Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

No in vitro genotoxicity data are available for tungstic acid (target substance). However, in vitro genotoxicity studies on tungsten trioxide and sodium tungstate (source substances) are available and were used for read-across. Due to lower water solubility and lower toxicity values for the target substance (tungstic acid) compared to the source substance (sodium tungstate), the resulting read-across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read-across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, conservative for the target substance. Refer to the read-across category approach document (Annex 3).

In an in vitro chromosome aberration assay conducted according to OECD 473 and two reverse bacterial forward mutation assays conducted according to OECD 471, tungsten trioxide was negative for mutagenicity. An in vitro L5178Y TK +/- Mouse Lymphoma Forward Mutation Assay data (OECD 476) is available for sodium tungstate dihydrate and was negative for mutagenicity. Based on the lack of mutagenicity reported in all in vitro assays on read across source substances, tungstic acid is not considered a mutagen.

Link to relevant study records

Referenceopen allclose all

Endpoint:
in vitro cytogenicity / chromosome aberration study in mammalian cells
Remarks:
Type of genotoxicity: chromosome aberration
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Study period:
2009-09-15 to 2010-06-07
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Remarks:
Well documented, scientifically sound GLP study conducted according to OECD Guideline 473 (In vitro Mammalian Chromosome Aberration Test) with no deviations. The reliability of this study for the substance tested is a K1, but in application of read-across to a different substance, ECHA's guidance specifies that the score can be a maximum of a K2.
Justification for type of information:
Tungstic acid (WO3•H2O) is the hydrated form of tungsten trioxide (WO3). Based on Annex V, hydrates and water free forms (anhydrous) of compounds can be regarded as the same substance for registration purposes. Therefore, tungstic acid is considered equivalent to WO3. For more details on the rationale, refer to the attached description of the read-across approach.
Qualifier:
according to guideline
Guideline:
OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
Deviations:
no
GLP compliance:
yes
Type of assay:
in vitro mammalian chromosome aberration test
Species / strain / cell type:
Chinese hamster Ovary (CHO)
Details on mammalian cell type (if applicable):
- Type and identity of media: The CHO cultures used for treatment were initiated in McCoy's 5A medium supplemented with approximately 10 % Fetal Bovine Serum (FBS), penicillin G (100 units/mL), streptomycin (100 ug/mL) and L-glutamine (at least 2 mM). This medium was referred to as complete McCoy's 5A culture medium. The cultures were incubated at 37 +/- 2 degrees C, in a humidified atmosphere of 5 +/- 1.5 % CO2. On the day following cell seeding, the culture medium was replaced with fresh serum free medium for the 3 hour exposures with and without metabolic activation and with fresh complete medium for the 24 hour exposure without metabolic activation. After the 3 hour exposure, cultures were rinsed and fresh complete medium was added.
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: yes
- Periodically checked for karyotype stability: yes/no
- Periodically "cleansed" against high spontaneous background: yes/no
- Other: CHO cells exposed to test substances in vitro are routinely used to detect clastogenicity. The cell line used in this study, obtained from Merck Research Laboratories (West Point, PA), was sub-cloned at IITRI, aliquoted into freezing vials and stored in liquid nitrogen. Stock cultures are maintained for up to 12 weeks after thawing a vial from frozen stock.
Additional strain / cell type characteristics:
not applicable
Metabolic activation:
with and without
Metabolic activation system:
Aroclor 1254 induced rat liver S9
Test concentrations with justification for top dose:
Experiment 1/cytotoxicity test with and without metabolic activation-0, 0.01, 0.02, 0.039, 0.078, 0.156, 0.313, 0.625, 1.25, 2.5 and 5 mg/mL
Experiment 2 with metabolic activation-0, 0.50, 0.75, 1.0, 1.5, 2.0, 2.5 and 3.0 mg/mL
Experiment 2 without metabolic activation-0, 0.10, 0.20, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 2.5 and 3.0 mg/mL
The maximum target concentration of test substance, 5.0 mg/mL, in the chromosome aberration assay was based upon the upper limit for testing in OECD Guideline 473.
Concentration confirmation analysis of at least the lowest and highest test substance formulations used in the study were performed by the Analytical Chemistry Division at IITRI.
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: serum-free McCoy's 5A cell culture media
- Justification for choice of solvent/vehicle: no data
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
serum-free McCoy's 5A cell culture media
True negative controls:
no
Positive controls:
yes
Positive control substance:
mitomycin C
Remarks:
without metabolic activation Migrated to IUCLID6: 0.5 ug/mL
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
serum-free McCoy's 5A cell culture media
True negative controls:
no
Positive controls:
yes
Positive control substance:
cyclophosphamide
Remarks:
with metabolic activation Migrated to IUCLID6: 10 ug/mL
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium


