absorption, distribution and excretion. The metabolism of 14 C-oxathiine-carboxin was extensive and rapid (no parent compound was observed in the excreta) with the main metabolic reactions being ring hydroxylation, oxidation of the sulphur, O-methylation of the ring hydroxyl groups, oxidative cleavage of the oxathiine ring and conjugation (glucuronidation and sulfation).

Refer to DAR B.6.1.

4.1.2 Human information

No data available.

4.1.3 Summary and discussion on toxicokinetics

In rats, carboxin is readily absorbed and rapidly eliminated after oral exposure with no differences between the sexes. The majority of the administered dose was excreted in the urine within 72 h with less being excreted in the faeces. Extensive and rapid metabolism occurred with no parent compound being detected in the excreta. The main metabolic reactions were ring-hydroxylation, oxidation of sulfur and the aromatic ring, *O*-methylation of the ring hydroxyl groups, oxidative cleavage of the oxathiine ring and conjugation of the aniline and phenol moieties (glucuronidation and sulfation).

4.2 Acute toxicity

Three acute toxicity studies are available for carboxin and are summarised below:

Acute Oral			
Method	LD ₅₀	Observations and remarks	
Rat, Sprague-Dawley, 5/sex/dose	M - 2588 mg/kg	Mortalities:	
2430, 3500 and 5040 mg/kg bw 0.5 % Carboxymethylcellulose (CMC) (aq.)	F - 3080 mg/kg	2430 mg/kg/bw: M 2/5, F 1/5 3500 mg/kg/bw: M 4/5, F 4/5 5040 mg/kg/bw: M 4/5, F 4/5	
US-EPA F, 81-1 GLP		Clinical signs 1 – 4 h post dosing: Decreased activity, ptosis, ataxia	
Purity 102.2 %		<i>Clinical signs up to 13 days post dosing:</i> Coldness to the touch, decreased defecation, prostration, chromodacryorrhea and impaired limb function & ataxia (1	
Goldenthal, EI (1992a) DAR B.6.2.1		animal only)	
		<i>Necropsy:</i> Yellow fluid in the lumen of the ileum/duodenum/jejunum (\geq 2430 mg/kg) and focal discolouration of the stomach glandular mucosa (\geq 3500 mg/kg bw)	
	Acute Ir	halation	
Method	LC50	Observations and remarks	
Rat, Sprague-Dawley, 5/sex/dose 4.7.mg/l/4 hr (aerosol; whole body- maximum achievable concentration)	M > 4.7 mg/l F > 4.7 mg/l	No mortalities occurred. On removal from the exposure chamber, all animals were covered with the test material. <i>Clinical signs 1 – 4 h post dosing:</i> Increased salivation, corneal opacity and labored breathing	
MMAD $6.8 \pm 2.2 \mu m$		(F: 1/5).	
US EPA F 81-3 GLP		<i>Clinical signs up to 13 days post dosing:</i> Red/brown material around the nose and corneal opacity (F:1/5).	
Purity: 102.2% Ulrich (1993) DAR B.6.2.3		<i>Necropsy</i> : No abnormalities observed.	

 Table 11:
 Summary table of relevant acute toxicity studies

Acute Dermal		
Method	LD50	Observations and remarks
Rabbit, New Zealand White, 5/sex	M > 4000 mg/kg	No mortalities or overt signs of toxicity were observed.
4000 mg/kg bw (powder moistened in deionised water)	F > 4000 mg/kg	<i>Necropsy:</i> Gross necropsy revealed a cyst on the right kidney of one male. No other abnormalities were observed.
Exposure time: 24 hrs		
US EPA F81-2 GLP		
Purity: 102.2%		
Goldenthal (1992b) DAR B.6.2.2		

4.2.1 Non-human information

See Table 11.

4.2.2 Human information

No data available.

4.2.3 Summary and discussion of acute toxicity

No information on the acute toxicity of carboxin in humans is available. Based on animal data (presented in Table 11), carboxin should not be classified for acute toxicity.

4.2.4 Comparison with criteria

The oral LD₅₀ values of 2588 and 3080 mg/kg bw for male and female rats, respectively, were above the top range values for classification in the acute toxicity category 4 ($300 < LD_{50} \le 2000$). Therefore, no classification for acute toxicity via the oral route was proposed.

In an acute inhalation study, the LC₅₀ was > 4.7 mg/L for rats. The mean mass aerodynamic diameter (MMAD) was $6.8 \pm 2.2 \,\mu$ m (inhalable fraction $\leq 4 \,\mu$ m), meaning a large proportion of the dose might not have deposited in the respiratory tract and may well have translocated to the GI tract. The criteria for classification of dusts and mists as acute toxicity category 4 is $1.0 < LC_{50} \leq 5.0$. In the absence of any conclusive data to show that carboxin causes acute toxicity by the inhalation route no classification is proposed.

The dermal LD_{50} for both male and female rabbits was > 4000 mg/kg bw, which is above the top range for classification in acute toxicity category 4 (1000 < $LD_{50} \le 2000$). Therefore, no classification for acute toxicity via the dermal route is proposed.

4.2.5 Conclusions on classification and labelling

No classification, conclusive but not sufficient for classification.

4.3 Specific target organ toxicity – single exposure (STOT SE)

4.3.1 Summary and discussion of Specific target organ toxicity – single exposure

Please refer to Table 11 and section 4.4.3.

4.3.2 Comparison with criteria

Three guideline studies investigating the effects of carboxin after a single dose by oral, dermal and inhalation routes were reported. The signs that were apparent after a single exposure to carboxin were indicative of non-specific, general acute toxicity. As there was no clear evidence of specific toxic effects on a target organ or tissue, the criteria for classification for STOT-SE 1 or 2 are not met.

Whilst there was no evidence of CNS depression during the acute studies, there was evidence of sedation in a four-week oral gavage toxicity study in rats. At doses of 30 mg/kg bw/day animals displayed symptoms of sedation shortly after treatment, lasting up until the afternoon of the same day. These effects were noted to be more pronounced and lasting for a longer duration in the higher dose groups indicating a dose-related cause. According to the regulation, the criteria for classification as STOT-SE 3 are central nervous system depression including narcotic effects in humans such as drowsiness, narcosis, reduced alertness, loss of reflexes, lack of coordination, and vertigo are included. Since there was no evidence of sedation in other repeated dose studies in rats or with other species and coupled with the transient nature and lack of severity it is considered unnecessary to classify for STOT-SE 3 for CNS effects.

In an acute inhalation toxicity study (data presented in Table 11), laboured breathing was observed in 1/5 females at 4.7.mg/l/4 hr [aerosol, whole body (MMAD $6.8 \pm 2.2 \mu$ m)] only. No clinical effects on the respiratory tract were observed in males. Carboxin was not irritating in the available skin and eye irritation studies (see Sections 4.4.2 and 4.4.1). The observations from the acute inhalation toxicity study are not considered to provide sufficient justification for classification of carboxin as a respiratory tract irritant (STOT-SE 3).

4.3.3 Conclusions on classification and labelling

No classification, conclusive but not sufficient for classification

4.4 Irritation

4.4.1 Skin irritation

Table 12: Summary table of relevant skin irritation studies

Method	Results
Rabbit, New Zealand White, 3/sex	Mean scores over 24 - 72 hours for six rabbits:
500 mg	Erythmea: $0 - 0 - 0 - 0 - 0 - 0$
	Oedema: $0 - 0 - 0 - 0 - 0 - 0$
Vehicle: deionised water (4 ml)	
Semi-occlusive	
US EPA F81-5	
GLP	
Purity: 102.2%	
Goldenthal (1992c)	
DAR B.6.2.4	

4.4.1.1 Non-human information

See Table 12

4.4.1.2 Human information

No data available.

4.4.1.3 Summary and discussion of skin irritation

No signs of dermal irritation were observed in any rabbit during the study period. There were no deaths or overt signs of toxicity observed during the study.

4.4.1.4 Comparison with criteria

No signs of erythema or oedema were reported in a guideline skin irritation study. Therefore, carboxin does not meet the criteria for classification as a skin irritant.

4.4.1.5 Conclusions on classification and labelling

No classification, conclusive but not sufficient for classification

4.4.2 Eye irritation

Method	Results
Rabbit, New Zealand White, 4 males and 2 females	Mean scores over 24 - 72 hours for 6 rabbits:
	Cornea: $0 - 0 - 0 - 0 - 0 - 0$
55 mg	Iris: $0 - 0 - 0 - 0 - 0 - 0$
_	Conjunctivae (redness): 0.7 - 0.7 - 0.3 - 1.0 - 0.3 - 0.3
US EPA F81-4 GLP	Conjunctivae (chemosis): $0 - 0 - 0 - 0 - 0 - 0 - 0$
Purity: 102.2%	
Goldenthal (1992d)	
DAR B.6.2.5	

Table 13:	Summary table of relevant eye irritation studies
-----------	--

4.4.2.1 Non-human information

See Table 13

4.4.2.2 Human information

No data available

4.4.2.3 Summary and discussion of eye irritation

No effects on the cornea or iris were observed. Slight conjunctival redness (6 rabbits) and chemosis (1 rabbit) was observed in an eye irritation study conducted with rabbits. Additionally, all animals exhibited low-grade clear discharge, which cleared within 24 hrs.

4.4.2.4 Comparison with criteria

Since this study was conducted with six animals, the criteria laid out in the Regulation are not directly applicable. However, in accordance with the "Guidance on the Application of the CLP Criteria" classification is only required if the individual average is greater than the values specified in Annex I of CLP in 4 of the 6 animals. No effects on the cornea or iris were observed. Slight conjunctival redness and chemosis were observed, but the average scores were < 2 (i.e., the relevant average score for conjunctival redness and oedema). Therefore, the criteria for classification are not met.

4.4.2.5 Conclusions on classification and labelling

No classification, conclusive but not sufficient for classification

4.4.3 Respiratory tract irritation

4.4.3.1 Non-human information

In an acute inhalation toxicity study (data presented in Table 11), labored breathing was observed in 1/5 females at 4.7.mg/l/4 hr [aerosol, whole body (MMAD $6.8 \pm 2.2 \,\mu$ m)]. No clinical effects on the respiratory tract were observed in males.

4.4.3.2 Human information

No data available.

4.4.3.3 Summary and discussion of respiratory tract irritation

The observations from the acute inhalation toxicity study are not sufficient to justify classification of carboxin as a respiratory tract irritant. In addition, carboxin was not irritating in the available skin and eye irritation studies (see Sections 4.4.2 and 4.4.1).

4.4.3.4 Comparison with criteria

See Section 4.4.3.3.

4.4.3.5 Conclusions on classification and labelling

No classification, conclusive but not sufficient for classification

4.5 Corrosivity

Please refer to Table 12.

4.5.1 Non-human information

Please refer to section 4.4.1

4.5.2 Human information

No data available

4.5.3 Summary and discussion of corrosivity

No signs of corrosivity were observed in an *in vitro* skin irritation study, therefore, no classification is proposed.

4.5.4 Comparison with criteria

Carboxin does not fulfil the criteria for classification as corrosive.

4.5.5 Conclusions on classification and labelling

No classification, conclusive but not sufficient for classification

4.6 Sensitisation

4.6.1 Skin sensitisation

Table 14: Summary table of relevant skin sensitisation studies

Although two sensitisation studies are included in the DAR, only one of these is presented below (Hall, 2002). In a study by Thompson *et al* (1982) no conclusion on the skin sensitising potential could be drawn due to major study deficiencies (including no positive control, different vehicle used in induction and challenge phases, responses not scored using recommended scale and poor reporting).

Method	Doses	Results
Guinea pig, Hartley, 10/sex for test group;	Induction:	Positive
5/sex for vehicle control (corn oil)	Intradermal = 10% w/v in corn oil	
	Epidermal = 75% w/v in corn oil	37 % and 56 % response at
Magnusson and Kligman maximisation test		24 and 48 hours,
	Challenge:	respectively.
Occluded	Left flank = 75% w/v in corn oil	
Purity: 98.8%	Right flank = vehicle control (corn oil)	
OECD 406		
GLP		
Hall (2002)		
DAR B.6.2.6		

4.6.1.1 Non-human information

See Table 14.

4.6.1.2 Human information

No data available.

4.6.1.3 Summary and discussion of skin sensitisation

In a guinea pig maximisation study, carboxin induced skin sensitisation reactions in 37% and 56% of animals challenged with 75% carboxin 24 and 48 hours after removal of the dressing, respectively. The intradermal induction dose was 10 %.

Clinical signs: One male and one female guinea pig in the test group died during the study on day 9 and 11, respectively. Clinical signs noted during the observation period included: diarrhoea, red staining of the anogenital area, tachypnea, tremors, and lethargy. Gross necropsy in the premature decedents revealed red intestinal areas, intestines distended with gas, peritoneal cavity distended

with food/excess fluid, soiling of the anogenital area, a red raised area on the kidney and the caecum displayed opening into the cavity. Body weight changes were normal in test and control animals.

4.6.1.4 Comparison with criteria

A positive response was observed after assessment of carboxin for skin sensitising potential using the Magnusson and Kligman guinea-pig maximisation test. The criteria for classification (positive response in ≥ 30 % of animals) was fulfilled and, therefore, carboxin should be classified as a skin sensitiser, category 1 (H317). In order to be classified in sub-category 1A, a response of ≥ 30 % must be observed at an intradermal induction dose of ≤ 0.1 % or a response of ≥ 60 % at an intradermal induction dose of > 0.1 but ≤ 1 % is required. To be classified in sub-category 1B, a response of ≥ 30 % must be observed at an intradermal induction dose of > 1.1% or a response of ≥ 30 % but < 60% at an intradermal induction dose of > 0.1% but ≤ 1 % is required. Carboxin fulfils the criteria for classification in sub-category 1 B as a response of > 30 % was observed at an intradermal induction carried out after an intradermal induction at lower concentrations (i.e., ≤ 1 %), category 1A is not considered appropriate as the response after intradermal induction with 10% was < 60%.

4.6.1.5 Conclusion on classification and labelling

Skin Sensitisation Category 1B (H317) – May cause an allergic skin reaction

4.6.2 Respiratory sensitisation

4.6.2.1 Non-human information

No data available

4.6.2.2 Human information

No data available

4.6.2.3 Summary and discussion of respiratory sensitisation

Not applicable

4.6.2.4 Comparison with criteria

Not applicable

4.6.2.5 Conclusions on classification and labelling

No classification, data lacking.

4.7 Repeated dose toxicity

No information on the repeated dose toxicity of carboxin in humans is available. There are two 90day studies and one 28-day study available in the rat and a 28-day, 90-day and 12-month study in the dog. These studies are summarised in Table 15.

In addition, two lifetime carcinogenicity studies are available in the rat and mouse respectively. Details of these studies are provided in Table 17 in section 4.10. A 2-generation study in rats is also available with details provided in Table 18 of section 4.11. Summaries of these studies are included in section 4.7.1 as relevant.

Table 15: Summary table of relevant repeated dose toxicity studies

The following table summarises the most significant toxicological effects observed in the repeated dose toxicity studies. Further information can be found in the carcinogenicity and reproductive toxicity sections (4.10 and 4.11 respectively).

Dose schedule	Dose levels	Results
		(effects of major toxicological significance)
	·	Studies in the rat
28-day study	0, 30, 90 or	270 mg/kg bw/day:
Oral (gavage)	270 mg/kg	
	bw/day	Clinical chemistry:
Rat/Wistar		↓Lactate dehydrogenase (wk 3- M: 45.0%, F: 26.5% and wk 7- F: 41.4%)
10/sex/dose	Vehicle: 2%	↑Creatinine (wk 3-F: 22.6% and wk 7- M: 35.4%)
(of which	CMC (aq.)	↑Alkaline phosphatase (wk 3-F: 40.8%)
5/sex/dose were		
sacrificed after a	Vol.: 10 ml/kg	Urine:
21 day recovery		↑ Volume (wk 3- M: 117 %, F: 68 % and wk 7- M: 268 %, F: 45 %)
period – week 7)		
		Liver:
c.f. OECD 407		↑ Liver weight (wk 4 - abs F: 16.5%; rel. M: 20.9%, F: 22.7) and (wk 7 - rel
Non-GLP		M: 9.0%, F: 8.0%)
		Liver centrilobular hypertrophy (wk 4 - M:5/5, F:2/5 and wk 7- M:1/5,
Purity: 99.1%		F:1/5)
-		Hepatocyte necrosis (wk 4-F:2/5)
(Blood samples		
taken at week 3		Kidney:
rather than the end		↑ Kidney weight (wk 4 – abs. M: 18.3%; rel M: 31.9%, F: 8.1%) and (wk 7-
of the 4 week		abs. M: 28.2%; rel M: 27.3%)
treatment period,		Tubular casts: 5/5 M and 5/5 F
all other analyses		Inflammatory foci: 5/5M and 2/5 F
were carried out		Tubular dilation: 5/5M
week 4)		Vacuolar swelling of epithelial cells in the proximal tubules: 5/5M and 4/5F
		Irregular thickening of tubular basal membrane of Bowman's capsule of the
Ullmann (1983)		glomeruli: 5/5M
DAR B.6.3.1a		Tubular atrophy: 5/5M and 1/5 F
		Glomerular sclerosis: 2/5M and 0/5 F
Guidance value		
for 28-day rat		
study) ≤ 300		
mg/kg bw/d		

Oral Studies:

		90 mg/kg bw/day:
		Clinical chemistry:
		↓ Lactate dehydrogenase (wk 3- M: 42.9%, F: 28.7%)
		Urine:
		↑ Volume (wk 3- M: 50%, F: 25 % and wk 7 – M: 81 %)
		Liver:
		↑ Liver weight (wk 4- rel. to bw F: 11.2%)
		Hepatocyte necrosis (wk 4-F:1/5)
		Kidney:
		Tubular casts: 2/5 M and 3/5 F
		Inflammatory foci: 2/5M
		Tubular dilation: 2/5M and 1/5F
		Vacuolar swelling of epithelial cells in the proximal tubules: 4/5M and 2/5F
		Irregular thickening of tubular basal membrane of Bowman's capsule of the
		glomeruli: 1/5F
		Tubular atrophy: 1/5M
		30 mg/kg bw/day:
		Clinical chemistry:
		↓ Lactate dehydrogenase (wk 3 - M: 30.1%, F: 22.7%)
		Liver:
		Hepatocyte necrosis (F:1/5)
		Kidney:
		Tubular casts: 1/5 F
		Vacuolar swelling of epithelial cells in the proximal tubules: 3/5M and 3/5F
		Tubular atrophy: 1/5M
		NOAEL not determined.
00 dos 1-	0.200.800.1	
90-day study Oral (diet)	0, 200, 800 and 2000 ppm	<u>2000ppm (100 mg/kg bw/day m/f)</u>
Oral (diet)	2000 ppm	Clinical signs:
Rat/Crl:CD(SD)B	(Equivalent to	\downarrow bw (M: 26.4%, F: 14.1%)
10/sex/dose	0, 10, 40 and	\downarrow Food consumption (M: 21.4%)
	100 mg/kg	• · · · · · · · · · · · · · · · · · · ·
US EPA F 82-1,	bw/day for	Clinical chemistry:
GLP	both males and	↑ Urea nitrogen (M: 12.8%, F: 37.9%)
	females)	↑ Creatinine (M: 28.6%)
Purity:97.7%		
		Brain:
MacKenzie (1987)		↑brain weight (rel. M: 33.8%, F: 14.2%)
DAR B.6.3.1b		· .
Culture 1		Liver:
Guidance value		↑ Liver weight (rel F: 9.5%)
for 90-day rat		Testes (mi di dumia
study) ≤ 100 mg/kg bw/d		<i>Testes/epididymis:</i> ↑Testes weight (rel. left 26.7%, right 33.4 %)
mg/kg uw/u		105005 weight (101. 1011 20.1%, 11ght 35.4%)

<i>Kidney</i> ↑Kidney weight (rel. left M: 13.3% F: 11.3%, right M: 10.5% F: 11.6%) Chronic nephritis (interstitial mononuclear cell infiltrate, thickening of tubular walls and hypertrophy/regeneration of tubular epithelium): 10/10M and 10/10F Poteinaceous casts: 8/10 M and 10/10F Tubular cell degeneration of the outer medulla connecting tubules: 8/10M and 5/10F Tubular mineralization of the renal papilla: 7/10M and 6/10F
800ppm (40 mg/kg bw/day in M/F):
Clinical signs: ↓ bw (M: 13.1%) ↓Food consumption (M: 13.1%)
Clinical chemistry: ↑ Urea nitrogen (M: 24%, F: 12.8%) ↑ Creatinine (M: 14.3 %)
Brain: ↑ Brain weight (rel. M: 15.3%)
<i>Testes/epididymis:</i> ↑ Right testes weight (rel. 12.3%)
 Kidney: ↑ Kidney weight (rel. to bw right M: 9.5%). Chronic nephritis (interstitial mononuclear cell infiltrate, thickening of tubular walls and hypertrophy/regeneration of tubular epithelium): 10/10M and 4/10F Poteinaceous casts: 6/10 M and 1/10F Tubular cell degeneration of the outer medulla connecting tubules: 7/10M and 3/10F Tubular mineralization of the renal papilla: 8/10M
<u>200 ppm (10 mg/kg bw/day M/F):</u>
 ↑ Urea nitrogen (M: 26.3%) ↑ Creatinine (M: 28.6%)
<i>Kidney</i> Chronic nephritis (interstitial mononuclear cell infiltrate, thickening of tubular walls and hypertrophy/regeneration of tubular epithelium): 9/10M Poteinaceous casts: 4/10 M and 1/10F Tubular cell degeneration of the outer medulla connecting tubules: 3/10M Tubular mineralization of the renal papilla: 1/10M
NOAEL of 200 ppm for females. NOAEL for males not determined.

