Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 204-793-6 | CAS number: 126-57-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2013-09-24 - 2013-09-25
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Recent GLP study according to relevant OECD guideline with detailed reporting
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial gene mutation assay
- Species / strain / cell type:
- E. coli WP2 uvr A
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Metabolic activation system:
- liver S9 fraction from rat
- Test concentrations with justification for top dose:
- Toxicity test:
50, 158, 500, 1580 and 5000 µg/plate
Main Assay I:
5000, 2500, 1250, 625 and 313 µg/plate (-S9)
1600, 800, 400, 200, 100 µg/plate (+S9)
In Main Assay II, the test item was assayed at the same dose levels used in Main Assay I. - Vehicle / solvent:
- The test item was used as a solution in acetone.
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Remarks:
- acetone, DMSO
- Positive controls:
- yes
- Positive control substance:
- 9-aminoacridine
- 2-nitrofluorene
- sodium azide
- methylmethanesulfonate
- other: 2-aminoanthracene
- Details on test system and experimental conditions:
- Four strains of Salmonella typhimurium (TA1535, TA1537, TA98 and TA100) and a strain of Escherichia coli (WP2 uvrA) were used in this study. Permanent stocks of these strains are kept at -80°C in RTC. Overnight subcultures of these stocks were prepared for each day’s work PRELIMINARY TOXICITY TEST A preliminary toxicity test was undertaken in order to select the concentrations of the test item to be used in the main assays. In this test a wide range of dose levels of the test item, set at half-log intervals, were used. Treatments were performed both in the absence and presence of S9 metabolism using the plate incorporation method; a single plate was used at each test point and positive controls were not included. Toxicity was assessed on the basis of a decline in the number of spontaneous revertants, a thinning of the background lawn or a microcolony formation. MAIN EXPERIMENTS Two experiments were performed including negative and positive controls in the absence and presence of an S9 metabolising system. Three replicate plates were used at each test point. In addition, plates were prepared to check the sterility of the test item solutions and the S9 mix and dilutions of the bacterial cultures were plated on nutrient agar plates to establish the number of bacteria in the cultures. The first experiment was performed using a plate-incorporation method. The components of the assay (the tester strain bacteria, the test item and S9 mix or phosphate buffer) were added to molten overlay agar and vortexed. The mixture was then poured onto the surface of a minimal medium agar plate and allowed to solidify prior to incubation. The second experiment was performed using a pre-incubation method. The components were added in turn to an empty test-tube. The incubate was vortexed and placed at 37°C for 30 minutes. Two mL of overlay agar was then added and the mixture vortexed again and poured onto the surface of a minimal medium agar plate and allowed to solidify. INCUBATION AND SCORING The prepared plates were inverted and incubated for approximately 72 hours at 37°C. After this period of incubation, plates were scored by counting the number of revertant colonies on each plate.
- Evaluation criteria:
- For the test item to be considered mutagenic, two-fold (or more) increases in mean revertant numbers must be observed at two consecutive dose levels or at the highest practicable dose level only. In addition, there must be evidence of a dose-response relationship showing increasing numbers of mutant colonies with increasing dose levels.
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- TOXICITY TEST
The test item TMP pelargonate was assayed in the toxicity test at a maximum dose level of 5000 μg/plate and at four lower concentrations spaced at approximately half-log intervals: 1580, 500, 158 and 50.0 μg/plate. Precipitation of the test item, which did not interfere with the scoring, was observed at the end of the incubation period at the highest concentration in the absence of metabolic activation and at the two highest concentrations in the presence of metabolic activation. No toxicity was observed with any tester strain at any dose level, both in the absence or presence of S9 metabolism. ASSAY FOR REVERSE MUTATION
Two experiments were performed. On the basis of toxicity test results, in Main Assay I, using the plate incorporation method, the test item was assayed at the following dose levels: 5000, 2500, 1250, 625 and 313 μg/plate (-S9) and 1600, 800, 400, 200, 100 μg/plate (+S9). No toxicity was observed with any tester strain at any dose level both in the absence or presence of S9 metabolism. Precipitation of the test item, which did not interfere with the scoring, was observed at the end of the incubation period at the two highest concentrations, both in the absence and presence of metabolic activation. As no relevant increase in revertant numbers was observed at any concentration tested, a pre-incubation step was included for all treatments of Main Assay II. The test item was assayed at the same dose levels used in Main Assay I. No toxicity was observed with any tester strain at any dose level in the absence or presence of S9 metabolism. Precipitation of the test item, which did not interfere with the scoring, was observed at the end of the incubation period at the highest concentrations in the presence of S9 metabolism only. No relevant increase in the number of revertant colonies was observed in the plate incorporation or pre-incubation assay, at any dose level, with any tester strain, in the absence or presence of S9 metabolism. The sterility of the S9 mix and of the test item solutions was confirmed by the absence of colonies on additional agar plates spread separately with these solutions. Marked increases in revertant numbers were obtained in these tests following treatment with the positive control items, indicating that the assay system was functioning correctly. - Conclusions:
- Interpretation of results (migrated information):
negative
The test item did not induce two-fold increases in the number of revertant
colonies in the plate incorporation or pre-incubation assay, at any dose level,
in any tester strain, in the absence or presence of S9 metabolism.
It is concluded that the test item TMP pelargonate does not induce reverse
mutation in Salmonella typhimurium or Escherichia coli under the reported
experimental conditions. - Executive summary:
The test item TMP pelargonate was examined for the ability to induce gene mutations in tester strains of Salmonella typhimurium and Escherichia coli, as measured by reversion of auxotrophic strains to prototrophy. The five tester strains TA1535, TA1537, TA98, TA100 and WP2 uvrA were used. Experiments were performed both in the absence and presence of metabolic activation, using liver S9 fraction from rats pre-treated with phenobarbitone and betanaphthoflavone. The test item was used as a solution in acetone.
No toxicity was observed with any tester strain at any dose level, in the absence or presence of S9 metabolism. On the basis of toxicity test results, in Main Assay I, using the plate incorporation method, the test item was assayed at the following dose levels: 5000, 2500, 1250, 625 and 313 μg/plate.
As no relevant increase in revertant numbers was observed at any concentration tested in Main Assay I, a pre-incubation step was included for all treatments of Main Assay II. The test item was assayed at the same dose levels used in Main Assay I.
The test item did not induce two-fold increases in the number of revertant colonies in the plate incorporation or pre-incubation assay, at any dose level, in any tester strain, in the absence or presence of S9 metabolism.
It is concluded that the test item TMP pelargonate does not induce reverse mutation in Salmonella typhimurium or Escherichia coli under the reported experimental conditions.
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Additional information
Justification for selection of genetic toxicity endpoint
It has to be noted that all three genotox tests are of equal importance, as they assess different types of genotoxic response to a test chemical.
Justification for classification or non-classification
As no effects on Ames bacteria, human lymphocytes and observed micronuclei, the substance is not to be classified according to the criteria described in EU Regulation No. 12 72/2008 on the Classification, Labelling and Packaging of Substances and Mixtures (CLP) or Directive 67/548/EEC (Dangerous Substances Directive).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.