DURATION
- Exposure duration: 3 hours (Experiment 1 with and without metabolic activation and Experiment 2 with metabolic activation), 24 hours (Experiment 2 without metabolic activation)
- Expression time (cells in growth medium): ~19 hours (3 hour treatment) and 0 hours (24 hour treatment)
- Fixation time (start of exposure up to fixation or harvest of cells): Cultures were harvested 24 hours after initiation of treatment. The cultures were trypsinized and a measured aliquot of cells were counted (using a hemacytometer and trypan blue). After centrifuging the cell suspension, the pelleted cells were re-suspended in at least 10 mL of 0.075M KCl hypotonic solution and incubated. This treatment helps to swell the cells and disperse the chromosomes on a 'plate' such that each chromosome is visible. After the treatment with hypotonic buffer, a 0.5 mL aliquot of Carnoy's fixative (3 parts methanol: 1 part glacial acetic acid) was added to each tube and the cells were centrifuged and the supernatant discarded. The cell pellets were re-suspended in Carnoy's fixative and centrifuged twice, and then they were stored refrigerated in fresh Carnoy's fixative until they were dropped onto glass slides.


SPINDLE INHIBITOR (cytogenetic assays): Colcemid
STAIN (for cytogenetic assays): 5 % Giemsa


NUMBER OF REPLICATIONS:
2

NUMBER OF CELLS EVALUATED:
100 cells per replicate were evaluated for all groups except the positive control in which 25-50 cells per replicate were evaluated.

DETERMINATION OF CYTOTOXICITY
- Method: At least 1000 cells per slide were counted to establish a mitotic index for each slide selected for analysis based on cytotoxicity. After the mitotic index was determined for each culture, dose levels were selected for chromosome analysis. Cytotoxicity was measured as the percent cell number reduction relative to the vehicle control cultures.


OTHER EXAMINATIONS:
- Determination of polyploidy: yes
- Determination of endoreplication: yes
- Other: Chromatid, and isochromatid gaps and uncoiled chromosomes were noted but were not added into the totals for structural aberration assessment since they are not considered to represent true breaks. In addition Gaps were recorded separately and reported but were not included in the total aberration frequency. The cultures were assessed for test substance precipitation at the time of dosing and after three hours in the 3 hour exposure cultures and at harvest in the 24 hour exposure. The osmolality and pH of at least the highest dosing solution concentration in culture medium were measured. If the resulting measurements record an upward shift in the osmolality by 50 mOsm or more (relative to the vehicle) or a shift in pH of one pH unit or more (up or down), relative to the vehicle The Sponsor would by notified.


Evaluation criteria:
Once the assay acceptance criteria had been met, the following factors were taken into account in evaluation of the test substance data:
-Percentage of cells with structural aberrations
-Percentage of cells with more than one structural aberration
-Evidence for increasing amounts of damage with increasing test substance concentration
Since the experimental unit was the cell, the percentage of cells with structural aberrations was the basis of evaluation for clastogenicity. The test substance was considered positive for inducing chromosomal aberrations if a significant increase (ANOVA), pThe test substance was considered negative for inducing chromosomal aberration if no statistically significant increase was observed in the percentage of cells with chromosomal aberrations at any of the concentrations.
Statistics:
Statistical analysis consisted of a one-way analysis of variance (ANOVA) to compare the percentages of cells with aberrations in treated cells with the percentage of cells with aberrations from the vehicle controls. No statistical analysis was used to assess polyploidy and/or endoreduplication. Increases in polyploidy and endoreduplication may indicate possible induction of numerical chromosome changes via spindle apparatus disruption of one kind or another.
Species / strain:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH:
- Effects of osmolality:
- Precipitation: The test substance formed a yellow precipitate at most of the concentrations tested and was formulated as a suspension.