90-day	0, 80, 160 and	Microscopic findi	0		•						
Oral (diet)	240	Finding Males (mg/kg bw/day)					Females (mg/kg bw/day)				
	(males)/480 (females) ppm		0	5.5	10.5	16.1	0	6	12.1	37	
Rat/CD (Crl:CD) 10/sex/dose	(Equivalent to	Chronic progressive nephropathy									
OECD 408	0, 5.5, 10.5 and	Total	3/10	3/10	7/9	10/10	0/10	0/10	0/10	1/10	
GLP	16.1 mg/kg bw/day in	Trace	3/10	3/10	6/9	8/10	0/10	0/10	0/10	1/10	
024	males and 0,	Mild	0/10	0/10	1/9	2/10	0/10	0/10	0/10	4/10	
Purity: 98.8%	6.0, 12.1 and 37.0 mg/kg	Tubular mineralisation	0/10	1/10	0/9	2/10	2/10	0/10	0/10	4/10	
Goldenthal (2002a)	bw/day in females)	Hyperplasia of urothelial epithelium	0/10	0/10	0/9	1/10					
DAR B.6.3.1c											
Guidance value for 90-day rat study) ≤ 100 mg/kg bw/d		NOAEL of 80 ppn	ı for ma	les and	160 pp	m for fe	males				
		Studies i	n the d	og							
28-day study Oral (diet)	0, 600, 1200 and 2400 ppm	2400ppm, 1200pp mg/kg bw/day in 1		600 ppi	n (69.3,	/ 65.7, 3	2.8/30.	8 and 1	9.3/19.	<u>3</u>	
Dog/Beagle 3/sex/dose	(Equivalent to 0, 19.3, 32.8	No adverse effects NOAEL of 2400 p									
Guideline not specified GLP	and 69.3 mg/kg bw/day in males and 0, 19.3, 30.8 and										
Purity: 97%	65.7 mg/kg bw/day in										
Atkinson (1989) DAR B.6.3.3a	females)										
Guidance value of \leq 300 mg/kg bw/d calculated from guidance value for											
a 90-day rat study.											

90-day study Oral (diet)	M: 0, 160, 240 and 960 ppm	960 ppm (34.4 mg/kg bw/day - M only): No adverse effects noted.
Dog/Beagle 4/sex/dose OECD 409	(Equivalent to 0, 5.3, 7.9 and 34.4 mg/kg bw/day)	480 ppm (17.7 mg/kg bw/day – F only): Uterus and Ovaries: ↑ Uterus/cervix weight (abs. 235.4%; rel. to bw 216.3%); ↑ Ovary weight (abs. 219.4%; rel. to bw 203.1)
GLP	F: 0, 160, 240	240 ppm and 160 ppm (7.9/9.0 and 5.3/5.9 mg/kg bw/day M/F): No adverse effects noted.
Purity: 98.8%	and 480 ppm (Equivalent to	NOAEL of 34.4 mg/kg bw/day and 17.7 mg/kg bw/day M/F respectively.
Goldenthal (2002b) DAR B6.3.3b	(Equivalent to 0, 5.9, 9.0 and 17.7 mg/kg bw/day)	
Guidance value of $\leq 100 \text{ mg/kg bw/d}$ calculated from guidance value for a 90-day rat study		
1 year study Oral (diet)	0, 40, 500 and 3000/5000/	<u>3000/5000/7500 ppm (158.4 /169.7 mg/kg bw/day M/F:</u>
Dog/Beagle 6/sex/dose US EPA F 83-1, GLP Purity: 98.8%	7500 ppm (Equivalent to 0, 1.13, 16.07 and 158.40 mg/kg bw/day in males and 0, 1.28, 15.00 and 169.70 mg/kg bw.day in	Clinical signs: ↓ bw gain (M: 47.6%, F: 60.9%) Haematology: ↓ Haemocrit (M: 13.9%) ↑ Mean Cell Volume (M: 5.2%) ↑ Mean Cell Haemoglobin (M: 8.2%) Clinical chemistry:
Goldenthal (1991) DAR B.6.3.3c	females)	 ↑ Alkaline phosphatase (M: 111.9%, F: 111.3%) ↑ Cholesterol (12 months - M: 48.1%) ↑ Creatinine (12 months - F: 40%)
Guidance value of $\leq 25 \text{ mg/kg bw/d}$ calculated from guidance value for a 90-day rat study	Initial top dose of 3000 ppm was increased to 5000 ppm after 7 weeks and to 7500 ppm after 13 weeks	<i>Liver:</i> ↑ Rel. weight (M: 27.5%, F: 27.4%) <i>Heart:</i> ↑ Rel. weight (F: 20.8%) <i>Pituitary:</i> ↑ Rel. weight (F: 30.8)
		500 ppm (16.07/15.00 mg/kg bw/day M/F:
		<i>Clinical signs</i> ↓ bw gain (M: 19.1%, F: 65.2%)
		<i>Heart</i> : ↑ Rel. weight (F: 16.9%).
		<u>40 ppm (1.13/1.28 mg/kg bw/day M/F):</u>
		No adverse effects.
		NOAEL of 500 ppm for M and 40 ppm for F.

Dermal Study:

Dose schedule	Dose levels	Results									
28 day study	0, 30, 400 and	1000, 400 and 30 mg/kg bw/day									
Rat/CD (Crl:CD (SD) IGS BR)	1000 mg/kg/6 hr/day [Moistened	Microscopic findin			ys: /kg bw/	day)	Fen	Females (mg/kg bw/day)			
U/sey/dose	with distilled		0	30	400	1000	0	30	400	1000	
US EPA OPPTS 870.3200 GLP	water and applied to clipped dorsal	Tubular degeneration: Trace	0/10	0/10	1/10	9/10	_	_	-	_	
Purity: 98.8%	skin (10% of body surface) under gauze	Tubular regeneration:				10/1					
Goldenthal (2002c)	dressing and tape].	Total Trace	4/10 4/10	3/10 3/10	9/10 9/10	0 3/10	3/10 3/10	0/10 0/10	0/10 0/10	3/10 3/10	
DAR B.6.3.4		Mild	0/10	0/10	0/10	7/10	-	-	-	-	
Guidance value of $\leq 600 \text{ mg/kg bw/d}$ for a 28-day dermal study in the rat.		NOAEL of 30 mg/k determined for fema	5	ay for n	iales ar	ıd 1000	mg/kg	bw/day	was		

4.7.1 Non-human information

4.7.1.1 Repeated dose toxicity: oral

There are two 90-day studies and one 28-day study available in the rat and a 28-day, 90-day and 12month study in the dog. As well as these studies, additional repeated dose toxicology can be found in the carcinogenicity and reproductive toxicity sections for rats and mice. The key points from all these studies are summarised below.

Rat Studies

<u>28-day (Ullmann, 1983):</u>

In a 28-day study (Ullmann, 1983), Wistar rats (10/sex/dose) were administered 0, 30, 90 or 270 mg/kg bw/day carboxin orally via gavage. After treatment, 5/10 animals were sacrificed whilst the other 5/10 animals were retained and observed for a 21-day recovery period.

General signs of toxicity (small reductions in body weight, ruffled fur and sedation) were observed from 30 mg/kg bw/day. The critical target organs identified in this study were the kidney and liver.

An increased incidence of kidney lesions was observed from the lowest dose administered. At 30 mg/kg bw/day there was an increase incidence of vacuolar swelling of epithelial cells in the proximal tubules in males and females and tubular atrophy in males only. At the mid to high doses of 90 and 270 mg/kg bw/day there was an increased incidence of inflammatory foci and tubular casts in males and females and tubular dilation in males only. An increased incidence of glomerular sclerosis and thickening of the tubular basal membrane/Bowman's capsule of the glomeruli was also observed in males of the top dose group. Many of the lesions were still observed in rats sacrificed after the 21-day recovery period (week 7), indicating that they are persistent. However, the high incidence of tubular casts and vacuolar swelling of the proximal tubule epithelial cells

observed in the untreated control recovery group suggest that these particular lesions may not be compound-related and/or are an exacerbation of an age-related effect. An increase in kidney weight was also observed in high dose males/females sacrificed after treatment (absolute M: 18.3 %; relative M: 31.9 % and F: 8.1 %) and high dose males sacrificed after the recovery period (absolute M: 28.2 %, relative M: 27.3 %).

Finding		Males (mg	/kg bw/day)		Females (mg/kg bw/day)				
wk 4 (wk 7)	0	30	90	270	0	30	90	270	
Tubular casts	2ª/5 ^b (3/5)	0/5 (5/5)	2/5 (4/5)	5/5 (5/5)	0/5 (3/5)	1/5 (2/5)	3/5 (0/5)	5/5 (4/5)	
Inflammatory foci	0/5 (1/5)	0/5 (0/5)	2/5 (5/5)	5/5 (5/5)	0/5 (0/5)	0/5 (0/5)	0/5 (0/5)	2/5 (4/5)	
Tubular dilation	0/5 (0/5)	0/5 (3/5)	2/5 (4/5)	5/5 (5/5)	0/5 (1/5)	0/5 (0/5)	1/5 (1/5)	0 /5 (1/5)	
Vacuolar swelling of epithelial cells in the proximal tubules	1/5 (2/5)	3/5 (0/5)	4/5 (5/5)	5/5 (5/5)	0/5 (5/5)	3/5 (1/5)	2/5 (5/5)	4/5 (4/5)	
Irregular thickening of the tubular basal membrane and the Bowman's capsule of the glomeruli	0/5 (0/5)	0/5 (1/5)	0/5 (5/5)	5/5 (5/5)	0/5 (1/5)	0/5 (0/5)	1/5 (0/5)	0/5 (2/5)	
Tubular atrophy	0/5 (0/5)	1/5 (0/5)	1/5 (5/5)	5/5 (5/5)	0/5 (0/5)	0/5 (0/5)	0/5 (0/5)	1/5 (4/5)	
Glomerular sclerosis	0/5 (0/5)	0/5 (0/5)	0/5 (2/5)	2/5 (5/5)	0/5 (0/5)	0/5 (0/5)	0/5 (0/5)	0/5 (1/5)	

^a number of affected animals. ^b total number of animals examined

Changes in some clinical chemistry and urinalysis parameters indicative of possible reduced kidney function were observed at doses $\geq 90 \text{ mg/kg}$ bw/day. These included a statistically significant increase in serum creatinine in females (22.6 % at 270 mg/kg bw/day), an increase in urine volume (males at $\geq 90 \text{ mg/kg}$ bw/day and females at 270 mg/kg bw/day), an increase in urine specific gravity (males and females at $\geq 90 \text{ mg/kg}$ bw/day) and reduced urine pH (males at $\geq 90 \text{ mg/kg}$ bw/day). Increased urine volume was still evident in mid and high dose males after the 21-day recovery period. A statically significant increase in serum creatinine (35.4 %) was observed in high dose males of the recovery group, but not in males sacrificed immediately after treatment.

In the liver, a low incidence of hepatocyte necrosis was observed at week 4 in females of all treatment groups. Slight to moderate centrilobular liver hypertrophy was reported in 5/5 males and 2/5 females of the top dose and was still evident in 1/5 males and 1/5 females at the end of the recovery period. No incidence of hypertrophy was reported in the control, low and mid dose groups. Mean liver weight relative to body weight was statistically significantly increased in top dose males at week 4 (20.9 %) and week 7 (9.0 %). In females, absolute and relative mean liver weights were increased in the mid dose groups at week 4 (absolute = 12.5 %; relative to body weight = 11.2 %; relative to brain weight = 16.2 %). Absolute and mean liver weights were also increased in females in the high dose group (absolute = 16.5 %; relative to body weight = 22.7 %; relative to brain weight = 21.6 %) and relative liver weight was still increased in top dose females at the end of the recovery period (8.0 %). Serum alkaline phosphatase, a non-specific marker for liver toxicity, was increased in high dose females (40.8 %) at week 3.

All doses in this study are within guidance values for classification as STOT RE 2 which, for a 28-day study in the rat, are $30 < C \le 300$ mg/kg bw/day.

Ninety-day studies:

90-day (MacKenzie, 1987:

In the first 90-day study (MacKenzie, 1987), Crl:CD rats (10/sex/dose) were fed diets containing 0, 200, 800 or 2000 ppm carboxin (equating to 0, 10, 40 and 100 mg/kg bw/day, respectively). Signs of general toxicity (reduced body weight and food consumption) were observed at \geq 40 mg/kg bw/day in males and at 100 mg/kg bw/day in females. However, the critical target organ was identified as the kidney.

Histopathology of the kidneys in males treated with $\geq 10 \text{ mg/kg bw/day}$ and females treated with $\geq 40 \text{ mg/kg bw/day}$ revealed an increase in the incidence of chronic nephritis. This was characterised by interstitial mononuclear cell infiltrate, thickening of the tubular walls and hypertrophy/regeneration of the tubular epithelium, primarily affecting the inner cortex near the interlobular vascular system. Additional renal findings included, proteinaceous casts in males at doses $\geq 10 \text{ mg/kg bw/day}$ and females at 100 mg/kg bw/day, degeneration of tubular epithelium in the collecting tubule of the outer medulla in males and females at doses $\geq 40 \text{ mg/kg bw/day}$ and mineralisation of the tubes of the renal papilla in males $\geq 40 \text{ mg/kg bw/day}$ and females at 100 mg/kg bw/day. These findings were more prevalent in males and severity increased with dose.

Finding		Males (mg	/kg bw/day)		Females (mg/kg bw/day)			
	0	10	40	100	0	10	40	100
Chronic nephritis (interstitial mononuclear cell infiltrate, thickening of tubular walls and hypertrophy/regen eration of tubular epithelium)	0ª/10 ^b	9/10	10/10	10/10	0/10	0/10	4/10	10/10
Proteinaceous casts	0/10	4/10	6/10	8/10	0/10	1/10	1/10	10/10
Tubular cell degeneration of the outer medulla connecting tubules	4/10	3/10	7/10	8/10	0/10	0/10	3/10	5/10
Tubular mineralization of the renal papilla	0/10	1/10	8/10	7/10	0/10	0/10	0/10	6/10

^a number of animals effected. ^b number of animals examined

Changes in clinical chemistry, possibly indicative of reduced kidney function were observed from 10 mg/kg bw/day. These included increased serum creatinine in males at all doses, statistically significant at 10 and 100 mg/kg bw/day and increased urea nitrogen (males: ≥ 10 mg/kg bw/day, females: ≥ 40 mg/kg bw/day). A statistically significant increase in kidney weight relative to body weight was observed in males of the top and females of the top dose [males: 13.3 %/10.5 % (left/right); females: 11.3/11.6 % (left/right)] and mid dose males only [males: 9.5 % (right)].

Increases in brain (males: 33.8 % and females: 14.2 %), liver (females: 9.5 %) and testes/epididymis) [26.7 %/33.4 % (left/right)] weight relative to body weight were also observed at 100 mg/kg bw/day. However, there were no histopathological changes associated with these findings and they are likely to be a consequence of generalised body weight loss.

90-day (Goldenthal 2002a):

In a second 90-day study (Goldenthal 2002a), conducted at lower doses to the first, CD rats (10/sex/dose) were fed diets containing 0, 80, 160, 240 (males only) or 480 (females only) ppm carboxin (equivalent to 0, 5.5, 10.5 and 16.1 mg/kg bw/day in males and 0, 6.0, 12.1 and 37 mg/kg bw/day in females). No signs of general toxicity were observed, however, one male in the 10.5 mg/kg bw/day dose group was sacrificed in extremis due to a nasal tissue fracture (not considered treatment-related). Similar to the previous two studies, the critical target organ was identified as the kidney.

A dose-related increase in the incidence of chronic progressive nephropathy of a trace to mild severity was observed in males treated with ≥ 10.5 mg/kg bw/day and a single trace incidence was observed in one female of the top dose group. An increase in the incidence of tubular mineralisation was also noted in the top dose males and females. However, the incidence in top dose males was the same as that reported in the female control group. A single incidence of hyperplasia for the urothelial epithelium was observed in one male of the top dose group.

Finding		Males (mg	g/kg bw/day)		Females (mg/kg bw/day)			
	0	5.5	10.5	16.1	0	6	12.1	37
Chronic progressive nephropathy								
Total Trace Mild	3/10 3/10 0/10	3/10 3/10 0/10	7/9 6/9 1/9	10/10 8/10 2/10	0/10 0/10	0/10 0/10	0/10 0/10	1/10 1/10
Tubular mineralisation	0/10	1/10	0/9	2/10	2/10	0/10	0/10	4/10
Hyperplasia of urothelial epithelium	0/10	0/10	0/9	1/10				

A statistically significant increase in serum total protein (3.7 %) and albumin (5.7 %) was observed in top dose males. These changes in clinical chemistry parameters could be associated with the adverse effects on the kidneys. In females only, an increase in cholesterol was observed in the high dose group (26.2 \%).

All doses in these studies are within guidance values for classification as STOT RE 2, which for a 90-day study are $10 < C \le 100$.

Chronic studies (carcinogenicity and reproductive toxicity studies):

Refer to tables 17 and 18 in sections 4.10 and 4.11.

102 week study in the rat (Kehoe, 1991);

In a 102 week guideline carcinogenicity study Sprague-Dawley rats (60/sex/dose) were fed diets containing either 0, 20, 200, 400 ppm (males only) or 0, 20, 300, 600 ppm (females only) carboxin (corresponding to 0, 0.82, 8.65 and 16.86 in males and 0, 1.05, 15.08 and 33.48 mg/kg bw/day in females) (See table 17 for summary). Ten animals/sex/dose were sacrificed after 52 weeks. The study was terminated two weeks early (at week 102 instead of week 104) due to the 27% survival rate in males dosed with 400 ppm.

Survival was significantly lower in males at 400 ppm (weeks 65 - 102) and was lower in females at 600 ppm (weeks 85 - 102). Clinical effects were observed at all dose levels and included; anorexia, thin, few/no faeces, soft faeces, low body temperature, languid and rough hair coat. A statistically significant reduction in body weight was observed from 200 ppm in males and from 300 ppm in females. Water consumption was statistically significantly increased in males from 200 ppm and in females at 600 ppm.

At the interim sacrifice, there was an increased incidence of chronic nephritis; tubular cell degeneration and tubular mineralisation in the kidneys of both sexes at the mid dose and above, but these changes were more prominent in males. In the unscheduled deaths, renal lesions were a major factor in premature deaths of male and female rats. There was an increase incidence of kidney cysts at 200 ppm and above in males and at 600 ppm in females.

In males that died or were sacrificed prematurely, there was an apparent treatment-related increase in fibrous osteodystropathy in the femures at 20 ppm and above which was characterised by parathyroid hyperplasia and reduced renal function.

In females, the incidences of ovarian cysts appeared to be increased at all dose levels compared to the control females there was no dose-response relationship.

The top dose for males and females and the mid dose for females was above the guidance values for classification of STOT RE 2, which for a 2-year oral study are 1.25 < C < 12.5 mg/kg bw/day.

Two-generation study in rats (Kehoe (1991):

In a two-generation reproduction study (Kehoe (1991), Crl:CD rats (25/sex/dose) were administered carboxin through their diet (males: 0, 20, 200 and 400 ppm and females: 0, 20, 300 and 600 ppm (equivalent to 0, 1, 10, and 20 mg/kg bw/day in males and 0, 1, 15 and 30 mg/kg bw/day in females) for 10 weeks prior to mating and then throughout the gestation, lactation and weaning period (up to 33 weeks) (See table 18 for summary).

From a dose of 200 ppm (10 mg/kg bw/day), there was an increased incidence of kidney lesions consistent with those observed in the shorter-term and carcinogenicity studies including chronic nephritis.

Mouse Studies

Lifetime (19 month) study in the mouse (Gunderson, 1982):

Additional information for repeated dose toxicity is available from a 19-month lifetime carcinogenicity study in CD-1 mice (50/sex/dose) (See table 17 for summary). In this study mice were dosed with 0, 50, 2500 or 5000 ppm (corresponding to 0, 8, 385 and 752 mg/kg bw/day in males and 0, 9, 451 and 912 mg/kg bw/day in females).

From week 78, there was a reduction in female survival at doses \geq 451 mg/kg bw/day compared to the controls, which was statistically significant at the highest dose of 912 mg/kg bw/day (78 % mortality versus 52 % mortality in controls).

The incidence of centrilobular hepatocellular hypertrophy of the liver was increased in both sexes at 2500 ppm and above ($\geq 385/451 \text{ mg/kg bw/day}$) (liver weight not recorded) and there was an increase in hyperplastic liver nodules at 752 mg/kg bw/day in males. An increase in the incidence of renal tubular nephritis was noted in both sexes at the top dose (752/951 mg/kg bw/day).

