Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 200-741-1 | CAS number: 70-55-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Mostly by cross-reading from Chloramine-T: Rapid and complete oral uptake followed by rapid excretion mainly with urine. Overall dermal absorption about 20%.
Key value for chemical safety assessment
- Bioaccumulation potential:
- no bioaccumulation potential
- Absorption rate - oral (%):
- 100
- Absorption rate - dermal (%):
- 20
- Absorption rate - inhalation (%):
- 100
Additional information
Information is available from cross-reading from chloramine-T.
It is shown that [14C]-Chloramine-T is almost instantaneously converted to p-TSA in contact with stomach and intestinal contents of rat. Similarly, also an in-vitro dermal absorption study demonstrated the conversion of Chloramine-T, resulting to only p-TSA to pass the skin.
Therefore the available ADME data on Chloramine-T is directly applicable in p-TSA.
ADME studies indicate that Chloramine-T (in the form of p-TSA) is rapidly and almost completely absorbed after oral administration, and relatively fast completely excreted again, mostly via the urine, as a benzoic acid derivative (4-sulfamoylbenozic acid, CAS 138-41-0). At termination, only about 1% of the activity remained in the body. About 78-87% is excreted in the urine, and 13-16% via the faeces. About 4-6% passes with the bile.
The tissue concentration of Chloramine-T equivalents (measured radiolabel) were below the concentration observed in blood in all groups indicating that there is no potential for accumulation. The availabe information from acute oral toxicity on p-TSA confirms this assessment. Clinical signs appear quick and at not too high dose levels resolve again within a day. At high dose levels pecifically involvent of the urinary tract is observed.
In-vitro dermal penetration studies with 0.5% aq Chloramine-T solution show that approximately 12% passed the skin completely and about 8% of the applied dose passed the stratum corneum but remained fixed in the skin after 24 hours. This results to an overall absorption of about 20%. Dermal absorption is thus lower then oral absorption. The amount of 20% can be regarded as worst case, as the level of absorption decreases with increasing concentrations: At a concentration of 3% only 4% passed the skin and total absorption was about 10%.
Metabolism: In the urine samples from Chloramine-T studies, one major radioactivity peak was observed. This peak was identified as benzoic acid derivative (4-sulfamoylbenozic acid, CAS 138-41-0).
An older study from literature on p-TSA confirms the identity of the major metabolite (Ball, L.M., et al., 1978). Female albino Wistar rats were given a single low and high oral dose (29 mg/kg bw in 1ml 20% ethanol in water and 200 mg/kg bw in 50% aq. propylene glycol (1ml)). This study also identified the small amounts of other metabolites found next to a remaining small amount of parent compound p-TSA (1.5-2.3%). Other identified metabolites were 4-sulphamoylbenzyl alcohol (2.0-3.9%), 4-sulphamoylbenzaldehyde (0-1.5%) and at high dose N-acetyltoluene-4-sulphonamide (2.1-2.3%). Other studies reported in literature on metabolism were largely qualitative and confirm the metabolite4-sulfamoylbenozic acid in urine of dogs and rats (Flaschenträger B., et al., 1934; Minegishi, K. I., et al., 1972).
There is no information in uptake following inhalation. Due to the very low vp any relevant uptake has to be by means of aerosols or particles.These will deposit mainly on upper airways, and will be subsequently swallowed following mucociliary transportation to pharynx. This results to no principal difference in absorption compared oral route.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.