RANGE-FINDING/SCREENING STUDIES:
A cytotoxicity experiment was performed. Since acceptable cytotoxicity criteria were met by at least three of the dose levels of the test substance within an exposure time group, dose levels were selected for analysis of chromosome aberrations. This cytotoxicity experiment was reported as experiment 1 described above.

COMPARISON WITH HISTORICAL CONTROL DATA:
no data

ADDITIONAL INFORMATION ON CYTOTOXICITY:
1. Experiment 1 with metabolic activation-The lowest concentration that approximated at 50% reduction in cell number relative to the vehicle control (i.e., 2.5 mg/mL) and did not have an obscuring level of precipitation was selected as the highest dose level for the chromosome aberration analysis. The cytotoxicity at the 2.5 mg/mL concentration was approximately 58 %. The remaining concentrations selected for analysis were 0.078 and 1.25 mg/mL. Percent reductions in cell numbers of approximately 0 % and 51 %, (relative to the vehicle control) were observed at these dose levels, respectively.
2. Experiment 1 without metabolic activation-The lowest concentration that approximated a 50 % reduction in cell number relative to the vehicle control (i.e., 2.5 mg/mL) and did not have an obscuring level of precipitation was selected as the highest dose level for the chromosome aberration analysis. The cytotoxicity at the 2.5 mg/mL concentration was approximately 45 % The emaining concentrations selected for analysis were 0.156 and 1.25 mg/mL. Percent reductions in cell numbers of approximately 5 % and 25 %, (relative to the vehicle control) were observed at these dose levels, respectively.
3. Experiment 2 with metabolic activation-The lowest concentration that approximated a 50 % reduction in cell number relative to the vehicle control (i.e., 1.5 mg/mL) and did not have an obscuring level of precipitation was selected as the highest dose level for the chromosome aberration analysis. The cytotoxicity at the 1.5 mg/mL concentration was approximately 39 %. The remaining concentrations selected for analysis were 0.75 and 1.0 mg/mL. Percent reductions in cell numbers of approximately 39 % and 18 %, (relative to the vehicle control) were observed at these dose levels, respectively.
4. Experiment 2 without metabolic activation-Chromosome aberrations were evaluated from the cultures treated with concentrations of 1.0, 1.5 and 2.0 mg/mL. The reduction in cell numbers at these dose levels, relative to the vehicle control were 38 %, 40 % and 70 %, respectively.
Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

Dosing Formulation Analysis:

Analysis of the dose formulations showed that the target concentrations for the test substance were not verified. This was most likely due to the nature of the suspension of the test substance in culture media when samples for analytical chemistry were collected. Since the target concentrations could not be verified other factors were used to select dosing levels for analysis (cytotoxicity and test substance precipitation).

Chromosome Aberration Induction:

1. Experiment 1 with metabolic activation-No significant increase in cells with structural chromosomal aberrations was observed in the cultures treated with the test substance relative to the vehicle control. The percentage of polyploid and endoreduplicated cells was slightly elevated relative to the vehicle control in the presence of metabolic activation but these elevations were not statistically significant. The positive control chromosome aberration response was elevated relative to the vehicle and the response was statistically significant (t-test, p</=0.01).

2. Experiment 1 without metabolic activation- No significant increase in cells with structural chromosomal aberrations was observed in the cultures treated with the test substance relative to the vehicle control. The percent of polyploid and endoreduplicated cells was not significantly elevated over the vehicle control vales at any of the doses tested in the absence of metabolic activation. The positive control chromosome aberration response was elevated relative to the vehicle and the response was statistically significant (t-test, p</=0.01).

3. Experiment 2 with metabolic activation-No significant increases in cells with structural chromosomal aberrations were observed in the test substance treated cultures relative to the vehicle control. The percentage of polyploid and endoreduplicated cells was not elevated relative to the vehicle control in the absence of metabolic activation. The positive control chromosome aberration response was elevated relative to the vehicle and the response was statistically significant (t-test, p</=0.01).