Dog Studies

28-day (Atkinson, 1989):

In a 28-day study (Atkinson, 1989), Beagle dogs (3/sex/dose) were fed diets containing 0, 600, 1200 and 2400 ppm carboxin (equating to 0, 19.3, 32.8 and 69.3 mg/kg bw/day in males and 0, 19.3, 30.8 and 65.7 mg/kg bw/day in females).

No signs of general toxicity were observed, except for one male in the high dose group that was reported as being emaciated. A male dog in this group lost 1.2 kg over the treatment period, but a control dog also lost a comparable amount of body weight over the same period. Mean body weights were comparable to controls.

Absolute and relative testes weight appeared to be decreased from control values in top dose males (absolute 24.3 %/25 % and relative to body weight 35.3 %/72.5 % (left/right)). However, the lower mean value was due to one animal with very small testes while the other two dogs in this group had comparable testes weights to controls. No treatment-related microscopic findings were reported.

All doses in this study were within guidance values for classification as STOT RE 2 which, for a 28-day oral study are 30 < C < 300 mg/kg bw/day (calculated from the 90-day oral value in the rat).

90-day (Goldenthal, 2002b):

In a 90-day study (Goldenthal, 2002b), Beagle dogs (4/sex/dose) were fed diets containing 0, 160, 240, 480 (females only) and 960 (males only) ppm carboxin (corresponding to 0, 5.3, 7.9 and 34.4 mg/kg bw/day in males and 0, 5.9, 9.0 and 17.7 mg/kg bw/day in females). No clinical signs or treatment-related effects on haematological, clinical chemistry and urinalysis parameters were reported.

There was a statistically significant increase in uterus/cervix weight [absolute: 235.4% and relative: 216.3%] at the top dose. In addition, ovary weight was also increased in the top dose group [absolute: 219.4% and relative: 203.1%], however, this effect was not found to be statistically

significant. The report attributed the increased organ weights to two females being in oestrus. The increase in ovarian and uterine weight observed in this study was not seen at similar or higher doses in the 12-month dog study. However, it is noted that the dogs were 5 - 6 months of age in this study whereas the dogs were 7 months of age at initiation of the 12-month study. There were no findings on microscopic examination of the tissues.

All doses in this study were within guidance values for classification as STOT RE 2 which, for a 90-day oral study are 10 < C < 100 mg/kg bw/day (based on the 90-day oral values in the rat).

One-year (Goldenthal, 1991):

In a 1-year study (Goldenthal, 1991), Beagle dogs (6/sex/dose) were fed diets containing 0, 40, 500 and 3000/5000/7500 ppm carboxin (corresponding to 0, 1.13, 16.07 and 158.40 mg/kg bw/day in males and 0, 1.28, 15.00 and 169.70 mg/kg bw/day in females). The initial high dose of 3000 ppm was increased to 5000 ppm after seven weeks and to 7500 ppm after thirteen weeks.

A statistically significant dose-related reduction in body weight gain was observed in females of the mid and high dose groups (65.2% and 60.9% respectively). Body weight gain was also decreased in mid and high dose males (19.0% and 47.6% respectively); however, this was not statistically significant.

Slight but statistically significant changes in red blood cell parameters were observed in top dose males. This included a reduction in erythrocyte count (15.4% and 18.2% at 6 and 12 months, respectively), reduced haematocrit (13.9% at 12 months), increased mean cell volume (6.3% and 5.2% at 6 and 12 months, respectively) and increased mean cell haemoglobin (6.9% and 8.2% at 6 and 12 months, respectively). In the absence of any other effects these are not considered further.

At the top dose level, there was an increase in alkaline phosphatase in males and females (6 months - males: 72.9%, females: 85.5%, 12 months - males: 111.9%, females: 111.3%) and an increase in cholesterol levels in males only (6 months - 42.1%, 12 months - 48.1%). In females only, creatinine levels were also increased (12 months- 40.0%).

Relative liver weights were increased in both sexes at the top dose level (relative to body weightmales: 27.5% and females: 27.4%) However, this was not accompanied by any adverse changes in histopathology. In females, there were small increases in relative heart weight (15.9% relative to body weight at 15.00 mg/kg bw/day), (20.8% relative to body weight at 169.7 mg/kg bw/day). In addition, an increase in pituitary weight in females (23.5% relative to body weight). These changes were likely to be due to the body weight changes. There were no treatment-related macroscopic or microscopic changes observed at necropsy.

The top dose of 158.40/169.70 mg/kg bw/day in this study was significantly outside the guidance values for classification as STOT RE 2 which, for a 1-year study, are considered to be 2.5 < C < 25 mg/kg bw/day (calculated from the value for a 90-day oral study in the rat).

4.7.1.2 Repeated dose toxicity: inhalation

No data available.

4.7.1.3 Repeated dose toxicity: dermal

In a 28-day study (Goldenthal, 2002c), CD rats (10/sex/dose) were treated with dermal applications of 0, 30, 400 or 1000 mg/kg bw/day carboxin for at least 28 consecutive days (6 hours/day). The test material was moistened with distilled water and applied to clipped dorsal skin (10% surface area) under a gauze dressing and tape (plus Elizabethan-like collar). No substance-related signs of general toxicity or changes in clinical chemistry, haematology or urinalysis parameters were observed. There were no treatment-related macroscopic findings on post mortem examination or organ weight changes. Microscopic changes were observed in the kidneys.

There was an increase in the incidence and severity of tubular degeneration and tubular regeneration in males from 400 mg/kg bw/day. Regenerative foci were usually singular, however, when multifoci were observed these were more numerous in the mid and high dose males and were generally located in the inner cortex and outer stripe of the medulla. No kidney lesions exceeding the control data were reported in females.

The top dose of 1000 mg/kg bw/day applied in this study was outside the guidance values for classification as STOT RE 2 which, for a 28-day dermal study in rats, is $60 < C \le 600$ mg/kg bw/day.

4.7.1.4 Repeated dose toxicity: other routes

No data available

4.7.1.5 Human information

No data available.

4.7.1.6 Other relevant information

4.7.1.7 Summary and discussion of repeated dose toxicity

In the available repeated-dose toxicity studies, the kidney and liver were identified as the critical target organs. These findings and their relevance for classification and labelling are discussed below.

Kidney:

In the three short-term repeated dose studies in the rat, the critical target organ was identified as the kidneys, with increased weight, lesions of the renal tubules, chronic nephritis and progressive nephropathy accompanied by changes in clinical chemistry associated with kidney toxicity. Males were shown to be more sensitive to these effects than females. In the three studies, effects occurred below the top range value for classification. Additional information on renal toxicity was presented in the carcinogenicity and reproduction studies in rats and mice. In the studies in rats, there was an increased incidence of treatment-related chronic nephritis, tubular cell degeneration and tubular mineralisation in the kidneys of both sexes at doses of 8.65/15.08 mg/kg bw/day (males/females) and above and in the reproductive study at doses $\geq 10 \text{ mg/kg bw/day}$. The carcinogenicity study report noted that it was difficult to distinguish spontaneous chronic progressive nephropathy from treatment-related chronic nephritis, because both have common characteristics such as mononuclear infiltrates, interstitial fibrosis, tubular changes (dilation, proteinaceous casts, thickened walls and regeneration of epithelium) and glomerular changes (dilation and thickened membranes). It was

noted that treatment-related chronic nephritis tends to occur in the area of the interlobular vasculature whereas spontaneous nephropathy tends to be more generalised and involves the outer cortex. The mineralisation in the tubules of the papillae, the tubular cell degeneration in the medullar and the tubular hyperplasia of the tubules of the medulla and papillae are not commonly associated with chronic nephropathy and therefore the effects were considered treatment-related. The lesions appeared to occur more frequently and to be more severe with time, which may indicate that the test material had accentuated the chronic nephropathy.

In mice, there was an increase in the incidence of renal tubular nephrosis in both sexes at the top dose of 752/951 mg/kg bw/day (males/females) in a lifetime carcinogenicity study.

There were no effects in the kidneys of the dog.

Liver:

Adverse effects were seen in the livers of rats following repeated dosing for 28-days. These included a slight to moderate centrilobular liver hypertrophy accompanied by increased liver weight in males and females of the top dose group and increased serum alkaline phosphatase in top dose females only. At the end of the seven week recovery period, slight hypertrophy was still evident in one male and female. In addition to this, there was a low incidence of hepatocyte necrosis in females in all dose groups. These effects were not observed in any of the other studies in rats nor were they observed in the studies with other species at doses relevant for classification. These findings are therefore not considered further for classification.

4.8 Specific target organ toxicity – repeated exposure (STOT RE)

4.8.1 Summary and discussion of repeated dose toxicity findings relevant for classification as STOT RE

Carboxin has been tested for repeated dose toxicity by the oral route in rats, mice and dogs and in a dermal study in rats. Following dosing, changes were seen in the kidneys and liver of rats. The key findings in rats, mice and dogs at doses relevant for classification are summarised in the table below:

Study Design	Doses (mg/kg bw/day)	Severe effects at doses relevant for classification (STOT-RE 1)	Severe effects at doses relevant for classification (STOT-RE 2)	Other significant adverse effects at doses relevant for classification
		Studies inv	olving oral exposure	
Rat, 28-day, gavage	0, 30, 90 and 270	None	Increased incidence of chronic nephritis	 Increased kidney weight Clinical chemistry and urinalysis changes associated with reduced kidney function - increased urine volume, specific gravity and pH and increased serum creatinine Increased liver weight associated with clinical chemistry (increased serum alkaline phosphatase) Slight-moderate centrilobular liver hypertrophy Low incidence of hepatic necrosis in females of all dose groups
Rat, 90-day, diet	0, 10, 40 and 100	None	Increased incidence of chronic nephritis	 Clinical chemistry changes associated with reduced kidney function – increased serum creatinine, urea nitrogen Increased kidney weight in top dose males and females and mid dose males
Rat, 90-day, diet	0, 5.5, 10.5 and 16.1 (males) 0, 6.0, 12.1 and 37.0 (females)	None	None	 Increase in trace – mild severity chronic progressive nephropathy in males ≥ 10.5 mg/kg bw/day and one female (37 mg/kg bw/day). Increase in serum total protein and albumin in top dose males
Rat, carcinogenicity study, diet	0, 0.82, 8.65 and 16.86 (males) 0, 1.05, 15.08 and 33.48 (females)	None	 Renal lesions were a major factor in premature deaths in both sexes Treatment-related nephritis in males at doses ≥ 8.65 mg/kg bw/day Increased incidence of kidney cysts in males (≥ 8.65 mg/kg bw/day) 	 Decreased body weight and weight gain in males (≥ 8.65 mg/kg bw/day) and females 33.48 mg/kg/ bw/day Increased water consumption in males (≥ 8.65 mg/kg bw/day) and females 33.48 mg/kg/ bw/day
Rat, reproduction study, diet	0, 1, 10 and 20 (males) 0, 1, 15 and 30 (females)	None	None	 Kidney lesions ≥ 10 mg/kg bw/day Increased incidence of chronic nephritis ≥ 10 mg/kg bw/day Decreased body weight gain in F0 and F1 males at 20 mg/kg bw/day

Mouse, carcinogenicity study, diet	0, 8, 385 and 752 (males) 0, 9, 451 and 912 (females)	None	None	None
Dog, 28-day, diet	0, 19.3, 32.8 and 69.3 (males) 0, 19.3, 30.8 and 65.7 (females)	None	None	None
Dog, 90-day, diet	0, 5.3, 7.9 and 34.4 (males) 0, 5.9, 9.0, 17.7 (females)	None	None	None
Dog, 1-year, diet	0, 1.13, 16.07 and 158.4 (males) 0, 1.28, 15.0, 169.70 (females)		None	 Reduced body weight gain and increase in relative heart weight in females only 16.07/15.00 mg/kg bw/day No associated clinical chemistry
		Studies invo	olving dermal exposure	
Rat, 28-day	0, 30, 400 and 1000	None	None	 Increased incidence of tubular regeneration in the kidneys of males only at 400 mg/kg bw/day No associated clinical chemistry

4.8.2 Comparison with criteria of repeated dose toxicity findings relevant for classification as STOT RE

In a number of short-term and chronic oral and dermal studies involving repeated doing of carboxin, there was clear evidence of significant organ (kidney) toxicity at doses relevant for classification as STOT-RE 2 (i.e. based on guidance values of $10 \le C \le 100$ mg/kg bw/day from a 90-day study in the rat). Effects in rats included chronic nephritis with associated lesions and chronic progressive nephropathy increasing in severity with dose. Kidney weight (absolute and relative) was increased and there were clinical chemistry and urinalysis parameter changes related to reduced kidney function. These effects were consistently observed across all rat studies (oral and dermal) and occurred in both male and females rats, with males appearing to be more sensitive.

No significant effects were noted at doses relevant for classification in STOT-RE 1 (i.e. \leq 10 mg/kg bw/day based on a 90-day study in the rat). As such it is proposed to classify carboxin in category 2.

4.8.3 Conclusions on classification and labelling of repeated dose toxicity findings relevant for classification as STOT RE

STOT RE 2; H373 – May cause damage to the kidneys through prolonged or repeated exposure

4.9 Germ cell mutagenicity (Mutagenicity)

		In Vitro	
Method	Organism/Strain	Concentrations Tested	Result
Bacterial Mutation Assay (Ames) Guideline (Ames <i>et</i> al, 1975) GLP Purity: 98% Brusick (1982) DAR B.6.4.1a	Salmonella typhimurium (TA1535, TA 1537, TA1538, TA98 and TA100)	0, 1, 10, 50, 100, 500, 1000, 2500 and 5000 μg/plate carboxin	Negative \pm S9 metabolic action Dose selection was based on a preliminary study using strain TA100 in which toxicity was exhibited at $\geq 2500\mu$ g/ml (reduced number of revertants on minimal media plates).
Mammalian cell gene mutation test OECD 476 (1997), GLP Purity: 98.2% San & Clarke (2001) DAR B.6.4.1b	Chinese Hamster Ovary cells	0, 150, 250, 500, 750 and 1000 μg/ml carboxin in DMSO	Negative ± S9 metabolic activation Precipitation observed at 1000 μg/ml.
Mammalian chromosome aberration test Non-guideline (in house protocol designed to chromosome aberration frequencies in CHO cells) GLP Purity: 98% Galloway (1982) DAR b.6.4.1c	Chinese Hamster Ovary Cells	-S9 metabolic activation: 0, 17, 50, 167, 400 and 500 μg/ml +S9 metabolic activation: <i>1st trial:</i> 17-500 μg/ml 2 nd trial: 400-1400 μg/ml 3 rd trial: 500-900 μg/ml	Negative – S9 metabolic activation Precipitation observed at $\geq 400 \ \mu \text{g/ml}$ Toxicity observed at 600 $\mu \text{g/ml}$. Positive + S9 metabolic activation I^{st} trial: Negative 2^{nd} trial: Slight increases in aberrations at 600 and 1200 μ g/ml and a statistically significant increase at 800 μ g/ml. Precipitation observed at all dose levels. 1200 μ g/ml was the highest that could be scored 3^{rd} trial: statistically significant increase in chromosome aberrations at $\geq 700 \ \mu$ g/ml. Chromatid exchanges were also seen at 700 and 7500 μ g/ml Cytotoxicity observed at $\geq 700 \ \mu$ g/ml – severe in nature $\geq 850 \ \mu$ g/ml Precipitation observed at $\geq 850 \ \mu$ g/ml. Negative and positive controls behaved appropriately.

Table 16: Summary table of relevant in vitro and in vivo mutagenicity studies

Rat hepatocytes	0, 0.513, 1.03, 2.56,	Positive		
	103 and 256 µg/ml	Dose-related p	positive response a	t 5.13-103
		µg/ml		
		Cytotoxicity v	vas observed at ≥ 2	25.6 µg/ml
		μ g/ml due to c	only 8.2 % cell sur	vival
		Negative and	positive controls b	ehaved
		11 1 5		
	In Vivo			
Organism/Strain		Result		
1 0 7		Negative		
rats (20/sex/dose)	mg/kg bw			
	Vehicle: 0.5% CMC		2 h only (males ar	nd females
		combined):		1
	Volume: 10 ml/kg		Percentage	Mean
		Treatment	aberrant	mitotic
	Sacrificed at 6, 12, 24,	(mg/kg bw)	cells/group	index
	Sacrificed at 6, 12, 24, 48 h		cells/group 0.3	
		(mg/kg bw)		index
		(mg/kg bw) Vehicle	0.3	index 1.8 ± 1.3
		(mg/kg bw) Vehicle 200	0.3	index 1.8 ± 1.3 3.4 ± 2.5
		(mg/kg bw) Vehicle 200 660 2000 Positive	0.3 0 3.6	index 1.8 ± 1.3 3.4 ± 2.5 2.1 ± 1.9 1.9 ± 1.6
		(mg/kg bw) Vehicle 200 660 2000	0.3 0 3.6	index 1.8 ± 1.3 3.4 ± 2.5 2.1 ± 1.9
		(mg/kg bw) Vehicle 200 660 2000 Positive Control (CP)	0.3 0 3.6 0.9 17.3	index 1.8 ± 1.3 3.4 ± 2.5 2.1 ± 1.9 1.9 ± 1.6 0.3 ± 0.6
		(mg/kg bw) Vehicle 200 660 2000 Positive Control (CP) Toxicology: N	0.3 0 3.6 0.9 17.3 Vo animals died. R	index 1.8 ± 1.3 3.4 ± 2.5 2.1 ± 1.9 1.9 ± 1.6 0.3 ± 0.6
		(mg/kg bw) Vehicle 200 660 2000 Positive Control (CP) Toxicology: N mean body we	0.3 0 3.6 0.9 17.3 Vo animals died. R eight and clinical s	index 1.8 ± 1.3 3.4 ± 2.5 2.1 ± 1.9 1.9 ± 1.6 0.3 ± 0.6 eductions in igns of
		(mg/kg bw) Vehicle 200 660 2000 Positive Control (CP) Toxicology: N mean body we toxicity (sligh	0.3 0 3.6 0.9 17.3 No animals died. R eight and clinical s tly depressed, roug	index 1.8 ± 1.3 3.4 ± 2.5 2.1 ± 1.9 1.9 ± 1.6 0.3 ± 0.6 eductions in igns of gh coat and
		(mg/kg bw) Vehicle 200 660 2000 Positive Control (CP) Toxicology: N mean body we toxicity (sligh	0.3 0 3.6 0.9 17.3 Vo animals died. R eight and clinical s	index 1.8 ± 1.3 3.4 ± 2.5 2.1 ± 1.9 1.9 ± 1.6 0.3 ± 0.6 eductions in igns of gh coat and
		(mg/kg bw) Vehicle 200 660 2000 Positive Control (CP) Toxicology: N mean body we toxicity (sligh urine stains) a	0.3 0 3.6 0.9 17.3 No animals died. R eight and clinical s tly depressed, roug	index 1.8 ± 1.3 3.4 ± 2.5 2.1 ± 1.9 1.9 ± 1.6 0.3 ± 0.6 eductions in igns of gh coat and
		5.13, 10.3, 25.6, 51.3, 103 and 256 μg/ml Image: Strain 0, 200, 660 and 2000	5.13, 10.3, 25.6, 51.3, 103 and 256 μg/ml Dose-related μ μg/ml Cytotoxicity v Nuclear grain: μg/ml due to of Nuclear grain: μg/ml due to of Negative and appropriately. In Vivo Organism/Strain Concentrations Tested Sprague-Dawley rats (20/sex/dose) 0, 200, 660 and 2000 mg/kg bw Vehicle: 0.5% CMC Volume: 10 ml/kg	5.13, 10.3, 25.6, 51.3, 103 and 256 μ g/mlDose-related positive response a μ g/mlCytotoxicity was observed at ≥ 2 Nuclear grains were not counted μ g/ml due to only 8.2 % cell surNegative and positive controls b appropriately.Organism/Strain Sprague-Dawley rats (20/sex/dose)Concentrations Tested $0, 200, 660$ and 2000 $mg/kg bwNegativeIncreased number of aberrationsmg/kg bw at 12 h only (males arcombined):Volume: 10 ml/kgNegativePercentage$

D	C	A sector simple large of O	A
Bone marrow	Sprague-Dawley	Acute: single dose of 0,	Acute: Negative
chromosome	rats	750, 2000 and 4000	
aberration study in the	20/sex/dose in the	mg/kg bw	Toxicology: soft faeces, rough coat, eyes
rat	acute study	~ ~ ~ ~ ~ ~	squinted, red stains on eyes/nose, slightly
		Sub-acute: 5 doses of 0,	depressed, cold, prostrate and laboured
Oral (gavage)	5/sex/dose in the	100, 400 and 800	respiration at \geq 750 mg/kg bw. Gross
	sub-acute study	mg/kg bw/day	necropsy revealed darkened adrenals,
Non-guideline			spleens and lungs, pale kidneys and gas-
GLP		Volume: 10 ml/kg	filled distended stomachs.
Purity: 98%			Sub-acute: Negative
Cortina (1985)			Toxicology: One female was sacrificed
DAR b.6.4.2b			moribund on day 3 (800 mg/kg bw). Clinical
			signs were noted at \geq 400 mg/kg bw.
			Negative and positive controls behaved
			appropriately.
Unscheduled DNA	Rat/Sprague-	0, 500, 1000, 2000	Negative
synthesis assay	Dawley	mg/kg bw	
syntheois assay	5/sex/dose	<u>g</u> , <u>g</u> e	No animals died and there were no clinical
Oral (gavage)	Siseniaose		signs during the study
Giui (guvuge)			signs during the study
OECD 486			
GLP			
Purity: 98.13%			
1 unity. 90.15%			
Pant and Sly (2006)			
DAR Addendum 1			
(Aug 2007) B 6.4		<u> </u>	

4.9.1 Non-human information

4.9.1.1 In vitro data

A battery of four *in vitro* studies is available to assess the mutagenic potential of carboxin. The gene mutation assays in bacterial (Brusick, 1982) and mammalian cells (San & Clarke, 2001) were both negative. In the chromosome aberration test (Galloway, 1982), carboxin was considered to be clastogenic in the presence of metabolic activation and it was also considered to be positive in two out of three replicates of the unscheduled DNA repair test in rat hepatocytes (Myhr, 1982).