4. Experiment 2 without metabolic activation- No significant increases in cells with structural chromosomal aberrations were observed in the cultures treated with the test substance relative to the vehicle control. The percentage of polyploid and endoreduplicated cells was not elevated relative to the vehicle control in the absence of metabolic activation. The positive control chromosome aberration response was elevated relative to the vehicle and the response was statistically significant (t-test, p</=0.01).

Conclusions:
Interpretation of results (migrated information):
negative with and without metabolic activation

The test substance was evaluated for potential clastogenic effects using the structural chromosome aberration assay in Chinese hamster ovary cells, with and without metabolic activation. The test substance failed to induce any clastogenic responses in the CHO cells when tested in the presence and absence of metabolic activation up to dose levels that resulted in cytotoxicity and/or precipitation.
Executive summary:

No genotoxicity data are available for tungstic acid (target substance). However, genotoxicity data are available for tungsten trioxide (source substance), which were used for read-across. Tungstic acid (WO3•H2O) is the hydrated form of tungsten trioxide (WO3). Based on Annex V, hydrates and water free forms (anhydrous) of compounds can be regarded as the same substance for registration purposes. Therefore, tungstic acid is considered equivalent to WO3. For more details on the rationale, refer to the attached description of the read-across approach.

Endpoint:
in vitro gene mutation study in mammalian cells
Remarks:
Type of genotoxicity: gene mutation
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Study period:
2003-07-17 to 2004-01-07
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Remarks:
The reliability of this study for the substance tested is a K1, but in application of read-across to a different substance ECHA’s guidance specifies that the score can be a maximum of K2.
Justification for type of information:
REPORTING FORMAT FOR THE CATEGORY APPROACH
1. HYPOTHESIS FOR THE CATEGORY APPROACH: The hypothesis is that properties are likely to be similar or follow a similar pattern because of the presence of a common metal ion, in this case tungstate.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES):
Source: Sodium tungstate
Target: Tungstic acid
3. CATEGORY APPROACH JUSTIFICATION: See Annex 3 in CSR
4. DATA MATRIX: See Annex 3 in CSR
Reason / purpose for cross-reference:
exposure-related information
Reason / purpose for cross-reference:
read-across: supporting information
Qualifier:
according to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
yes
Remarks:
The top concentration used in the assay (3500 ug/mL) is slightly above the recommended testing limit (10 mM) for the assay.
GLP compliance:
yes
Type of assay:
mammalian cell gene mutation assay
Target gene:
Thymidine kinase locus
Species / strain / cell type:
mouse lymphoma L5178Y cells
Details on mammalian cell type (if applicable):
- Type and identity of media: The medium used for the study was RPMI 1640 supplemented with horse serum (10 % by volume), pluronic F68, L-glutamine, sodium pyruvate, penicillin and streptomycin. Treatment medium was Fischer's medium with the same medium supplements used in the culture medium except that the horse serum concentration was reduced to 5 % by volume. Cloning medium consisted of the RPMI 1640 culture medium with up to 20 % horse serum, without Pluronic F68 and with the addition of 0.24 % Noble agar to achieve a semi-solid state. Selection medium was cloning medium that contained 3 ug/mL of 5-trifluorothymidine.
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: yes
- Periodically checked for karyotype stability: yes
- Periodically "cleansed" against high spontaneous background: yes
Additional strain / cell type characteristics:
other: heterozygous at the TK locus
Metabolic activation:
with and without
Metabolic activation system:
Aroclor 1254 induced rat liver S9
Test concentrations with justification for top dose:
62.5, 125, 250, 500, 1000, 1500, 2000, 2500, 3000 and 3500 µg/mL
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: Water
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
methylmethanesulfonate
Remarks:
Non-activation assay Migrated to IUCLID6: 13 µg/mL
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: Methylcholanthrene-2 and 4 µg/mL
Remarks:
Activation assay
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium


DURATION
- Exposure duration: 4 hours
- Expression time (cells in growth medium): 2 days
- Selection time (if incubation with a selection agent): 14 days


SELECTION AGENT (mutation assays): 5-trifluorothymidine


NUMBER OF REPLICATIONS: 3


NUMBER OF CELLS EVALUATED: 3 x 10^6 cells


DETERMINATION OF CYTOTOXICITY
- Method: relative total growth


OTHER: Sizing Analysis- Both the small and large colonies were quantified for all cultures. A bimodal curve was generated and small and large colonies were quantitated by the areas under the curves. The large colonies presumably arose from point mutations and the small colonies from chromosome changes.

Evaluation criteria:
See below
Statistics:
no data
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS:
- Precipitation: The test substance formed a transparent, colorless solution in water at 35 mg/mL, the highest concentration prepared for use in the assay. The test substance remained soluble at all concentrations tested.

RANGE-FINDING/SCREENING STUDIES: Cells were treated with the test substance for approximately 4 hours in the presence and absence of S9 activation at concentrations ranging from 6.90-3500 ug/mL. Test substance concentration for the main gene mutation assay were chosen to cover a toxicity range from 10 % to 20 % survival to no apparent effect on growth compared to the vehicle control. If little or no toxicity was observed and solubility was maintained, the mutation experiment was initiated with a maximum concentration of 5 mg/mL or 10 mM (whichever was lowest). If precipitation of the test substance occurred in the culture medium, the maximum applied dose was at least twice the solubility limit in culture medium. In this assay, the high dose was slightly higher than the OECD recommended guideline of 10 mM.
In the non-activation and activation assays, the test substance induced no cytotoxicity to weak cytotoxicity up to and including 1750 ug/mL and moderate cytotoxicity at 3500 ug/mL.

COMPARISON WITH HISTORICAL CONTROL DATA: One of the vehicle control cultures for the initial assay in the absence of metabolic activation (144.8 x 10^-6) was slightly above historical data range (36.4 to 135.7 x 10^-6) for mutant frequency. In this same assay one of the positive control cultures (522.0 x 10^-6) was also above the historical data range (227.0 to 487.4 x 10^-6) for mutant frequency. In addition, one vehicle control culture (139.1 x 10^-6) in the initial mutation assay with activation was slightly above the historical data range (34.0 to 123.9 x 10^-6) for mutant frequency.

ADDITIONAL INFORMATION ON CYTOTOXICITY:
1. Initial Non-activation Mutation Assay-Concentrations at 62.5 and 125 ug/mL were discarded because a sufficient number of higher concentrations were available. The remaining eight treatments induced no cytotoxicity to moderate cytotoxicity (88.3 % (250 ug/mL) to 34.0 % (3000 ug/mL) relative growths).
2. Confirmatory Non-activation Mutation Assay- Concentrations at 62.5 and 125 ug/mL were terminated because there were sufficient higher concentrations available for analysis. The remaining eight concentrations induced no cytotoxicity to high cytotoxicity (120.3 % (250 ug/mL) to 13 % (3500 ug/mL) relative growth).
3. Initial Activation Mutation Assay- Concentrations at 62.5 and 125 ug/mL were terminated because there were sufficient higher concentrations available for analysis. The remaining eight concentrations induced no cytotoxicity (117.2 % to 81.8 % relative growths).
4. Confirmatory Activation Mutation Assay- Concentrations at 62.5 and 125 ug/mL were terminated because there were sufficient higher concentrations available for analysis. The remaining eight concentrations induced no cytotoxicity to moderate cytotoxicity (95.5 % (250 ug/mL) to 39.9 % (3500 ug/mL) relative growths).


OTHER: The average cloning efficiencies for the vehicle control were 91.4 % and 110.9 % without metabolic activation and 96.6 % and 109.5 % with metabolic activation, which demonstrated acceptable cloning conditions for the assays. The positive control cultures induced large increases in mutant frequencies that were greatly in excess of the minimum criteria.
Mutant colonies from all the cultures showed the expected bimodal distribution, and mutant colonies from the positive control cultures showed both small and large colonies.
Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.
Conclusions:
Under the conditions of this assay, the test substance was reported as negative for inducing forward mutations at the TK locus in L5178Y mouse lymphoma cells in the presence and absence of Aroclor 1254 induced rat liver S9.
Executive summary:

No mammalian mutagenicity data of sufficient quality are available for tungstic acid (target substance). However, mammalian mutagenicity data are available for sodium tungstate (source substance), which will be used for read-across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read-across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read-across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach included in the Category section of this IUCLID submission and/or as an Annex in the CSR.