4.9.1.2 In vivo data

Two *in vivo* bone marrow chromosome studies were performed in rats. There was an increase in the number of chromosomal aberrations at one time-point at 660 mg/kg bw (Cortina, 1983), but this finding lacked statistical significance and/or a dose response relationship. Furthermore, a comparable increase was not observed under similar conditions at three other time-points (Cortina, 1985). In this second study, there was no evidence of any carboxin-induced clastogenic activity after acute and sub-acute dosing. Although the mitotic indices were not affected by carboxin administration, severe toxicity was noted in the sub-acute study at the top dose tested. An in vivo unscheduled DNA synthesis test was performed in order to provide reassurance on the genotoxicity of carboxin. In this study there was no increase reported in mean net nuclear grain counts, nor was there an increase in the percentage of cells in repair, up to the highest dose tested (2000 mg/kg bw).

4.9.2 Human information

No data available.

4.9.3 Other relevant information

No data available.

4.9.4 Summary and discussion of mutagenicity

Four in vitro studies and two in vivo studies were presented in the draft assessment report. In an in vitro unscheduled DNA repair test and a mammalian chromosome aberration test, positive results were obtained. Therefore, it was considered appropriate for the applicants to provide further reassurance on the genotoxicity of carboxin in the form of an in vivo unscheduled DNA repair test. The results of this test proved negative up to a dose of 2000 mg/kg.

4.9.5 Comparison with criteria

No positive results were observed in the available *in vivo* studies. Therefore, the available data is not considered to support classification for mutagenicity

4.9.6 Conclusions on classification and labelling

No classification, conclusive but not sufficient for classification

4.10 Carcinogenicity

No information on the carcinogenicity of carboxin in humans is available. One carcinogenicity study in the rat (oral route (Kehoe, 1991)) and one study in the mouse (oral route (Gunderson, 1982)) are summarised in Table 17.

Dose schedule	Dose levels	Observations a	nd rem	arks						
		(effects of majo	r toxico	ological s	significar	nce)				
2-year study Oral (diet)	M: 0, 20, 200 and 400 ppm	Neoplastic find	ings (de	ecedents	and tern	ninal)				
Ofal (diet)	and 400 ppm	Finding	Ma	les ppm (mg/kg bw	/day)	Fema	les ppm	(mg/kg b	w/day)
Terminated at	(Equivalent to	U U	0	20	200	400	0	20	300	600
102 weeks due to low survival	0, 0.82, 8.65 and 16.86		0	(0.82)	(8.65)	(16.86)	0	(1.05)	(15.08)	(33.48)
rates in males at 400 ppm	mg/kg bw/day) F: 0, 20, 300	Liver- hepatocellular adenoma (B)	3/50 (6%)	6/50 (12%)	6/50 (12%)	3/50 (6%)	4/50 (8%)	3/50 (6%)	4/50 (8%)	3/50 (6%)
Rat/Crl:CD (SD) BR 60/sex/dose	and 600 ppm (Equivalent to	Liver- hepatocellular carcinoma (M)	1/50 (2%)	0/50 (0%)	1/50 (2%)	4/50 (8%)	-	-	-	-
(of which 10/sex/dose	0, 1.05, 15.08, 33.48 mg/kg		Labo	oratoy histo	0-1.	ol data for h 7% (6 studi 3% (9 studi	ies) 1988-	1990	oma in ma	le rats:
were sacrificed after 52 weeks)	bw/day)	Parathyroids- adenoma (B)	0/47 (0%)	1/27 (3.7%)	1/27 (3.7%)	1/50 (2%)	0/47 (0%)	0/29 (0%)	0/21 (0%)	1/48 (2.1 %)
Purity= 97.7%			Lal	poratory his		trol data for mean 3.3%			ma in male	e rats:
OECD 453, GLP		Non-neoplastic	finding	<u>(S:</u>						
(Kehoe, 1991) DAR B.6.5.1		600 ppm: Clinical: 60% F died by w weeks 52-102) ↓ bw (21.15%) ↓ bw gain (28.7° ↑ water consump Increased incide temperature * see table below	%) ption (7 nces of:	8.0%) anorexia	a, thin, fe	w/no faeo				
		400 ppm: Clinical: 73.5%M died by between weeks 5 ↓ bw (↓17.3%) ↓ bw gain (23.4% ↑ water consump Increased incide temperature, lan * see table below	52-102) %) ption (5) nces of: guid	0.3%) anorexia	a, thin, fe	w/no fae				

Table 17: Su	ummary table of relevant	carcinogenicity studies
--------------	--------------------------	-------------------------

46.9% F died by wk 102 vs 44% F in controls (majority of deaths occurred between weeks 52-102) ↓ bw (8.7%) Increased incidence of anorexia and piloerection * see table below for microscopic findings 200 ppm: <i>Clinical:</i> 49% M died by wk 102 vs 44% M in controls (majority of deaths occurred between weeks 52-102) ↓ bw (7.5%) ↑ water consumption (78%) <i>Clinical chemistry and urinalysis:</i> ↑ Creatinine (75%) ↑ Urea nitrogen (110.5%) † Urine volume (91.7%) * see table below for microscopic findings 20 ppm: <i>Clinical:</i> 58% (M) and 54% (F) died by wk 102 vs 44% M/F in controls Increased incidence of anorexia and piloerection in females only * see table below for microscopic findings * Non-neoplastic microscopic findings * Non-neoplastic microscopic * 102%) (20%) (76%) (44%) (20%) (20%) (44%) (20%) (25%) (20%) (76%) (44%) (0%) (0%) (44%) (45%) (20%) * 10250 0/50 3/50 9/50 0/50 2/50 2/50 1/50 1/50 * 10250 0/50 3/50 9/50 0/50 0/50 2/50 2/50 2/50 1/50 1/50 * 10260 0/50 1/50 48/50 47/50 0/50 0/50 0/50 2/50 2/50 2/50 1/50 1/50 * 10260 0/50 1/50 48/50 47/50 0/50 0/50 0/50 2/50 2/50 2/50 2/50 1/50 1/50 48/50 * 1026%) (6%) (18%) (0%) (0%) (0%) (4%) (40%, (meat/maintic 0%) (2%) (48%) (76%) (0%) (0%) (0%) (44%) (40%, (meat/maintic 0%) (2%) (46%) (46%) (0%) (0%) (0%) (2%) (44%) (0%) * mebuidilar cell 0 3/50 3/50 2/50 2/50 2/50 2/50 2/	300 ppm:									
between weeks 52-102) 1 bw (8.7%) Increased incidence of anorexia and piloerection * see table below for microscopic findings 200 ppm: <i>Clinical:</i> 49% M died by wk 102 vs 44% M in controls (majority of deaths occurred between weeks 52-102) 1 bw (7.5%) 1 water consumption (78%) <i>Clinical chemistry and urinalysis:</i> 1 Creatinine (75%) 1 Urea nitrogen (110.5%) 1 Urea nitrogen (110.5%) 1 Urine volume (91.7%) * see table below for microscopic findings 20 ppm: <i>Clinical:</i> 58% (M) and 54% (F) died by wk 102 vs 44% M/F in controls Increased incidence of anorexia and piloerection in females only * see table below for microscopic findings 20 ppm: <i>Clinical:</i> 58% (M) and 54% (F) died by wk 102 vs 44% M/F in controls Increased incidence of anorexia and piloerection in females only * see table below for microscopic findings 20 ppm: <i>Clinical:</i> 58% (M) and 54% (F) died by wk 102 vs 44% M/F in controls Increased incidence of anorexia and piloerection in females only * see table below for microscopic findings (decedents and terminal) <u>Finding 0 20 200 400 0 20 300 600</u> (defs) (44%) (42%) (20%) (24%) (24%) (24%) (24%) progressive (70%) (86%) (94%) (80%) (24%) (20%) (24%) (25%) 2050 chronic 3550 43/50 47/50 40/50 32/50 2/50 1/50 10/50 2/50 2/50 1/50 mephropathy (70%) (86%) (94%) (80%) (23%) (20%) (44%) (25%) 20% chronic 050 0/50 3/50 3/50 2/50 0/50 0/50 2/50 2/50 1/50 mineralization (0%) (2%) (6%) (4%) (0%) (0%) (0%) (4%) (4%) (18%) (0%) (0%) (0%) (4%) (4%) (18%) (0%) (0%) (0%) (2%) (2%) (2% (medulla) (0%) 1/50 48/50 47/50 0/50 0/50 0/50 2/50 2/50 1/50 mineralization (0%) (2%) (6%) (4%) (0%) (0%) (0%) (2%) (2%) (medulla) (0%) 1/50 48/50 37/50 30/50 0/50 0/50 0/50 2/50 2/50 mineralization (0%) (2%) (6%) (4%) (0%) (0%) (0%) (2%) (2%) (medulla) (0%) (2%) (7%) (7%) (7%) (7%) (0%) (0%) (0%) (2%) (2%) (medulla) (0%) (2%) (7%) (7%) (7%) (7%) 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/5	Clinical:	ww. w. 10	7 10 1 10	Finace	trole (m	niority of	doatha	o o uma d		
$ \begin{array}{c} \downarrow \text{ bw } (8.7\%) \\ \text{Increased incidence of anorexia and piloerection} \\ $		•		F in cor	itrois (ma	ajority of	deaths of	ccurrea		
Increased incidence of anorexia and piloerection * see table below for microscopic findings 200 ppm: <i>Clinical:</i> 49% M died by wk 102 vs 44% M in controls (majority of deaths occurred between weeks 52-102) 1 bw (7.5%) 1 water consumption (78%) <i>Clinical chemistry and urinalysis:</i> 1 Creatinine (75%) 1 Urea nitrogen (110.5%) 1 Urea nitrogen (110.5%) 1 Urine volume (91.7%) * see table below for microscopic findings 20 ppm: <i>Clinical:</i> 58% (M) and 54% (F) died by wk 102 vs 44% M/F in controls Increased incidence of anorexia and piloerection in females only * see table below for microscopic findings * Non-neoplastic microscopic findings * Non-neoplastic microsco		5 52-102)	,							
200 ppm: Clinical: 49% M died by wk 102 vs 44% M in controls (majority of deaths occurred between weeks 52-102) \downarrow bw (7.5%) † water consumption (78%) Clinical chemistry and urinalysis: 1 Creatinine (75%) † Urea nitrogen (110.5%) † Urine volume (91.7%) * see table below for microscopic findings 20 ppm: Clinical: 58% (M) and 54% (F) died by wk 102 vs 44% M/F in controls Increased incidence of anorexia and piloerection in females only * see table below for microscopic findings * see table below for microscopic findings (decedents and terminal) Finding Males (ppm) Kidney 100 * Son-neoplastic microscopic findings (decedents and terminal) Kidney 1050 (12%) 20% (12%) 20% (12%) 20% (12%) 20% (12%) 20% (12%) 20% (12%) 20% (12%) 20% (12%) 20% (111) (111) (111) (111) (111) </td <td></td> <td>lence of a</td> <td>anorexia</td> <td>and piloe</td> <td>erection</td> <td></td> <td></td> <td></td> <td></td>		lence of a	anorexia	and piloe	erection					
	* see table bel	ow for m	icroscopi	ic finding	<u></u> gs					
	200 ppm:									
between weeks $52-102$) j bw (7.5%) * water consumption (78%) Clinical chemistry and urinalysis: ↑ Creatinine (75%) † Uran itrogen (110.5%) † Urine volume (91.7%) * see table below for microscopic findings Z0 ppm: Clinical: 58% (M) and 54% (F) died by wk 102 vs 44% M/F in controls Increased incidence of anorexia and piloerection in females only * see table below for microscopic findings * Non-neoplastic microscopic findings (kiney) Finding Males (ppm) Finding Males (ppm) Finding Males (ppm) Finding Males (ppm) Finding (70%) (86%) (94%) (40/50 14/50 10/50 24/50 21/50 progressive (70%) (86%) (94%) (40%) (28%) (20%) (44%) (42%) expressive (70%) (86%) (94%) (40%) (28%) (20%) (44%) (42%) (20%) (44%) (42%) (20%) (44\%) (44%) (44\%)	Clinical:									
$ \begin{array}{c} \downarrow \text{ bw } (7.5\%) \\ \uparrow \text{ water consumption } (78\%) \\ \hline \\ $				M in con	trols (ma	ajority of	deaths or	ccurred		
$ \begin{array}{c} \uparrow \text{ water consumption (78\%) } \\ \hline Clinical chemistry and urinalysis: \\ \uparrow Creatinine (75\%) \\ \uparrow Urea nitrogen (110.5\%) \\ \uparrow Urie volume (91.7\%) \\ \ast \text{ see table below for microscopic findings } \\ \hline 20 ppn: \\ \hline Clinical: \\ 58\% (M) and 54\% (F) died by wk 102 vs 44% M/F in controls Increased incidence of anorexia and piloerection in females only \\ \ast \text{ see table below for microscopic findings } \\ \hline Non-neoplastic microscopic findings (decedents and terminal) \\ \hline Finding 0 20 200 400 0 20 300 600 \\ \hline Kidney 3750 43/50 47/50 40/50 14/50 10/50 24/50 21/50 progressive (70\% 486%) (94\% (80\%) (28\%) (28\%) (20\% (42\%) (42\%) (20\%) (rf6\%) 10/50 14/50 10/50 25/50 25/50 10/50 10/50 38/50 9/50 0/50 0/50 25/50 25/50 10/50 10/50 13/50 9/50 0/50 0/50 25/50 25/50 10/50 10/50 13/50 9/50 0/50 0/50 25/50 25/50 mephrips (0\%) (0\%) (2\% (88\%) (76\%) (6\%) (18\%) (0\%) (0\%) (4\% (38\%) (38\%) 10/50 10/50 23/50 19/50 10/50 1$		s 52-102)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		nption (7	8%)							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Clinical chemi	stry and	urinalvsi	· · ·						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ar trica y st							
$ \begin{array}{c} \label{eq:constraints} \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$			%)							
20 ppm: Clinical: Clinical: 58% (M) and 54% (F) died by wk 102 vs 44% M/F in controls Increased incidence of anorexia and piloerection in females only * see table below for microscopic findings * Non-neoplastic microscopic findings (decedents and terminal) Finding 0 200 400 0 Finding Males (ppm) Females (ppm) Finding 0 200 400 0 20 300 600 Kiney Females (ppm) Females (ppm) Finding 0 200 400 2 300 600 Kinde Kinde Clinical: chronic 35/50 43/50 21/50 21/50 21/50 21/50 21/50 21/50 21/50 21/50 21/50 21/										
	* see table bel	ow for m	icroscopi	ic finding	<u>g</u> s					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
Increased incidence of anorexia and piloerection in females only * see table below for microscopic findings (decedents and terminal). Finding Males (ppm) Females (ppm) Finding 0 20 300 600 Kidney Females (ppm) Chronic 35/50 43/50 41/50 14/50 10/50 24/50 21/50 progressive 6/50 10/50 38/50 32/50 2/50 1/50 10/50 cysts 6/50 10/50 <th colsp<="" td=""><td>Clinical:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Clinical:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Clinical:								
* see table below for microscopic findings * Non-neoplastic microscopic findings (decedents and terminal) Finding 0 20 20 400 0 20 300 600 Kidney chronic 35/50 43/50 47/50 40/50 14/50 10/50 24/50 21/50 progressive (70%) (86%) (94%) (80%) (28%) (20%) (48%) (42%) nephropathy (12%) (10%) 38/50 32/50 2/50 1/50 10/50 cysts 6/50 10/50 38/50 32/50 2/50 1/50 10/50 chronic 0/50 0/50 3/50 9/50 0/50 0/50 0/50 1/50 10/50 nephritis (0%) (0%) (6%) (18%) (0%) (0%) (4%) (4%) (2%) ubular 0/50 1/50 44/50 38/50 47/50 0/50 0/50 3/50 19/50 mineralization (0%) (2%) (88%) (76%) 0/50 0/50 0/50 3/50 19/50 ubular 0/50 1/50 44/50 38/50 47/50 0/50 0/50 3/50 19/50 iubular 0/50 1/50 44/50 38/50 0/50 0/50 0/50 3/50 19/50 iubular 0/50 1/50 44/50 38/50 0/50 0/50 0/50 3/50 19/50 iubular 0/50 1/50 44/50 38/50 0/50 0/50 0/50 3/50 19/50 iubular 0/50 1/50 44/50 38/50 0/50 0/50 0/50 1/20 19/20 iubular 0/50 1/50 44/50 38/50 0/50 0/50 0/50 1/20 19/20 iubular 0/50 1/50 44/50 38/50 0/50 0/50 0/50 1/20 19/20 iubular 0/50 1/50 44/50 38/50 0/50 0/50 0/50 1/20 12/50 iubular 0/50 1/50 44/50 38/50 0/50 0/50 0/50 1/20 12/50 iubular 0/50 1/50 48/50 47/50 0/50 0/50 0/50 1/20 12/50 iubular 20/50 1/50 39/50 38/50 0/50 0/50 1/50 12/50 iubular 22/50 10/50 37/50 32/50 13/50 12/50 7/50 14/50 iubular 22/50 10/50 37/50 32/50 13/50 12/50 7/50 14/50 iubular 22/50 10/50 37/50 32/50 10/50 0/50 0/27 0/23 1/50 iubular 22/50 1										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Increased incid	tence of a	anorexia	and piloe	erection i	n female	s only			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
Finding020200400020300600KidneyKidneychronic $35/50$ $43/50$ $47/50$ $40/50$ $14/50$ $10/50$ $24/50$ $21/50$ progressive (70%) (86%) (94%) (80%) (28%) (20%) (48%) (42%) nephropathy $6/50$ $10/50$ $38/50$ $32/50$ $2/50$ $2/50$ $1/50$ $10/50$ (42%) cysts (12%) (20%) (76%) (64%) (4%) (4%) (2%) (20%) (25%) chronic $0/50$ $0/50$ $0/50$ $3/50$ $9/50$ $0/50$ $0/50$ $2/50$ $25/50$ nephritis (0%) (0%) (0%) (6%) (18%) (0%) (0%) (4%) (50%) undifferentiate $0/50$ $1/50$ $44/50$ $38/50$ $0/50$ $0/50$ $3/50$ $23/50$ $43/50$ tubular (0%) (2%) (88%) (76%) (0%) (0%) (6%) (46%) (0%) (0%) (12%) (92%) inbular cell $3/50$ $3/50$ $23/50$ $23/50$ $0/50$ $0/50$ $2/50$ $20/50$ degeneration (6%) (6%) (46%) (46%) (0%) (0%) (2%) (2%) ibular $2/50$ $1/50$ $39/50$ $38/50$ $0/50$ $0/50$ $1/50$ $1/250$ degeneration (6%) (2%) (78%) <th>* see table bel</th> <th>ow for m</th> <th>icroscopi</th> <th>ic finding</th> <th>gs</th> <th></th> <th></th> <th></th> <th></th>	* see table bel	ow for m	icroscopi	ic finding	gs					
Kidney Kidney<			ŕ	-	-	nts and to	erminal)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla	stic micr	oscopic 1 Males	findings (ppm)	(decede		Females		600	
nephropathy 6/50 10/50 38/50 32/50 2/50 2/50 1/50 10/50 cysts (12%) (20%) (76%) (64%) (4%) (4%) (2%) (20%) chronic 0/50 0/50 3/50 9/50 0/50 0/50 2/50 1/50 4/4/50 38/50 0/50 0/50 3/50 19/50 19/50 19/50 19/50 19/50 19/50 19/50 19/50 19/50 19/50 19/50 19/50 1/50 12/50 1/50 12/50 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20	* Non-neopla Finding	stic micr	oscopic 1 Males	findings (ppm)	(decede		Females		600	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla Finding Kidney chronic	o 35/50	oscopic 1 Males 20 43/50	findings (ppm) 200 47/50	(decede) 400 40/50	0 14/50	Females 20 10/50	300 24/50	21/50	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla Finding Kidney chronic progressive	0 35/50 (70%)	oscopic 1 Males 20 43/50 (86%)	findings (ppm) 200 47/50 (94%)	(decede) 400 40/50 (80%)	0 14/50 (28%)	Females 20 10/50 (20%)	300 24/50 (48%)	21/50 (42%)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla Finding Kidney chronic progressive nephropathy	stic micr 0 35/50 (70%) 6/50	oscopic 1 Males 20 43/50 (86%) 10/50	findings (ppm) 200 47/50 (94%) 38/50	(decede) 400 40/50 (80%) 32/50	0 14/50 (28%) 2/50	Females 20 10/50 (20%) 2/50	300 24/50 (48%) 1/50	21/50 (42%) 10/50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla Finding Kidney chronic progressive nephropathy cysts	stic micr 0 35/50 (70%) 6/50 (12%)	oscopic f Males 20 43/50 (86%) 10/50 (20%)	findings (ppm) 200 47/50 (94%) 38/50 (76%)	(decede) 400 40/50 (80%) 32/50 (64%)	0 14/50 (28%) 2/50 (4%)	Females 20 10/50 (20%) 2/50 (4%)	300 24/50 (48%) 1/50 (2%)	21/50 (42%)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla Finding Kidney chronic progressive nephropathy cysts chronic nephritis	o 35/50 (70%) 6/50 (12%) 0/50 (0%)	oscopic f Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%)	findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%)	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%)	0 14/50 (28%) 2/50 (4%) 0/50 (0%)	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%)	300 24/50 (48%) 1/50 (2%) 2/50 (4%)	21/50 (42%) 10/50 (20%) 25/50 (50%)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate	o 35/50 (70%) 6/50 (12%) 0/50	oscopic 1 Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50	findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis	o 35/50 (70%) 6/50 (12%) 0/50 (0%)	ascopic 1 Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%)	findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50 (88%)	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%)	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%)	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%)	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%)	21/50 (42%) 10/50 (20%) 25/50 (50%)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization	o 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 0/50 (0%)	Addes Males 20 43/50 (86%) 10/50 (20%) 0/50 (2%)	findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50 (88%) 48/50 (96%)	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%)	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%)	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%)	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	* Non-neopla: Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell	o 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 33/50	Addes Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%) 3/50	findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50 (88%) 48/50 (96%) 23/50	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%) 23/50	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%)	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 0/50 0/50 0/50 0/50	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50	
hyperplasia (papillary- medullary) 16/50 (32%) 10/50 (20%) 37/50 (74%) 32/50 (64%) 13/50 (26%) 12/50 (24%) 7/50 (14%) 14/50 (28%) Parathyroids- hyperplasia 4/47 7/27 14/27 19/48 0/47 0/29 2/21 4/48 Parathyroids- hyperplasia 4/47 7/27 14/29 9/26 9/50 0/50 0/27 0/23 1/50 Femur- fibrous 1/50 4/29 9/26 9/50 0/50 0/27 0/23 1/50 osteodystrophy (2%) (14%) (35%) (18%) (0%) (0%) (0%) (0%) (2%)	* Non-neopla Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration	o 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 33/50	Addes Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%) 3/50	findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50 (88%) 48/50 (96%) 23/50	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%) 23/50	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%)	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 0/50 0/50 0/50 0/50	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%)	
(papillary- medullary) 16/50 10/50 37/50 32/50 13/50 12/50 7/50 14/50 pelvic dilation 16/50 (20%) (74%) (64%) (26%) (24%) (14%) (28%) Parathyroids- hyperplasia 4/47 7/27 14/27 19/48 0/47 0/29 2/21 4/48 Second stropping (26%) (52%) (40%) (0%) (0%) (10%) (8%) Femur- fibrous 1/50 4/29 9/26 9/50 0/50 0/27 0/23 1/50 osteodystrophy (2%) (14%) (35%) (18%) (0%) (0%) (0%) (2%)	* Non-neopla: Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration (medulla) tubular	o 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 3/50 (6%) 2/50	ascopic f Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%) 3/50 (6%)	findings (ppm) 200 47/50 (94%) 38/50 (76%) 33/50 (6%) 44/50 (88%) 48/50 (96%) 23/50 (46%) 39/50	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%) 23/50 (46%)	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%)	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50 (4%)	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50 (40%) 12/50	
medullary)	* Non-neopla: Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration (medulla) tubular epithelium	o 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 3/50 (6%) 2/50	ascopic f Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%) 3/50 (6%) 1/50	findings (ppm) 200 47/50 (94%) 38/50 (76%) 33/50 (6%) 44/50 (88%) 48/50 (96%) 23/50 (46%) 39/50	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%) 23/50 (46%) 38/50	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%)	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50 (4%)	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50 (40%)	
pelvic dilation (32%) (20%) (74%) (64%) (26%) (24%) (14%) (28%) Parathyroids- hyperplasia 4/47 7/27 14/27 19/48 0/47 0/29 2/21 4/48 Semur- fibrous (8.5%) (26%) (52%) (40%) (0%) (0%) (10%) (8%) Femur- fibrous 1/50 4/29 9/26 9/50 0/50 0/27 0/23 1/50 osteodystrophy (2%) (14%) (35%) (18%) (0%) (0%) (0%) (2%) Ovaries - cysts 4/50 6/31 7/27 8/50	* Non-neopla: Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration (medulla) tubular epithelium hyperplasia	o 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 3/50 (6%) 2/50	ascopic f Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%) 3/50 (6%) 1/50	findings (ppm) 200 47/50 (94%) 38/50 (76%) 33/50 (6%) 44/50 (88%) 48/50 (96%) 23/50 (46%) 39/50	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%) 23/50 (46%) 38/50	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%)	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50 (4%)	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50 (40%) 12/50	
hyperplasia (8.5%) (26%) (52%) (40%) (0%) (0%) (10%) (8%) Femur- fibrous 1/50 4/29 9/26 9/50 0/50 0/27 0/23 1/50 osteodystrophy (2%) (14%) (35%) (18%) (0%) (0%) (0%) (2%) Ovaries_ cysts 4/50 6/31 7/27 8/50	* Non-neopla: Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration (medulla) tubular epithelium hyperplasia (papillary-	o 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 2/50 (4%)	ascopic f Males 20 43/50 (86%) 10/50 (20%) 1/50 (2%) 3/50 (6%) 1/50 (2%)	findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50 (88%) 48/50 (96%) 23/50 (46%) 39/50 (78%)	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%) 23/50 (46%) 38/50 (76%)	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%)	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%)	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50 (4%) 1/50 (2%)	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50 (40%) 12/50 (24%)	
hyperplasia (8.5%) (26%) (52%) (40%) (0%) (0%) (10%) (8%) Femur- fibrous 1/50 4/29 9/26 9/50 0/50 0/27 0/23 1/50 osteodystrophy (2%) (14%) (35%) (18%) (0%) (0%) (0%) (2%) Ovaries_ cysts 4/50 6/31 7/27 8/50	* Non-neopla: Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration (medulla) tubular epithelium hyperplasia (papillary- medullary)	stic micr 0 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 3/50 (6%) 2/50 (4%) 16/50	ascopic f Males 20 43/50 (86%) 10/50 (20%) 1/50 (2%) 1/50 (2%) 1/50 (2%) 1/50 (2%) 1/50 (2%) 1/50 (2%) 1/50 (2%) 1/50 (2%)	findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50 (88%) 48/50 (96%) 23/50 (46%) 39/50 (78%) 37/50	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%) 23/50 (46%) 38/50 (76%) 32/50 (76%) 32/50	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 13/50	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 10/50 (0%) 0/50 (0%) 10/50 (0%) 12/50	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50 (4%) 1/50 (2%) 7/50	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50 (40%) 12/50	
Femur- fibrous 1/50 4/29 9/26 9/50 0/50 0/27 0/23 1/50 osteodystrophy (2%) (14%) (35%) (18%) (0%) (0%) (0%) (2%) Ovaries_ cysts 4/50 6/31 7/27 8/50	* Non-neopla: Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration (medulla) tubular epithelium hyperplasia (papillary- medullary) pelvic dilation	o 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 3/50 (6%) 2/50 (4%) 16/50 (32%)	ascopic f Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%) 3/50 (6%) 1/50 (2%) 1/50 (2%) 1/50 (2%) 1/50 (2%)	findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50 (88%) 48/50 (96%) 23/50 (46%) 39/50 (78%) 37/50 (74%)	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%) 23/50 (46%) 38/50 (76%) 38/50 (76%) 32/50 (64%)	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 13/50 (26%)	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 10/50 (0%) 10/50 (0%) 12/50 (24%)	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50 (4%) 1/50 (2%) 7/50 (14%)	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50 (40%) 12/50 (24%) 14/50 (28%)	
Ovaries cysts 4/50 6/31 7/27 8/50	* Non-neoplar Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration (medulla) tubular epithelium hyperplasia (papillary- medullary) pelvic dilation	stic micr 0 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 16/50 (32%) 4/47	oscopic f Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%) 1/50 (2%) 3/50 (6%) 1/50 (2%) 1/5	findings (ppm) 200 47/50 (94%) 38/50 (76%) 33/50 (6%) 44/50 (88%) 48/50 (96%) 23/50 (46%) 39/50 (78%) 37/50 (74%) 14/27	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 47/50 (94%) 23/50 (46%) 38/50 (76%) 38/50 (76%) 32/50 (64%) 19/48	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 13/50 (26%) 0/47	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 12/50 (24%) 0/29	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50 (4%) 1/50 (2%) 7/50 (14%) 2/21	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50 (40%) 12/50 (24%) 12/50 (24%) 14/50 (28%) 4/48	
	* Non-neopla: Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration (medulla) tubular epithelium hyperplasia (papillary- medullary) pelvic dilation Parathyroids- hyperplasia Femur- fibrous	stic micr 0 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 2/50 (4%) 16/50 (32%) 1/50	oscopic f Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%) 3/50 (6%) 1/50 (2%) 3/50 (6%) 1/50 (2%) 1/27 (2%) 1/27 (2%) 1/27 (2%) 1/27 (2%) 1/27 (2%) 1/27 (26%) 1/29 (2%) 1/27 (26%) 1/29	Findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50 (88%) 48/50 (96%) 23/50 (46%) 39/50 (78%) 37/50 14/27 (52%) 9/26	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 23/50 (46%) 23/50 (46%) 38/50 (76%) 38/50 (76%) 38/50 (76%) 32/50 (64%) 9/50 (46%) 32/50 (46%) 9/50 (56%) 9/50 (46%) (46%)	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 13/50 (26%) 13/50 (26%) 0/47 (0%) 0/50	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/29 (0%) 0/27	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50 (4%) 1/50 (2%) 7/50 (14%) 2/21 (10%) 0/23	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50 (40%) 12/50 (24%) 12/50 (24%) 14/50 (28%) 1/50	
	* Non-neopla: Finding Kidney chronic progressive nephropathy cysts chronic nephritis undifferentiate d nephritis undifferentiate d nephritis tubular mineralization (renal papilla) tubular cell degeneration (medulla) tubular epithelium hyperplasia (papillary- medullary) pelvic dilation Parathyroids- hyperplasia Femur- fibrous	stic micr 0 35/50 (70%) 6/50 (12%) 0/50 (0%) 0/50 (0%) 2/50 (4%) 16/50 (32%) 1/50	oscopic f Males 20 43/50 (86%) 10/50 (20%) 0/50 (0%) 1/50 (2%) 3/50 (6%) 1/50 (2%) 3/50 (6%) 1/50 (2%) 1/27 (2%) 1/27 (2%) 1/27 (2%) 1/27 (2%) 1/27 (2%) 1/27 (26%) 1/29 (2%) 1/27 (26%) 1/29	Findings (ppm) 200 47/50 (94%) 38/50 (76%) 3/50 (6%) 44/50 (88%) 48/50 (96%) 23/50 (46%) 39/50 (78%) 37/50 14/27 (52%) 9/26	(decede) 400 40/50 (80%) 32/50 (64%) 9/50 (18%) 38/50 (76%) 23/50 (46%) 23/50 (46%) 38/50 (76%) 38/50 (76%) 38/50 (76%) 32/50 (64%) 9/50 (46%) 32/50 (46%) 9/50 (56%) 9/50 (46%) (46%)	0 14/50 (28%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 13/50 (26%) 13/50 (26%) 0/47 (0%) 0/50 (0%)	Females 20 10/50 (20%) 2/50 (4%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/50 (0%) 0/29 (0%) 0/27 (0%)	300 24/50 (48%) 1/50 (2%) 2/50 (4%) 3/50 (6%) 6/50 (12%) 2/50 (4%) 1/50 (2%) 7/50 (14%) 2/21 (10%) 0/23 (0%)	21/50 (42%) 10/50 (20%) 25/50 (50%) 19/50 (38%) 46/50 (92%) 20/50 (40%) 12/50 (24%) 14/50 (28%) 1/50 (2%)	

Lifetime study	0, 50, 2500	Neoplastic findin	gs (dec	edents a	nd termi	nal)				
(19 months)	and 5000 ppm	Finding	Ma	/day)	Female	s ppm	(mg/kg	bw/day)		
Oral (diet)	corresponding to 0, 8, 385		0	50	2500	5000	0	50	2500	5000
	and 752 mg/kg		(0)	(8)	(385)	(752)	(0)	(9)	(451)	(912)
Mouse/CD-1 50/sex/dose in treatment	bw/day in males and 0, 9,	Lung - adenoma	13/75 (17%)	7/49 (14%)	7/50 (14%)	17/50 (34%)	10/75 (13%)	-	-	6/50 (12%)
groups 75/sex/dose in control group	451 and 912 mg/kg bw/day in females.	Lung - Alveolar- bronchiolar carcinoma	0/75 (0%)	2/49 (4%)	3/50 (6%)	0/50 (0%)	-	-	-	-
				6.	y historical 3-16.7% (6 31.1% (7, 2 24% (1, 1	, 18mth stu	dies) from 1 idies) from	1971-19 1973-1	076	:
Purity= not specified				Laborator	y historical 6% (1, 18	control dat 3mth study)			a in males	:
Not guideline or GLP (organ		Liver - carcinoma	2/75 (3%)	-	-	3/50 (6%)	1/75 (1%)	-	-	0/50 (0%)
weights were not recorded)		<u>Non-neoplastic fi</u>	ndings							
(Gunderson, 1982)		5000 ppm: Reduced female s week 78 and 78 %				ols at we	eks 78 ar	nd 84 ((72 %*)	died
DAR B.6.5.2		<i>Liver;</i> Hyperplastic nodu controls)	ıles 13/5	50M and	3/50 F (c	ompared	to 10/75	M and	l 2/75F i	in
		Centrilobular hype <i>Kidney:</i>	ertrophy	7: 37/501	M and 8/5	50F (com	pared to	0/75 i	n M/F c	ontrols)
		Tubular nephrosis controls)	: 41/50	M and 40	0/50 F (c	ompared	to 37/751	M and	38/75F	in
		<u>2500 ppm:</u> Reduced female survival compared to controls at weeks 78 and 84 (58% died week 78 and 66% died week 84)								
		<i>Liver;</i> Hyperplastic nodu controls)	ıles 5/5(M and 5	/49 F (co	mpared t	o 10/75N	1 and	2/75F in	l
		Centrilobular hype	ertrophy	r: 17/501	M and 1/4	19F (com	pared to	0/75 i	n M/F c	ontrols)
		NOAEL of 50 ppn	ı for M	and F.						

4.10.1 Non-human information

As shown in Table 17 there is one study in the rat and one study in the mouse that are considered of sufficient quality to assess the carcinogenic potential of carboxin. Both studies were conducted via the oral route. No information is available via the inhalation or dermal routes. The key effects observed in these studies are described below.

4.10.1.1 Carcinogenicity: Oral

Two carcinogenicity studies have been reported, one guideline study in rats and one non-guideline study in mice. The non-neoplastic findings presented in Table 17 have been discussed and summarised in the repeated dose toxicity section (4.7.1.1). The neoplastic findings are presented below.

<u>Rat</u>

In a 102 week carcinogenicity study (OECD 453), Sprague-Dawley rats (60/sex/dose) were fed diets containing carboxin [0, 20, 200 or 400 ppm (males) and 0, 20, 300 and 600 ppm (females), corresponding to 0, 0.82, 8.65 and 16.86 mg/kg bw/day (males) and 0, 1.05, 15.08 and 33.48 mg/kg bw/day in (females)]. Ten animals/sex/dose were sacrificed after 52 weeks. The study was terminated two weeks early (at week 102 instead of week 104) due to vastly reduced survival rate in males dosed with 16.86 mg/kg bw/day (27% survival). This increased mortality was considered to be due to carboxin-induced nephrotoxicity as the anatomical and clinical pathology findings at the interim sacrifice of one year clearly showed dose-related increase of chronic nephritis, tubular cell degeneration and mineralisation.

Finding		Males ppm (n	ng/kg bw/day)	Females ppm (mg/kg bw/day)					
	0	20	200	400	0	20	300	600		
	0	(0.82)	(8.65)	(16.86)	0	(1.05)	(15.08)	(33.48)		
Liver- hepatocellular adenoma (B)	3/50 (6%)	6/50 (12%)	6/50 (12%)	3/50 (6%)	4/50 (8%)	3/50 (6%)	4/50 (8%)	3/50 (6%)		
Liver- hepatocellular carcinoma (M)	1/50 (2%)	1/50 (2%) 0/50 (0%) 1/50 (2%) 4/50 (8%)								
		Labor	ratoy historical o	· · · · · · · · · · · · · · · · · · ·	hepatocellular ca lies) 1988-1990 lies) 1991-1996	arcinoma in mal	e rats:			
Parathyroids- adenoma (B)	0/47 (0%)	1/27 (3.7%)	1/27 (3.7%)	1/50 (2%)	0/47 (0%)	0/29 (0%)	0/21 (0%)	1/48 (2.1 %)		
		Laboratoy historical control data for parathyroids- adenoma in male rats: mean 3.3% 1986-1991								

Neoplastic findings:

At the top dose of 400 ppm, there was an increase in the incidence of hepatic carcinoma in males (8% versus 2 % in the concurrent control group). In addition to the carcinoma, the incidence of liver adenoma in males increased to 12 % at 20 and 200 ppm however, at 400 ppm incidences were the same as the control group indicating a lack of dose-response. The liver adenomas in males are therefore considered unrelated to treatment.

The incidence of hepatic carcinoma in this study was above the range of the laboratory historical control data (HCD). HCD for hepatocellular adenomas and carcinomas in male rats for the period of 1988 – 1990 was provided by the applicants. The initial data range was 0 - 1.7% for hepatocellular carcinoma incidence in male rats (six studies). Further data was provided from the period immediately following the carboxin study (1991 – 1996). This showed a slight increase in incidence in control males compared to previous HCD, with a range of 0 - 3.3% (nine studies). However, when considering the low incidence observed (8% vs 2% in controls), the sex-specificity of the response, the lack of statistical significance, the absence of a respective response in liver

adenomas and more importantly the excessive toxicity observed at this dose in males (75% mortality, clinical signs of toxicity, significant effects on terminal body weights [mean decrease of 17.3%] and on body weight gain [reduction of 23.4%] and the severe nephrotoxicity for which classification with STOT-RE 2 has already been proposed), it can be concluded that these liver tumours are of no relevance to human health.

In addition to the liver findings, there was an increase in adenoma of the parathyroids in males (3.7% [1/27] at 20 and 200 ppm and 2% [1/50] at 400 ppm versus 0% in control group) and females (2.1% at 600 ppm versus 0% in control group). Although the incidence of these tumours in males at 20 and 200 ppm was slightly outside the HCD for males in the period of 1986 - 1991 (mean incidence of 3.3%), it is noted that there was a lack of dose-response. In addition, the incidences at 20 and 200 ppm were confounded by the number of animals examined (only 27). Therefore these benign tumours in males are considered unrelated to treatment. In females, the very low incidence (1/48) of this tumour at the top dose, in the absence of any pre-neoplastic findings and toxic effects in this organ is considered a chance finding unrelated to treatment.

<u>Mouse</u>

In a 19-month non-guideline lifetime study, CD-1 mice (treatment groups: 50/sex/dose, control group: 75/sex/dose) were fed diets containing 0, 50, 2500 or 5000 ppm carboxin (corresponding to 0, 8, 385 and 752 mg/kg bw/day in males and 0, 9, 451 and 912 mg/kg bw/day in females).

Neoplastic findings

There was an increased incidence of lung adenoma in males at 5000 ppm (34% vs 17% in controls) and examination of the Kaplan Meier curve indicated that the tumours in the high dose group appeared earlier than in all other groups. There were no alveolar-bronchiolar carcinomas in males and no alveolar-bronchiolar adenomas or carcinomas in females. The male historical control data for six 18-month studies (1971 - 1976) had a mean incidence of 12.1 % (range 6.3 - 16.7 %) and seven 20 - 22 month studies (1973 - 1978) had a mean incidence of 18.8 % (range 4.0 - 31.1 %). Further data provided for male CD-1 mice from this test lab showed that in nine 2-year studies bronchiolar adenoma and carcinoma combined were in the range of 14 - 37 %. The male incidence for this 19-month (34 %) study exceeds slightly the upper limit of the historical control data sets (31.1%), but the combined incidence of adenoma and carcinoma (37%). It is well established that CD-1 mice have a high spontaneous incidence of lung tumours, as shown by the concurrent and historical control data. Therefore, it is concluded that the slight increase (compared to controls) in lung adenomas observed in males at 5000 ppm is unrelated to treatment with carboxin.

4.10.1.2 Carcinogenicity: inhalation

No data available

4.10.1.3 Carcinogenicity: dermal

No data available

4.10.2 Human information

No data available

4.10.3 Other relevant information

Two additional chronic toxicity studies (one conducted with carboxin and one conducted with carboxin sulfone (a urinary metabolite of carboxin)) are available. However, these studies are not presented in the CLH report as no conclusion on the carcinogenic potential could be drawn due to major study deficiencies (pre-GLP, protocol limitations and poor health status of the animals).

In the study conducted with carboxin (July 1966 - July 1968), the following points were taken into consideration when deciding on the acceptability of the study for classification and labelling purposes:

- i) the purity of the test material was not reported (assumed to be 100% purity by the contract laboratory)
- ii) the number of test animals (30/sex) was lower than the minimum number required by current international guidelines
- iii) the investigations in test animals were limited to 5/sex/dose (e.g. clinical chemistry, haematology and histopathology of selected organs at the mid and high dose levels) or 10/sex/dose (e.g. histopathology in control and top dose groups)
- iv) reduced survival was evident in males at the top dose (attributed to incidental deaths with 50% mortalities at 18 months and terminated in the 89th week)
- v) prophylactic injections of Duracillin were administered to control and test animals in the latter part of the study
- vi) mortalities which occurred in all groups were considered by the authors of the report to be due to spontaneous disease, predominantly lung disease (deaths from lung disease were reported prior to the 12 month sacrifice).

In the study conducted with carboxin sulfone (July 1966 – July 1968) the following points were taken into consideration when deciding on the acceptability of the study for classification and labelling purposes:

- i) the purity of the test material was not reported (the report states that the test material was considered to be free from impurities by the contract laboratory)
- ii) the number of test animals (30/sex) was lower than the minimum number required by current guidelines
- iii) the investigations in test animals were limited to 5/sex/dose (e.g. clinical chemistry, haematology and histopathology of selected organs at the mid and low dose levels) or 10/sex/dose (e.g. histopathology in the control and top dose groups)
- iv) prophylactic injections of Duracillin were administered to control and test animals in the latter part of the study
- v) a high mortality rate occurred in all groups during the last 6 months of the study and the authors of the report considered these mortalities to be due to spontaneous disease, predominantly lung disease.

4.10.4 Summary and discussion of carcinogenicity

Carcinogenicity has been investigated in one guideline study in rats and one non-guideline study in mice.

In rats 4/50 (8 %) males, receiving 400 ppm of carboxin, presented with hepatocellular carcinoma (compared to 1/50 (2%) in the control and mid-dose groups). The value of 8 % was outside of all laboratory HCD provided and therefore the increased incidence of hepatic carcinoma in male rats is

considered to be treatment-related. However, when considering the low incidence observed (8% vs 2% in controls), the sex-specificity of the response, the lack of statistical significance, the absence of a respective response in liver adenomas and more importantly the "excessive toxicity" reported at this dose in males (75% mortality, clinical signs of toxicity, significant effects on terminal body weights [mean decrease of 17.3%] and on body weight gain [reduction of 23.4%] and the severe nephrotoxicity for which classification with STOT-RE 2 has already been proposed), it can be concluded that these liver tumours are of no relevance to human health.

In mice, there was an increase in benign lung tumours in males in the 5000 ppm group (34% vs 17% in controls), which marginally exceeded the range of the laboratory HCD (31.1%). However the combined incidence of adenoma and carcinoma at 5000 ppm (34%) was within the laboratory HCD upper limit for combined adenoma and carcinoma in males (37%). It is well established that CD-1 mice have a high spontaneous incidence of lung tumours, as shown by the concurrent and historical control data. Therefore, it is concluded that the slight increase (compared to controls) in lung adenomas observed in males at 5000 ppm is unrelated to treatment with carboxin.

4.10.5 Comparison with criteria

Category 1A (known to have carcinogenic potential for humans) is not appropriate as *there is no human evidence establishing a causal relationship* between exposure to carboxin and the development of cancer.

Category 1B (presumed to have carcinogenic potential for humans) is also not appropriate as *there is not sufficient evidence of carcinogenicity in experimental animals*. Tumours of relevance to human health or tumours related to treatment with carboxin were not observed either in rats or mice.

Category 2 (suspected to have carcinogenic potential for humans) is also not appropriate as *there is no evidence of carcinogenicity in experimental animals*. Tumours of relevance to human health or tumours related to treatment with carboxin were not observed either in rats or mice.

4.10.6 Conclusions on classification and labelling

No classification, conclusive but not sufficient for classification

4.11 Toxicity for reproduction

	Fertility studies										
Method	Dose Levels					ons and					
				ts of m	ajor to	oxicolog	gical si	gnific	ance)		
Two-generation reproduction study	M: 0, 20, 200 and 400 ppm	Parental toxici	nly):		• 、						
Rat/Crl:CD (SD) BR 25/sex/dose	(Corresponding to ~ 0, 1, 10 and 20 mg/kg bw/day)	↓ Mean food co ↓ bw gain durin *see table below	g secon	d matir	ig perio		:26.1 %	6)**			
Oral (diet)	F: 0, 20, 300 and 600 ppm	400 ppm (male ↓ Food consum	s only)	<u>.</u>		6					
US EPA SF 83-4, GLP	(Corresponding to	↓ bw gain durin 49.1 %)** ↓ bw (F0: range	g first a	ind seco	ond mat	01		70: 10.	8% - 28	5, F1b	: 16.5 –
Purity= 97.5%	~ 0, 1, 15 and 30 mg/kg bw/day)	*see table below									
Kehoe (1991)	Administration was 10 weeks	<u>300 ppm (fema</u>	les only	<u>y):</u>							
F0 animals were mated twice to	prior to mating and then throughout gestation, lactation	*see table below 200 ppm (male		-	pic find	lings					
produce F1a and F1b litters and the F1b animals were	and weaning.	↓ bw gain durin		_	ond mat	ting per	riods (F	71b – 7	7.8 – 46	.5 %)*	
mated twice to produce F2a and F2b litters.		*see table below		-		lings					
		20 ppm (males No adverse effe		males):	•						
		* Microscopic		s in the	e kidne	y:					
		Finding		Ma	les pp bw/	m (mg/ day)	′kg	Fe	males bw	ppm (n /day)	ng/kg
				0	20	200	400	0	20	300	600
				0	1	10	20	0	1	15	30
		Proteinaceous	F0	1/2 50%	-	0/2 0%	1/1 100	-	1/2 50%	0/3 0%	1/3 33 3
		cast	F1b	2/2 100	1/3 33.	5/9 55.6	6/8 75	1/4 25	1/1 100	3/3 100	3/6 50%
		Pelvic dilation	F0	1/2 50%	-	2/2 100	1/1 100	-	2/2 100	3/3 100	3/3 100%
		i civic unation	F1b	0/2 0%	2/3 66.	7/9 77.8	7/8 87.	3/4 75	1/1 100	2/3 66.7	5/6 83.3
		Chronic	F0	1/2 50%	-	2/2 100	1/1 100	-	0/2 0%	0/3 0%	2/3 66.7
		nephritis	F1b	2/2 100	0/3 0%	9/9 100	8/8 100	0/4 0%	0/1 0%	2/3 66.7	6/6 100%
		Tubular	F0	-	-	-	-	-	0/2 0%	0/3 0%	3/3 100%
		mineralization	F1b	0/2 0%	0/3 0%	9/9 100	8/8 100	0/4 0%	1/1 100	0/3 0%	6/6 100%

Table 18: Summary table of relevant reproductive toxicity studies

		Fertility effects: No treatment related effects on pre-coital intervals, gestation duration or fertility were observed Offspring toxicity: 400 ppm (males F2b pups only): ↓ bw gain Lactation day 4 (post cull): 7.6 %*, lactation days 7 – 21: range 9.4 - 10.6%** Reproductive parameters: NOAEL of 400 and 600 ppm male and female rats, respectively. Parental toxicity: NOAEL of 20 ppm
		Developmental Toxicity
Method	Dose Levels	Observations and Remarks
		(effects of major toxicological significance)
Prenatal	0, 10, 90 and 175	Maternal toxicity:
developmental	mg/kg bw/day	$\frac{175 \text{ mg/kg bw/day}}{1000 \text{ mg/kg bw/day}} - \downarrow \text{bw} (7.7\%, \text{day 16}), \text{hair loss} (8/25)$
study	(suspended in 0.5% CMC and	$\frac{90 \text{ mg/kg bw/day:}}{10 \text{ mg/kg bw/day}} - 10 \text{ bw } (4.6\%, \text{ day 16}); \text{ hair loss } (4/25)$
Rat/Charles River	administered on	<u>10 mg/kg bw/day</u> – no adverse encers
25 females/dose	days 6 to 15 of	Developmental findings:
Oral (gavage)	gestation)	$\frac{175 \text{ mg/kg bw/day:}}{175 \text{ mg/kg bw/day:}} \downarrow \text{ mean fetal bw 6\%}$
		90 and 10 mg/kg bw/day: - No adverse effects
OECD 414	Volume= 10 ml/kg	
GLP		Maternal NOAEL of 10 mg/kg bw/day
Purity=97.0%		Developmental NOEL of 90 mg/kg bw/day
Schardein (1989)		
Prenatal	0, 75, 375 and 750	Maternal toxicity:
developmental	mg/kg bw/day	750 mg/kg bw/day- found dead/sacrificed (3/16),
study	(suspended in	375 mg/kg bw/day- found dead/sacrificed (1/16),
Rabbit/Dutch Belted	0.5%	75 mg/kg bw/day- no adverse effects
16 females/dose	carboxymethylcell ulose and	
Oral (gavage)	administered on	Developmental findings:
	days 6 to 27 of	750 mg/kg bw/day- 3 animals aborted
Non-guideline	gestation)	<u>375 mg/kg bw/day</u> - 1 animals aborted
Non-GLP	Volume= 8 ml/kg	75 mg/kg bw/day- no adverse effects
Purity= 99.0%		
1 ang - 22.070		Maternal NOAEL of 75 mg/kg bw/day
Laughlin (1981)		Developmental NOAEL of 75 mg/kg bw/day (based on abortions)
* n - < 0 05: ** n		

* p = < 0.05; ** p = < 0.01

4.11.1 Effects on fertility

4.11.1.1 Non-human information

One guideline multi-generation study is available in rats. In this study, groups of 25 male and 25 female Crl:CD rats (F0 and F1b) were fed diets containing carboxin at concentrations of 0, 20, 200 and 400 ppm (males) and 0, 20, 300 and 600 ppm (females) for a period of 10 weeks prior to mating and then continuing throughout gestation, lactation and weaning of the F1b and F2b pups until sacrifice. The F0 animals were mated twice to produce F1a and F1b litters; the F1b animals were mated twice to produce F2a and F2B litters.

Parental toxicity was evidenced as changes in body weight associated with reduced food consumption and an increased incidence of kidney lesions (comparable to those observed short-term and chronic toxicity studies). Reductions in body weight gain were more marked in F0 and F1 males at 200 and 400 ppm. These changes occurred during both first and second matings. Changes to the kidneys in males at doses ≥ 200 ppm and females at doses ≥ 300 ppm included pelvic dilation, proteinaceous casts, tubular mineralisation and chronic nephritis. The number of animals examined was limited to those showing gross findings only, however the lesions were identical to those observed in chronic rat studies and were considered treatment-related. There were no specific reproductive effects during this study and the only developmental effect was reduced weight gain in male pups from the second litter of the second generation. This reduction in weight gain was measured on lactation days 4 (post cull), 7, 14 and 21 and the ranged between 7.6 – 10.6 %.

4.11.1.2 Human information

No data available

4.11.2 Developmental toxicity

4.11.2.1 Non-human information

Two studies are available to investigate developmental toxicity. The first prenatal development study in rats was carried out to GLP standards following the relevant guideline, and the second was carried out in rabbits to neither guideline nor GLP standard.

In the rat developmental study, groups of 25 pregnant female Charles River COBS CD rats were orally administered carboxin technical by gavage (0, 10, 90 and 175 mg/kg bw/day) on days 6 - 15 of gestation.

During the study, there was a slight reduction in body weight gain associated with reduced food consumption at doses \geq 90 mg/kg bw/day and a dose-related increase in hair loss in the dams. Gross necropsy of the dams did not reveal any treatment-related findings. A slight reduction in fetal body weight (\downarrow 6% compared to controls) was observed in the top dose.

In the rabbit developmental study, groups of 16 artificially inseminated Dutch Belted rabbits were orally administered carboxin technical by gavage (0. 75, 375 and 750 mg/kg bw/day) on days 6-27 of gestation.

Dam body weights and body weight gain were reduced and there was an increased incidence of clinical signs of abortion at doses \geq 375 mg/kg bw/day. There was no evidence of treatment-related malformations or variations.

4.11.2.2 Human information

No data available

4.11.3 Other relevant information

4.11.4 Summary and discussion of reproductive toxicity

See sections 4.11.1 and 4.11.2

4.11.5 Comparison with criteria

As there was no evidence of any adverse effects on sexual function, fertility or development in rats and rabbits, no classification for reproductive toxicity is proposed.

4.11.6 Conclusions on classification and labelling

Not classified, conclusive but not sufficient for classification

4.12 Other effects

Not relevant.

5 ENVIRONMENTAL HAZARD ASSESSMENT

Carboxin is a fungicide used as an agricultural seed treatment to prevent fungal pathogens. Available environmental fate and hazard studies have been reviewed under Directive 91/414/EEC. The studies are summarised in the Pesticide Draft Assessment Report (DAR), Volume 3, B.8 and B.9 – August 2006. The key information pertinent to determining a classification is presented below.

The carboxin purity profiles were considered as part of the DAR peer review process. The original purity of 97% technical carboxin was under review and a revised value of 98.7% was determined. Ecotoxicity studies used 97 to 97.5% carboxin, which were above the original purity profile minimum but slightly less than the proposed revision. This is not considered to affect the classification and labelling proposal.

Carboxin degrades to a number of degradants in the environment – where available data on the metabolites have also been included.

5.1 Degradation

Table 19 presents a summary of key degradation information for carboxin.

Method	Results	Remarks	Reference
Aquatic hydrolysis OECD Guideline 111	Carboxin is hydrolytically stable at environmentally relevant pH and temperature		Clayton and Lowrie, 2003 DAR B.8.4.1a
Aquatic photolysis EPA Guideline subdivision N 161-2	Carboxin DT ₅₀ at 25 °C 1.54 hours (linear regression) 2.64 hours (non-linear regression)		Horree, 1992 DAR B.8.4.2
Ready biodegradation OECD Guideline 301B	Carboxin is not readily biodegradable		Van Dijk, 1989 DAR B.8.4.3
Water/sediment simulation Dutch Regulation for Biocides Section G.2.1	Carboxin mean DT ₅₀ total system 17.3 days at 20 °C Carboxin mean DT ₅₀ total system 32.8 days at 12 °C Carboxin sulfoxide DT ₅₀ total system 27.7 days at 20 °C Carboxin sulfoxide DT ₅₀ total system 52.5 days at 12 °C	Carboxin undergoes primary degradation to carboxin sulfoxide in the aquatic phase with partitioning to the sediment phase and limited mineralisation	Muttzall, 1994 DAR B.8.4.4

 Table 19:
 Summary of relevant information on degradation

5.1.1 Stability

Hydrolysis

Carboxin

Two aqueous hydrolysis studies using radiolabelled carboxin were carried out showing the substance was hydrolytically stable at environmentally relevant pH values.

Study 1 (Clayton and Lowrie, 2003)

Using ¹⁴C-phenyl]-carboxin and following GLP and OECD Guideline 111, hydrolysis was assessed over 7 days at pH 4, 7 and 9 at 50 °C. Carboxin was analysed by High Performance Liquid Chromatography (HPLC) and Think Layer Chromatography (TLC) while radioactivity was analysed by Liquid Scintillation Counting (LSC). Minimal hydrolysis was observed and half-lives were not calculated.

Study 2 (Dzialo and Lengen, 1983)

A second study using $[{}^{14}C]$ -carboxin is available. However, the guideline and duration are not specified and the study is not GLP compliant. On this basis it is considered supporting evidence. The study results support that carboxin is hydrolytically stable at environmentally relevant pH values.

Degradants

Two aqueous hydrolysis studies using carboxin degradants carboxin sulfoxide and carboxin sulfone were carried out:

Carboxin sulfoxide (Jewell, 1990)

A GLP compliant study following BBA guidelines assessed hydrolysis of carboxin sulfoxide over 30 days at pH 4, 7 and 9. Analysis by HPLC showed no significant hydrolysis at pH 4 or 7. Hydrolysis was observed at pH 10 with a calculated half-life of 4.9 days at $22 \,^{\circ}$ C.

Carboxin sulfone (Dzialo, 1995)

A GLP compliant study following US EPA guidelines assessed hydrolysis of [14 C-phenyl]-carboxin sulfone over 30 days at pH 5, 7 and 9. Radioactivity was analysed by LSC and the test substance by HPLC with TLC. No significant hydrolysis was observed at pH 5 but increasing hydrolysis of carboxin sulfone was observed with increasing pH. The calculated half-lives at the study temperature 25 °C at pH 7 and 9 are 9.8 days and 3.9 hours.

Aqueous photolysis

Carboxin

Study 1 (Horree, 1992 and DAR, 2006)

A GLP compliant study assessed the aqueous photolysis of [¹⁴C-phenyl]carboxin following US EPA guidelines at 25 °C. Radioactivity was analysed by LSC and the test substance by HPLC-MS. Rapid photolysis was observed. The original study reported a first-order DT_{50} of 1.54 hours based on linear regression analysis.

For the purpose of the DAR, the rapporteur a calculated DT_{50} of 2.64 hours based on non-linear regression. Two major metabolites were observed: oxo(phenyl amino)acetic acid (max. 54.9% AR) and carboxin sulfoxide (max. 20.4% AR).

Study 2 and Study 3 (Harned, 2003a and 2003b)

The quantum yield of carboxin was determined considering the UV/visible absorption spectrum, the first order aqueous photodegradation rate, including wavelength distribution and distribution, (Horree, 1992) and the Swanson *et al* method (details in DAR, 2006).

The calculated quantum yield of carboxin was 0.685%.

For the purpose of the DAR, the recalculated quantum yield based on non-linear aqueous degradation rate was 0.4%.

Using the study calculated quantum yield, a pseudo first-order rate constant for direct phototransformation of carboxin in the surface layer (0.5 m depth) of natural water at $40-50^{\circ}$ N was calculated to be DT₅₀ 1.01 hours. This considered yearly averaged mid-day sunlight values and reflection from water surface.

5.1.2 Biodegradation

5.1.2.1 Biodegradation estimation

5.1.2.2 Screening tests

Study 1 (Van Dijk, 1989)

A GLP ready biodegradation study following OECD Guideline 301B was carried out. The dissolved organic carbon concentration did not change over the 28-day study period indicating no significant biodegradation and carboxin was not considered readily biodegradable.

5.1.2.3 Simulation tests

Aquatic/Sediment system (Muttzall, 1994 and Wanner, 2004a)

A GLP water/sediment study using [¹⁴C-phenyl]-carboxin, following Dutch Regulation of Biocides guidelines has been carried out. Two laboratory water/sediment systems (TNO ditch system and Kromme Rijn river system) were used to assess the fate of carboxin over 13 weeks. The TNO system used a clay loam sediment and water pH 8.7. The Kromme Rijn system used a sandy loam sediment and water pH 7.9. The study was run in the dark at 20 °C \pm 2 °C with the water phase being considered as aerobic and the sediment phase considered as anaerobic. The Applied Radioactivity (AR) distribution can be found in Table 20. The initial decrease in parent carboxin was considered due to degradation during storage of extracts prior to addition to the test system.

'TNO' ditch system	Incubation time (weeks)				
	0	2	4	8	13
Aqueous phase					
Aqueous phase extract (dichloromethane)					
Carboxin	74	16	6	2	<1
Carboxin sulfoxide	8	11	8	4	4
Total Unknowns *	5	4	3	3	2
Aqueous phase freeze-dried					
Carboxin sulfoxide	1	nd	nd	nd	nd
Total Unknowns **	9	nd	nd	nd	nd
Sediment phase					
Carboxin	1	27	25	16	9
Carboxin sulfoxide	2	2	4	3	3
Total Unknowns ****	3	9	10	7	6
¹⁴ CO ₂	0	8.2	10.7	18.0	23.7
Non-extractables	0.8	18.6	25.0	35.4	40.2
Total recovery	102.5	98.1	93.6	90.4	88.1
'Kromme Rijn' river system	Incubation time (weeks)				
	0	2	4	8	13
Aqueous phase					
Aqueous phase extract (dichloromethane)					
Carboxin	74	18	4	1	- 1
Carboxin sulfoxide	6	18	19	12	1 ¹
Total Unknowns *	3	6	6	5	4 ¹
Aqueous phase freeze-dried					
Carboxin sulfoxide	1	1	1 ¹	nd	nd
Total Unknowns ***	10	2	3 1	nd	nd
Sediment phase					
Carboxin	2	10	10	4	2
Carboxin sulfoxide	1	6	4	4	1
Total Unknowns ****	1	11	5	5	5
			·		
¹⁴ CO ₂	0.0	8.4	15.2	25.0	40.1
Non-extractables	0.6	16.0	23.2	27.6	33.4
Total recovery	104.6	98.4	91.4	87.8	83.5

Table 20 – Distribution of Applied Radioactivity (as mean percentage) in water/sediment systems at 20 $^{\circ}C \pm 2 ^{\circ}C$

* Total of up to 4 unknowns, each $\leq 4\%$ AR, ** Total of 2 unknowns, *** Total of up to 3 unknowns, , **** Total of up to 5 unknowns, nd = not determined, - = not detected, ¹ = results of one replicate

Carboxin partitioned from the water phase to the sediment phase. The principle degradant in water and sediment was carboxin sulfoxide. Greater partitioning to sediment in the TNO system was considered due to the higher organic matter content.

Mineralisation was observed with 10.7-15.2% AR CO_2 at week 4 and a maximum of 23.7-40.1 % AR CO_2 by week 13.

Whilst noting the infrequent sampling means (particularly for the time between 0 and 2 weeks), the degradation of carboxin and carboxin sulfoxide in the aquatic environment was estimated using ModelMaker 4.0 and a multi-compartment model. For carboxin, the total system DT_{50} values at study temperature (20 °C) were 23.5 days for TNO and 11 days for Kromme Rijn with a mean of 17.3 days. For carboxin sulfoxide, the total system DT_{50} values at study temperature (20 °C) were 33.2 days for TNO and 22.1 days for Kromme Rijn with a mean of 27.7 days.

Converting DT_{50} values to environmentally relevant temperature results in the following DT_{50} values at 12 °C:

- Carboxin mean DT₅₀ total system 32.8 days at 12 °C
- Carboxin sulfoxide DT₅₀ total system 52.5 days at 12 °C

Overall, carboxin was considered to undergo rapid primary degradation (with carboxin sulfoxide as the principle degradant) but limited mineralisation.

<u>Soil system</u>

Various degradation in soil studies have been carried out:

Study 1 (Mamoumi, 2004 and Wanner, 2004b)

A GLP study following SETAC guidelines assessed the degradation of [¹⁴C-oxathiine]-carboxin and $[{}^{14}C-UL-phenyl]$ -carboxin under aerobic soil conditions at 20 °C ± 1 °C. Three soil types were employed (Soil I - clay loam, Soil II - silty clay loam and Soil III - clay) for the duration of the study, which was carried out in the dark for over 160 days. Sampling was undertaken on days 0, 0.16, 1, 4, 7, 14, 28, 60, 88 and 120. An additional sample was taken at day 160 for soil I and soil II. Extracts were analysed by HPLC and degradants were identified by LC-MS. Carboxin dissipated rapidly with less than 2% AR or not detectable by day 14 in all soil systems. The major degradant was carboxin sulfoxide and the proposed degradation pathway for carboxin in aerobic soil is presented in Figure 1. Mineralisation was observed with a maximum of 53.5% AR on day 160 for Soil II. Mineralisation to CO₂ did not exceed 30% AR in any soil by day 28. For the purpose of the DAR the Rapporteur calculated DT_{50} values using ModelMaker. The carboxin first order DT_{50} CH₃ ranged from 0.11 0.78 days. The to CONH carboxin sulfoxide Carboxin first order DT_{50} ranged from 8.5 to CONF 53.1 days. M6 CH₃ OH Figure 1 -Proposed CH3 degradation CONH ONH CONH M8 (M4;P/V-16) for pathway M5/M7 Carboxin Sulfoxide carboxin in (two diastereomers) aerobic soil CHa OH CH₃ CH3 -NH₂ CONH CONH ñ М9 (M0: P/V-01) (M13; P/V-54) (two diastereomers) Carboxin Sulfone Oxathiine amide sulfoxide HO CH₃ HO CONH CONI $-NH_2$ Ó Ó Ő ó Ö M12-P (M1; P/V-10) (M14; P/V-55) Vinylsulfonyl acetanilide Oxathiine amide sulfone 62

Study 2 (Wanner, 2004c)

A GLP study assessed the degradation of [¹⁴C-oxathiine]-carboxin and [¹⁴C-UL-phenyl]-carboxin, under aerobic soil conditions in the dark at 20 °C \pm 1 °C, for 118 days. A single soil type (sandy loam) was employed. Sampling was undertaken on days 0, 0.16, 1, 3, 7, 14, 28, 61, 90 and 118, with analysis by HPLC. Carboxin dissipated rapidly and was undetectable at day 3. Carboxin sulfoxide was the major degradant with CO₂ mineralisation reaching a maximum of 27% AR by day 118. For the purpose of the DAR, the Rapporteur calculated DT₅₀ values at 20 °C using ModelMaker. The carboxin first order DT₅₀ ranged from 0.1 to 0.8 days. The carboxin sulfoxide first order DT₅₀ ranged from 71.6 to 101.2 days

Study 3 (Gaydosh, 1989 and Beerbaum, 1990)

A GLP study following EPA guideline N-162-2 the degradation of [¹⁴C-phenyl]-carboxin under anaerobic soil conditions was assessed for 60 days. A single soil type (sandy loam) was employed. Sampling was undertaken on days 0, 15, 30 and 60, with analysis by HPLC. Carboxin gradually dissipated reaching 27.9% AR by day 60 in soil residues. Carboxin sulfoxide was the major degradant with carbon sulfone a minor degradant in soil residues. Carbon dioxide evolution was not assessed. Overall, the degradation of carboxin under anaerobic conditions was slower compared to aerobic conditions.

Additional studies

Two further 48-hour degradation studies in soil were reported in the DAR. These were not considered for the CLH proposal as they did not provide any further information to the above studies, given their short duration. A second anaerobic soil degradation study was provided which supported the findings of the key study above.

Overview

Carboxin rapidly dissipated under aerobic soil conditions (DT_{50} of <1 day) to form carboxin sulfoxide and carboxin sulfone which had longer residence times. The DAR considered all soil degradation data and presented calculated arithmetic mean first order DT_{50} values at 20 °C for carboxin and its degradants (presented in Figure 1). The values were as follows: carboxin DT_{50} 0.53 days; carboxin sulfoxide DT_{50} 38.6 days; carboxin sulfone DT_{50} 20.2 days; P/V-54 DT_{50} 78.7 days; P/V-55 DT_{50} 18.7 days and M9 DT_{50} 5 days.

5.1.3 Summary and discussion of degradation

In laboratory studies, carboxin underwent minimal hydrolysis, indicating hydrolytical stability at environmentally relevant pH and temperature.

In an aqueous photolysis study at 25 °C, carboxin underwent rapid phototransformation with a halflife of 1.54 to 2.64 hours. The two principal degradants were oxo(phenyl amino) acetic acid and carboxin sulfoxide. Additional data support rapid photodegradation under experimental conditions.

It is noted that the actual degree of photodegradation in the aquatic environment depends on local conditions and seasons and is difficult to quantify. Given the available data, there is insufficient information to evaluate photodegradation in the European environment in terms of mineralisation or transformation to non classifiable substances. Therefore aquatic photolysis is not considered to meet the criteria for rapid degradation. On this basis, a DT_{50} at 12 °C has not been included.

On the basis of a ready biodegradation study, carboxin was not considered readily biodegradable.

In a water/sediment study carboxin dissipated fairly rapidly to the sediment phase. Carboxin sulfoxide was the principle degradant although limited mineralisation was observed. The mean total system DT_{50} at study temperature (20 °C) for carboxin was 17.3 days and the mean total system DT_{50} at study temperature (20 °C) for carboxin sulfoxide was 27.7 days. Converting DT_{50} values to environmentally relevant temperature results in the following DT_{50} values at 12 °C:

- Carboxin mean DT₅₀ total system 32.8 days at 12 °C
- Carboxin sulfoxide DT₅₀ total system 52.5 days at 12 °C

Carboxin rapidly dissipates in soil with a DT_{50} of <1 day to form carboxin sulfoxide and carboxin sulfone which have longer residence times with DT_{50} values 38.6 and 20.2 days respectively.

Taking into account all of the findings summarised above, carboxin is considered to undergo rapid primary degradation but not considered to undergo greater than 70% ultimate degradation in the aquatic environment within 28 days. It is therefore considered not rapidly degradable for the purpose of classification and labelling.

5.2 Environmental distribution

5.2.1 Adsorption/Desorption

Study 1 (Wanner, 2003)

The adsorption of carboxin in five soils (sandy loam – clay, pH 4.5 - 7.7, Organic Carbon 0.9 - 2.2%) was assessed following OECD Guideline 106 and GLP. Adsorption values were in the range 123 - 213 with 1/n=0.79 - 0.82 (mean Kfoc 152, 1/n=0.81). Soil pH appeared to have a small effect on soil adsorption of carboxin, with adsorption increasing with acidity.

5.2.2 Volatilisation

Carboxin has a measured vapour pressure (Tremain, 2001c) of $2x10^{-5}$ Pa at 25 °C and a calculated Henry's Law Constant (White, 2002) of $3.1x10^{-5}$ Pa m³ mol⁻¹. On that basis, carboxin is likely to remain in solution and not partition to the atmosphere.

5.3 Aquatic Bioaccumulation

Table 21 presents a summary of key aquatic bioaccumulation information for carboxin.

 Table 21:
 Summary of relevant information on aquatic bioaccumulation

Method	Results	Remarks	Reference
EEC Method A8 (HPLC)	Log Pow 2.3		Riggs, 2001g
			DAR B.2.1.13

5.3.1 Aquatic bioaccumulation

The measured log Pow (Riggs, 2001g) for carboxin was 2.3. This indicates carboxin has low potential for bioaccumulation (less than CLP log Kow trigger of 4). No measured bioaccumulation data are currently available.

5.4 Aquatic toxicity

Tables 22 a-c present a summary of key ecotoxicity information for carboxin and its degradants.

5.4.1 Fish

Substance and purity	Species	Test Guideline	Endpoint	Toxicity value	Conditions	Reference
Carboxin 97.39 %	Oncorhynchus mykiss	US EPA 72-1	96-h LC ₅₀	2.3 mg a.s./l	Flow-through Mean measured	Bettencourt, 1994a
Carboxin 97.39 %	Lepomis macrochirus	US EPA 72-1	96-h LC ₅₀	3.6 mg a.s./l	Flow-through Mean measured	Bettencourt, 1994b
Carboxin sulfoxide 99.6 %	Oncorhynchus mykiss	OECD 203	96-h LC ₅₀	>25 mg/l	Static Nominal	Czech, 2002a
Carboxin sulfone unknown	Lepomis macrochirus and Oncorhynchus mykiss	US EPA- 660/3-75-009	96-h LC ₅₀ 96-h LC ₅₀	28.1 mg/l 19.9 mg/l	Static Nominal Losses likely given hydrolysis half- lives at varying pH	Kuc, 1977
P/V-54 100 %	Oncorhynchus mykiss	OECD 203	96-h LC ₅₀	>100 mg/l	Static Nominal	Volz, 2004a
Carboxin 97 %	Cyprinus carpio	OECD 204	21-d NOEC (based on growth, mortality and symptoms of toxicity)	0.32 mg a.s./l	Semi-static Nominal	Bogers, 1989a

5.4.1.1 Short-term toxicity to fish

Carboxin

Two GLP acute toxicity to fish studies using carboxin are available:

Study 1 (Bettencourt, 1994a)

The acute toxicity to fish was assessed following US EPA guideline 72-1 and Rainbow Trout (*Oncorhynchus mykiss*). The study used carboxin technical with a purity of 97.39%. Under flow-through conditions carboxin concentrations were 80–93% of nominal and the degradant carboxin sulfoxide was not detected. Based on mean measured concentrations, the 96-h LC₅₀ was 2.3 mg a.s./l and the 96-h NOEC 0.61 mg a.s./l.

Study 2 (Bettencourt, 1994b)

The acute toxicity to fish was assessed following US EPA guideline 72-1 and Bluegill Sunfish (*Lepomis macrochirus*). Under flow-through conditions carboxin (purity 97.39%) concentrations were 90-120% of nominal and the degradant carboxin sulfoxide was not detected. Based on mean measured concentrations, the 96-h LC_{50} was 3.6 mg a.s./l and the 96-h NOEC 1.8 mg a.s./l.

Additional supporting toxicity to fish data (Bogers, 1989a)

A GLP, semi-static, 21-day sub-lethal fish toxicity study was carried out for carboxin following OECD Guideline 204 and using carp (*Cyprinus carpio*). The study used carboxin technical with a purity of 97%. Exposure solutions were prepared using Tween 80 and a solvent control was included. The nominal 21-d NOEC was 0.32 mg a.s./l based on mortality, toxicity symptoms and growth.

It is noted that the OECD 204 test method is considered a prolonged toxicity to fish test and as such is not considered as a chronic endpoint. In addition, in April 2014, the test guideline was removed by OECD. On this basis the study is not considered to provide a valid chronic NOEC for the purpose of classification and labelling.

Degradants

Three acute toxicity to fish studies are available using three carboxin degradants. These indicate the carboxin parent is more acutely toxic to fish than major degradants.

Carboxin sulfoxide (Czech, 2002a)

The acute toxicity to fish was assessed following OECD Guideline 203 and GLP using Rainbow Trout (*Oncorhynchus mykiss*). A static test system with a single replicate of 25 mg/l was used. Analytical measurement at 3, 24, 48, 72 and 96 hours showed measured concentrations were 100% of nominal concentrations. No adverse effects were observed and the 96-h LC_{50} is considered to be > 25mg/l.

Carboxin sulfone (Kuc, 1977)

The acute toxicity to fish was assessed following US EPA-660/3-75-009 guideline using Rainbow Trout (*Oncorhynchus mykiss*) and Bluegill Sunfish (*Lepomis macrochirus*). The study predated GLP. The study temperature was 22 °C for Bluegill Sunfish and 11 °C for Rainbow Trout. A static test system was employed and the study did not include analytical support. Based on nominal concentrations the study 96-h LC_{50} for Bluegill Sunfish was 28.1 mg/l. Based on nominal concentrations the study 96-h LC_{50} for Rainbow trout was 19.9 mg/l. Carboxin sulfone was susceptible to hydrolysis with half lives of 9.8 days at pH 7 and 3.9 hours at pH 9. Given the pH ranged from 6.82 to 7.86 for both species over the exposure period of 4-days, some test substance losses are anticipated. However, such losses are not considered to result in a fish acute LC_{50} for carboxin sulfone below the carboxin acute fish LC_{50} or the lowest acute toxicity endpoint for carboxin / degradants (carboxin parent algal 5-d E_rC_{50}).

P/V-54 (Volz, 2004a)

The acute toxicity to fish was assessed following GLP and OECD Guideline 203 guidelines using Rainbow Trout (*Oncorhynchus mykiss*). A static test system with a single 100 mg/l exposure concentration was employed as the substance is considered stable over the study period. Mean measured concentrations at 0 and 48 hours were 97-98% nominal. No adverse effects were observed. Based on nominal concentrations the study 96-h LC₅₀ was considered >100 mg/l. On this basis, P/V-54 is considered less acutely toxic to fish than the parent carboxin.

5.4.1.2 Long-term toxicity to fish

No valid studies are available.

5.4.2 Aquatic invertebrates

Substance and purity	Species	Test Guideline	Endpoint	Toxicity value	Conditions	Reference
Carboxin 97.39 %	Daphnia magna	OECD 202	48-h EC ₅₀	>57 mg a.s./l	Flow-through Mean measured	Putt, 1994
Carboxin sulfoxide 99.6 %	Daphnia magna	OECD 202	48-h EC ₅₀	>25 mg a.s./l	Static Nominal	Czech, 2002b
Carboxin sulfone unknown	Daphnia magna	US EPA- 660/3-75-009	48-h EC ₅₀	69.1 mg/l	Static Nominal Losses likely given hydrolysis half- lives at varying pH	Vilkas, 1977
P/V-54 100 %	Daphnia magna	OECD 202	48-h EC ₅₀	>100 mg/l	Static Nominal	Volz, 2004b
Carboxin 97 %	Daphnia magna	OECD 202 17-d Nominal	17-d NOEC 0.32 mg a.s/l based on reproduction and growth	>100 mg/l	Semi-static Nominal	Bogers, 1989b

Table 22b: Summary of relevant information on aquatic toxicity to invertebrates

5.4.2.1 Short-term toxicity to aquatic invertebrates

Carboxin

Study 1 (Putt, 1994)

The acute toxicity to *Daphnia magna* was assessed following US EPA 72-2 guideline and using flow-through conditions. The GLP study used carboxin technical with a purity of 97.39%. Exposure concentrations were dilutions of a saturated stock solution; 13, 22, 36, 60 and 100%. Analysis at 0 and 48 hours were used to present the exposure concentrations as mean measured concentrations; 7, 11, 21, 34, 57 mg a.s./l. In addition the degradant carboxin sulfoxide was not detected at 0 or 48

hours. Based on mean measured concentrations, the 48-h EC_{50} was >57 mg a.s./l reflecting the saturated solution and the 48-h NOEC was 11 mg a.s./l.

Degradants

Three acute toxicity to invertebrate studies are available using three carboxin degradants.

Carboxin sulfoxide (Czech, 2002b)

The acute toxicity to *Daphnia magna* was assessed following GLP, OECD Guideline 202 and using static conditions. A single exposure concentration of 25 mg/l was used reflecting the limit of solubility in test medium. Mean measured concentrations at 0 and 48 hours were 88 - 89% nominal. Based on nominal concentrations, the 48-h EC₅₀ was >25 mg/l reflecting the saturated solution and the 48-h NOEC was 25 mg/l

Carboxin sulfone (Vilkas, 1977)

The acute toxicity to *Daphnia magna* was assessed following US EPA-660/3-75-009 guidelines. The study predated GLP. A static test system was employed and the study did not include analytical support. Based on nominal concentrations, the reported study 48-h EC₅₀ was 69.1 mg/l (95 % C.L. 54.2 – 88.2 mg/l) and the 48-h NOEC <16 mg/l reflecting the lowest exposure concentration. Carboxin sulfone was susceptible to hydrolysis with half lives of 9.8 days at pH 7 and 3.9 hours at pH 9. Given the pH ranged from 7.48 to 7.65 over the exposure period of 2 days, some test substance losses were anticipated. However, *Daphnia* are not considered highly acutely sensitive and such losses are not considered to result in an acute LC₅₀ for carboxin sulfone below the carboxin acute *Daphnia* LC₅₀ or the lowest acute toxicity endpoint for carboxin / degradants (carboxin parent algal 5-d E_rC₅₀).

P/V–54 (Volz, 2004b)

The acute toxicity to *Daphnia magna* was assessed following GLP, OECD Guideline 202 and static conditions. A single exposure concentration of 100 mg/l was used. Mean measured concentrations at 0 and 48 hours were 97-99% nominal. No adverse effects were observed. Based on nominal concentrations, the 48-h EC₅₀ was >100 mg/l.

5.4.2.2 Long-term toxicity to aquatic invertebrates

A GLP, semi-static, chronic toxicity study using *Daphnia magna* following OECD Guideline 202 is available (Bogers, 1989b). The study predated the current OECD 211 Guideline and was run over 17 days. The study used carboxin technical with a purity of 97%. The exposure test series was 0.1, 0.32, 1.0, 3.2 and 10 mg a.s./l. Measured concentrations were 91-134% of nominal and results are based on nominal concentrations. Based on inhibition of reproduction and toxicity to juveniles the 17-d NOEC was 0.32 mg a.s./l and the 17-d LOEC was 1.0 mg a.s./l. Given the nature of NOEC values it is not possible to extrapolate a 21-d NOEC.

5.4.3 Algae and aquatic plants

Substance and purity	Species	Test Guideline	Endpoint	Toxicity value	Conditions	Reference
Carboxin 97.5 %	Pseudokirchneriella subcapitata	US EPA FIFRA 123-3	5-d E _r C ₅₀ 5-d NOE _r C	0.45 mg a.s./l 0.107 mg a.s./l	Static Mean measured	Hughes, 1990
Carboxin sulfoxide 99.6 %	Pseudokirchneriella subcapitata	OECD 201	72-h E _r C50 72-h NOE _r C	>25 mg/l 25 mg/l	Static Nominal	Czech 2002c
Carboxin sulfone unknown	Pseudokirchneriella subcapitata	OECD 201	72-h E _r C50 72-h NOE _r C	2.76 mg/l 0.25 mg./l	Static Mean measured Losses likely given hydrolysis half- lives at varying pH	Czech, 2002d
P/V-54 100 %	Pseudokirchneriella subcapitata	OECD 201	72-h E _r C50 72-h NOE _r C	>100 mg/l 100 mg/l	Static Nominal	Volz, 2004c

Table 22c: Summary of relevant information on aquatic toxicity to algae

<u>Carboxin</u>

Study 1 (Hughes, 1990)

A 5-day, GLP, static algal growth inhibition study was carried out using *Pseudokirchneriella* subcapitata and following US EPA FIFRA 123-2 guideline. The study used carboxin technical with a purity of 97.5 %. Exposure solutions were prepared with DMF (dimethylformamide) solvent to aid dispersion and a solvent control was included. Analysis was undertaken at 0 hours and on day 5, which included analysis for carboxin sulfoxide. At 0 hours, carboxin concentrations were 92-122% of nominal. At day 5, combined mean measured concentrations of carboxin and carboxin sulfoxide were 82-92% of nominal carboxin concentrations. The study reported EC_{50} and NOEC data based on mean measured concentrations at day 0 (carboxin) and day 5 (carboxin + carboxin sulfoxide). Table 23 presents nominal exposure concentrations, analytical data and algal growth inhibition.

Concentration (mg a.s./l)						Algal g inhibitio	
Nominal	Day 0 Carboxin	Day 5 Carboxin	Day 5 Carboxin sulfoxide	Study reported mean measured carboxin + carboxin sulfoxide	Calculated mean measured carboxin on days 0 and 5	Day 3	Day 5
Control	Not detected	Not detected	Not detected	Not detected	-	-	-
Solvent control	Not detected	Not detected	Not detected	Not detected	-	-	-
0.125	0.152	0.061	0.046	0.130	0.107	11.3	13.1
0.25	0.276	0.170	0.060	0.253	0.223	28.2	28.2
0.5	0.525	0.375	0.071	0.486	0.450	45.8	49.8
1.0	1.130	0.759	0.056	0.972	0.945	53.4	72.7
2.0	1.830	1.604	0.080	1.757	1.717	82.7	100

Table 23 – Comparison	of analytical data a	and algal growth inhib	ition from Hughes 1990

The study reported the 5 day E_rC_{50} as 0.48 mg a.s./l and the 5 day NOE_rC was 0.13 mg a.s./l (combined carboxin and degradant concentration) based on analysis of variance and Dunnett's test¹. Carboxin photodegrades and given the test light conditions at ~4306 lux, losses of the parent carboxin are considered likely. For the purpose of classification, the E_rC_{50} and NOE_rC have been reconsidered to reflect carboxin concentrations only. Approximately ~50 % inhibition was observed on day 5 at nominal exposure concentration 0.5 mg carboxin a.s./l. This equated to a mean measured concentration of 0.45 mg a.s./l based on carboxin concentrations on days 0 and 5. Similarly, the reconsidered NOE_rC based on mean measured concentration carboxin concentrations on days 0 and 5 is 0.107 mg a.s./l.

It was noted that the study was run over 5 days instead of the standard 72 - 96 hour duration. However, after comparing the growth inhibition on days 3 and 5, this was not considered to affect the validity of the 5-day results.

Degradants

Three algal growth inhibition studies are available using three carboxin degradants:

Carboxin sulfoxide (Czech, 2002c)

A 72 hour, GLP, static algal growth inhibition study was carried out using *Pseudokirchneriella subcapitata*, following OECD Guideline 201. A single exposure concentration of 25 mg/l was used reflecting the limit of solubility in test medium. Mean measured concentrations at 0 and 72 hours were 95-96% nominal. Based on nominal concentrations, the E_rC_{50} was >25 mg/l and the NOE_rC was 25 mg/l.

¹ The effect values presented in this document are different than those in the DAR. For the purpose of classification, effects values based on carboxin only have been used to assess ecotoxicity.

Carboxin sulfone (Czech 2002d)

A 72 hour, GLP, static algal growth inhibition study was carried out using *Pseudokirchneriella subcapitata*, following OECD Guideline 201. The study pH ranged from 7.9 to 8.1. Mean measured concentrations at 0 hours were 89-109% of nominal and at 72 hours 43–52% nominal. Losses were assumed to be a result of hydrolysis. Based on mean measured concentrations, the E_rC_{50} was 2.76 mg/l (95% C.L. 1.02 – 6.86 mg/l) and the NOE_rC was 0.25 mg/l.

P/V-54 (Volz (2004c)

A 72 hour, GLP, static algal growth inhibition study was carried out using *Pseudokirchneriella* subcapitata, following OECD Guideline 201. Mean measured concentrations at 0 and 72 hours were 98% nominal. Based on nominal concentrations, the E_rC_{50} was >100 mg/l and the NOE_rC was 100 mg/l.

5.4.4 Other aquatic organisms (including sediment)

No other relevant data.

5.5 Comparison with criteria for environmental hazards (sections 5.1 – 5.4)

Carboxin was found to be hydrolytically stable at environmentally relevant pH and temperature.

Carboxin was susceptible to aqueous photolysis with experimental half-lives of 1.54 to 2.64 hours at 25 °C. The two principal degradants were oxo(phenyl amino) acetic acid and carboxin sulfoxide. It is noted that the actual degree of photodegradation in the aquatic environment depends on local conditions and seasons and is difficult to quantify. Given the available data, there is insufficient information to evaluate photodegradation in the European environment in terms of mineralisation or transformation to non-classifiable substances. Therefore aquatic photolysis is not considered to meet the criteria for rapid degradation. On this basis, a DT_{50} at 12 °C has not been included.

On the basis of a ready biodegradation study, carboxin was not considered readily biodegradable.

In a water/sediment study carboxin dissipated fairly rapidly. Carboxin sulfoxide was the principle degradant although limited mineralisation was observed. At study temperature, the mean total system DT_{50} for carboxin was 17.3 days and the mean total system DT_{50} for carboxin sulfoxide was 27.7 days. Converting DT_{50} values to environmentally relevant temperature results in the following DT_{50} values at 12 °C:

- Carboxin mean DT₅₀ total system 32.8 days at 12 °C
- Carboxin sulfoxide DT_{50} total system 52.5 days at 12 °C

Carboxin rapidly dissipated in soil with a $DT_{50} < 1$ day to form carboxin sulfoxide and carboxin sulfone which have longer residence times with DT_{50} values 38.6 and 20.2 days respectively.

Overall, carboxin is considered to undergo rapid primary degradation but is not considered to undergo greater than 70% ultimate degradation in the aquatic environment within 28 days. On this basis it is considered not rapidly degradable for the purpose of classification and labelling.

While a bioaccumulation study is not available, the carboxin log P_{ow} value of 2.3 is lower than the trigger value of 4 for classification and labelling under Regulation EC 1272/2008.

Acute toxicity to fish, invertebrates and algae data are available for carboxin and degradants carboxin sulfoxide, carboxin sulfone and P/V-54. Overall, carboxin parent is considered more acutely toxic than its degradants. Carboxin is considered to exhibit acute aquatic toxicity < 1 mg/l. Algae are the most acutely sensitive trophic level with a carboxin 5-d E_rC_{50} 0.45 mg a.s./l.

Based on the available acute ecotoxicity data, with $L(E)C_{50}$ values < 1 mg/l, classification as Aquatic Acute 1 is applicable with an acute M-factor of 1 based on $0.1 < L(E)C_{50} \le 1$ mg/l.

The long-term aquatic data suggest chronic toxicity in the range 0.1-1 mg/l. The carboxin algal 5-d NOErC for *Pseudokirchneriella subcapitata* is 0.107 mg a.s./l and the carboxin sulfone algal 72-h NOE_rC for the same species is 0.25 mg/l. This results in the classification Aquatic Chronic 2 based on > 0.1 NOEC ≤ 1 mg/l for a non-rapidly degradable substance.

The carboxin 17-d NOEC for *Daphnia* was 0.32 mg a.s./l. While this was a non-standard duration and was not considered robust for the purpose of deriving a chronic classification, the value supports the Aquatic Chronic 2 classification.

Adequate chronic toxicity data for fish are not available.

Given robust chronic endpoints are not available for fish and invertebrates, the surrogate approach to deriving chronic classification should be considered. Using the available acute data for fish, this would result in classification Aquatic Chronic 2 based on $1 < L(E)C_{50} \le 10$ mg/l for a non-rapidly degradable substance. Using the available acute data for invertebrates, this would result in classification Aquatic Chronic 3 based on $10 < L(E)C_{50} \le 100$ mg/l for a non-rapidly degradable substance.

Overall, the most stringent chronic classification should be applied which is Aquatic Chronic 2.

5.6 Conclusions on classification and labelling for environmental hazards (sections 5.1 – 5.4)

Aquatic Acute 1; H400 - Very toxic to aquatic life

M-factor of 1

Aquatic Chronic 2; H411- Toxic to aquatic life with long lasting effects,

6 OTHER INFORMATION

No other information of relevance to the CLH discussion.

7 **REFERECNES**

References are taken from the Draft Assessment Report for Carboxin – March 2006 as follows

Volume 3; Annex B1 – Identity

Volume 3; Annex B2 – Physcial and chemical properties

Volume 3; Annex B6 – Toxicology and metabolism

Volume 3: Annex B.8 – Environmental Fate and Behaviour

Volume 3; Annex B.9 – Ecotoxicology

And the Addendum to the DAR dated August 2007

Also refer to

EFSA Journal 2010; 8(10):1857 - Conclusion on the peer review of the pesticide risk assessment of the active substance carboxin

Specific references;

Physical hazard assessment:

Dunn, N. L. (2001). The density of purified carboxin. Crompton Co., Canada, Report No. GRL-FR-11821

Evans, A.J. (2001). Carboxin technical SI 7828: Determination of surface tension. Safepharm Laboratories Limited, UK, Project No 666/054

Riggs, A.S. (2001a). The melting point range of purified carboxin. Crompton Co., Canada, Report No. GRL-FR-11756

Riggs, A.S. (2001b). The colour, physical state and odour of technical carboxin. Crompton Co., Canada, Report No. GRL-FR-11694

Riggs, A.S. (2001c). The colour, physical state and odour of purified carboxin. Crompton Co., Canada, Report No. GRL-FR-11882

Riggs, A.S. (2001d). The solubility of purified carboxin in water and aqueous buffers. Crompton Co., Canada, Report No. GRL-FR-11755

Riggs, A.S. (2001e). Solubility of carboxin technical in organic solvents. Crompton Co., Canada, Report No. GRL-FR-11590

Riggs, A.S. (2001f). The partition coefficient (n-octanol/water) of purified carboxin. Crompton Co., Canada, Report No. GRL-FR-11655

Thomas, E.A., Book, D.E. (1988). Vitavax - determination of dissociation constant. Ricerca, Inc., USA, Document No. 1961-88-0153-AS-001-001

Tremain, S.P. (2001a). Carboxin pure SI 7856: Determination of vapour pressure. Safepharm Laboratories Limited, U.K., Project No. 666/055

Tremain, S.P. (2001b). Carboxin technical SI 7828: Determination of hazardous physico-chemical properties. Safepharm Laboratories Limited, UK, Project No. 666/053

Human Health Hazard Assessment:

Atkinson, J.E. (1989). A four week oral toxicity study in the dog of Vitavax technical via dietary administration. Report No. 88-3397

Brusick, D.J. (1982). Mutagenicity evaluation of technical grade Vitavax lot no. 956 98+% a.i. in the Ames Salmonella/microsome plate test. Litton Bionetics, Inc., USA, Report No. 20988

Cortina, T. (1983). In vivo bone marrow chromosome study in rats Vitavax. Report No. 798-199

Cortina, T. (1985). In vivo bone marrow chromosome study in rats Vitavax. Report No. 798-209

Galloway, S.M. (1982) Mutagenicity evaluation of technical grade Vitavax, lot no. 956, 98% a.i. in an in vitro cytogenetic assay measuring chromosome aberration frequencies in Chinese hamster ovary (CHO) cells. Litton Bionetics, Inc., USA, Report No. 20990

Goldenthal, E.I. (1992a). Acute oral toxicity study on Vitavax technical in rats. Report No. 399-127

Goldenthal, E.I. (1992b). Acute dermal toxicity study on Vitavax technical in rabbits. Report No. 399-128

Goldenthal, E.I. (1992c). Primary dermal irritation test on Vitavax technical in rabbits. Report No. 399-129

Goldenthal, E.I. (1992d). Eye irritation study on Vitavax technical in rabbits. Report No. 399-130

Goldenthal, E.I. (2002a). 90-Day dietary toxicity study in rats. Report No. 399-210

Goldenthal, E.I. (2002b). 90-Day dietary toxicity study in dogs. Project No. 399-211

Goldenthal, E.I. (1991). One year chronic dietary study in dogs. Report No. 399-100

Goldenthal, E.I. (2002c) 28-Day dermal toxicity study on carboxin technical in rats. Report No. 399-214

Gunderson, G. (1982). Lifetime carcinogenicity study in mice. Report No. 399-002a

Hall, D.A. (2003). Guinea pig maximization test (Magnusson-Kligman). Report No. MB 02-9849.06

Kehoe, D.F (1991a). Combined chronic toxicity and oncogenicity study with Vitavax technical in rats. Report No. HLA 6111-106

Kehoe, D.F. (1991b). Two-generation reproduction study with Vitavax in rats (two litters/generation). Report No. HLA 6111-128

Laughlin, K.A. (1981). Teratology study in rabbits. Report No. 399-042

MacKenzie, K.M. (1987). Subchronic toxicity and kinetic study with Vitavax technical in rats. Report No. HLA 6111-105.

Markham, P. (1992). Disposition and metabolism of carboxin in rats. Report No. ADL 66902

McManus, J.P. (1993). Metabolism of carboxin in the rat – metabolite identification and quantitation. Report No. 9128

Myhr, B.C. (1982). Evaluation of Vitavax technical grade in the primary rat hepatocyte unscheduled DNA synthesis assay. Litton Bionetics, Inc., USA, Report No. 20991

San, R.H.C., Clarke, J.J. (2001). In vitro mammalian cell gene mutation (CHO/HGPRT) test with an independent repeat assay. BioReliance, USA, Report No. AA44CT.782001.BTL

Schardein, J.L. (1989). Developmental toxicity study in rats. Report No. 399-077

Ullmann, L.(1983). Four-week oral (gavage) toxicity study with Vitavax technical in rats. Report No. 014545

Ulrich, C.E (1993). Acute inhalation toxicity evaluation on Vitavax technical in rats. Report No. 399-132

Waring, R.H. (1973). The Metabolism of Vitavax by rats and rabbits. 'Xenobiotica', 1973, Vol. 3, No. 2, 65-71

Environmental Hazard Assessment:

Clayton, M.A. and Lowrie, C. (2003). Hydrolytic stability of [¹⁴C]-carboxin in buffered aqueous solution. Inveresk Research, Scotland, UK. Company Report No.: 21921

Dzialo, D.G., Lengen, M.R. (1983). [¹⁴C] Carboxin hydrolysis study. Uniroyal Chemical Co., Inc, Connecticut, USA. Company Report No.: 8304

Jewell, G.E. (1990). Hydrolytic stability test for Vitavax sulfoxide. Uniroyal Research Laboratory, Ontario. Company Report No.: 89137

Dzialo, D.G. (1995). Hydrolysis study of Oxycarboxin (Plantvax)®. Uniroyal Chemical Co., Inc, Middlebury, USA. Company Report No.: 94111

Horree, D.J. (1992). Aqueous photolysis of Vitavax. Uniroyal Chemical Co., Inc, Middlebury, USA. Company Report No.: 9040

Harned, W.H. (2003a). Quantum yield calculation for carboxin. Crompton Corporation, Middlebury, USA. Company Report No.: 2002-008

Harned, W.H. (2003b). Calculation of the theoretical lifetime of carboxin in upper surface water. Crompton Corporation, Middlebury, USA. Company Report No.: 2002-009

Van Dijk, A. (1989). Ready biodegradability: "Modified OECD screening test" for carboxin technical. RCC Umweltchemie AG, Itingen, Switzerland. Company Report No.: 219870

Muttzall, P.I. (1994). Water/sediment biodegradation of [¹⁴C] carboxin. TNO Institute of Environmental Sciences, The Netherlands. Company Report No.: IMW-R 93/247a

Wanner, U. (2004a). Evaluation of the Degradation Kinetics of Carboxin and its Degradation Product Carboxin Sulfoxide in Aerobic Aquatic Systems using ModelMaker 4.0. Crompton Corporation, Middlebury, USA. Report No.: 2004-095. October 2004

Mamouni, A. (2004). Degradation rate and metabolism of [¹⁴C]-carboxin in three soils incubated under aerobic conditions. RCC Ltd, CH-4452 Itingen, Switzerland, Company report No.:846240

Wanner, U. (2004c) Degradation of 14C-Carboxin in Four Soils under Aerobic Conditions. Crompton Corporation, Middlebury, CT 06749, USA. Company report No. 2001-062

Wanner, U. (2004b). Evaluation of the degradation kinetics of carboxin and its soil metabolites using ModelMaker 4.0. Crompton Corporation Crop Protection R&D, Middlebury, CT 06749, USA. Unpublished report No. 2004-084

Gaydosh, K.A. (1989). [14C-Oxathiin] Vitavax anaerobic soil metabolism. Uniroyal Chemical Co., Inc, Middlebury, USA. Company Report No.: 8978

Beerbaum, C.M. (1990). Vitavax – Identification of peak in [¹⁴C-Oxathiin]Vitavax anaerobic soil metabolism in study 8978. Uniroyal Chemical Co., Inc, Middlebury, USA. Company Report No.: 89143

Wanner, U. (2003). ¹⁴C-Carboxin: Adsorption to Five Soils, Crompton Corporation, Middlebury, USA. Company report No. 2002-103

Tremain, S.P. (2001c). Carboxin pure S17856: Determination of vapour pressure. Safepharm Laboratories Limited, UK. Project No: 666/055

White, C.K. (2002). Calculation of Henry's Law Constant for carboxin. Crompton Corporation USA. Project: 2002-035

Riggs, A.S. (2001g). The partition co-efficient (n-octanol/water) of purified carboxin. Crompton, Canada. Report No.: GRL-FR-11655

Bettencourt, M.J. (1994a). VITAVAX® Technical – Acute Toxicity to rainbow trout (*Oncorhynchus mykiss*) Under Flow-Through Conditions.. Company Report No: 94-2-5159. Unpublished

Bettencourt, M.J. (1994b). VITAVAX® Technical – Acute Toxicity To Bluegill Sunfish (*Lepomis macrochirus*) Under Flow-Through Conditions. Company Report No: 94-1-5135. Unpublished

Bogers, M. (1989a). 21-Day Toxicity Study of Carboxin in Fish. The Netherlands. Company Report No: 1123/FP6. Unpublished

Czech, P. (2002a). Acute toxicity of Carboxin Sulfoxide to Rainbow Trout (*Oncorhynchus mykiss*) in a 96-hour Static Test. Switzerland. Company Report No: 843827. Unpublished

Kuc, W.J. (1977). The Acute Toxicity of Plantvax Technical BL #8555-CC005 to the Bluegill Sunfish, *Lepomis macrochirus Rafinesque* and Rainbow Trout, *Salmo gairdneri*. Richardson. Company Report No: 11506-29-09. Unpublished

Volz, E. (2004a). Acute toxicity of P/V-54 to Rainbow Trout (*Oncorhynchus mykiss*) in a 96-hour static test. Company Report No: 853069. Unpublished

Putt, A.E. (1994). VITAVAX® Technical – Acute Toxicity To Daphnids (*Daphnia magna*) Under Flow-Through Conditions. Springborn Laboratories, Inc., USA. Company Report No: 94-2-5154. Unpublished

Czech, P. (2002b). Acute toxicity of Carboxin Sulfoxide to *Daphnia magna* in a 48-hour immobilization test. RCC Ltd., Switzerland. Company Report No: 843829. Unpublished

Vilkas, A.G. (1977). The Acute Toxicity of Plantvax Technical to the Water Flea *Daphnia magna Straus*. Union Carbide Environmental Services, USA. Company Report No: 11506-29-09. Unpublished

Volz, E. (2004b). Acute toxicity of P/V-54 to *Daphnia magna* in a 48-hour immobilization test. RCC Ltd., Switzerland. Company Report No: 853071. Unpublished

Bogers, M. (1989b). Effects of Carboxin on the reproduction of *Daphnia magna* RCC Notox B.V., The Netherlands. Company Report No: 1123/DR5. Unpublished

Hughes, J.S. (1990). The Toxicity of VITAVAX Technical to *Selenastrum capricornutum* Malcolm Pirnie, Inc., USA. Company Report No: B782-01-1. Unpublished

Czech, P. (2002c). Toxicity of Carboxin Sulfoxide to *Pseudokirchneriella subcapitata* (formerly *Selenastrum capricornutum*) in a 72-hour algal Growth Inhibition Test. RCC Ltd., Switzerland. Company Report No: 843831. Unpublished

Czech, P. (2002d). Toxicity of Oxycarboxin to *Pseudokirchneriella subcapita*ta (formerly *Selenastrum capricornutum*) in a 72-hour algal Growth Inhibition Test. RCC Ltd, Switzerland. Company Report No: 843835. Unpublished

Volz, E. (2004c). Toxicity of P/V-54 to *Pseudokirchneriella subcapitata* (formerly *Selenastrum capricornutum*) in a 72-hour algal Growth Inhibition Test. RCC Ltd., Switzerland. Company Report No: 853073. Unpublished

8 ANNEXES

None