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Study period:
2002-05-14 to 2002-10-18
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Remarks:
Study was conducted according to OECD guideline 471 (Bacterial Reverse Mutation Assay) and GLP. The reliability of this study for the substance tested is a K1, but in application of read-across to a different substance, ECHA's guidance specifies that the score can be a maximum of a K2.
Justification for type of information:
Tungstic acid (WO3•H2O) is the hydrated form of tungsten trioxide (WO3). Based on Annex V, hydrates and water free forms (anhydrous) of compounds can be regarded as the same substance for registration purposes. Therefore, tungstic acid will be considered equivalent to WO3. For more details on the rationale, refer to the attached description of the read-across approach.
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay
Target gene:
Histidine locus
Species / strain / cell type:
S. typhimurium, other: TA97a, TA98, TA100, TA102 and TA1535
Additional strain / cell type characteristics:
other: See additional information on methods below
Metabolic activation:
with and without
Metabolic activation system:
Aroclor 1254 induced rat liver S9
Test concentrations with justification for top dose:
62, 185, 556, 1667, and 5000 µg/plate
-The solution for the highest dose was prepared by suspending 500 mg of the test substance in 10 mL of deionised water. The solutions for the lower concentrations were prepared by subsequent dilution of one volume of the higher concentrated solution with two volumes of water. The test substance was suspended and diluted immediately before the start of the Ames test. The time between the preparation and the administration to the last petri dish was less than 2 h.
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: Deionised water
- Justification for choice of solvent/vehicle: Solubility in water < 10 mg/L WO3
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: 2-Aminoanthracene-used for tester strains TA98 (1 µg/plate), TA100 (2 µg/plate) and TA1535 (2 µg/plate)
Remarks:
with metabolic activation
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
no
Positive controls:
yes
Positive control substance:
7,12-dimethylbenzanthracene
Remarks:
with metabolic activation Migrated to IUCLID6: used for tester strain TA97a (10 µg/plate)
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: 1,8-Dihydroxy-anthraquinone: used for tester strain TA102 (50 µg/plate)
Remarks:
with metabolic activation
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
no
Positive controls:
yes
Positive control substance:
2-nitrofluorene
Remarks:
without metabolic activation Migrated to IUCLID6: used for tester strain TA98 (2 µg/plate)
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
no
Positive controls:
yes
Positive control substance:
sodium azide
Remarks:
without metabolic activation Migrated to IUCLID6: used for tester strains TA100 (2 ug/plate) and TA1535 (1 µg/plate)
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: 4-Nitro-o-phenylenediamine: used for tester strain TA97a (10 µg/plate)
Remarks:
without metabolic activation
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: t-Butyl-hydroperoxide: used for tester strain TA102 ( 50 µg/plate)
Remarks:
without metabolic activation
Details on test system and experimental conditions:
METHOD OF APPLICATION: In agar (plate incorporation)

DURATION
- Exposure duration: 2 days
- Selection time (if incubation with a selection agent): 2 days

SELECTION AGENT (mutation assays): Histidine

NUMBER OF REPLICATIONS: 3 replicates were used for the test substance and positive controls, and 6 replicates were used for the vehicle control

NUMBER OF CELLS EVALUATED: The number of viable cells in the overnight-cultures was in the range of approximately 2xE8 cells/mL.


DETERMINATION OF CYTOTOXICITY
- Method: reduction in bacterial background


OTHER: The batch of tester strain that were tested for ampicillin resistance (TA102: ampicillin/tetracycline resistance), UV-sensitivity and sensitivity against crystal violet, for spontaneous mutation frequencies and for sensitivities against the positive control substances in September 2000. The bacteria were stored frozen since that time.
Evaluation criteria:
Means and standard deviations were calculated for the number of mutants in every concentration group.
The criteria for a positive result were:
A reproducible increase of the number of revertants to more than the following threshold values for at least one of the concentrations:
- For the strains with a low spontaneous revertant rate ie TA98 and TA1535: 2 1/2 fold of the amount of the spontaneous revertants.
- For the strains with a high spontaneous revertant rate ie TA97a, TA100 and TA102: 1 2/3 fold of the amount of the spontaneous revertants.
Key result
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 102
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 97a
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Water solubility: The test substance formed a suspension in water which was obviously homogeneous.
- Precipitation: A precipitate was visible when the test substance was mixed with the agar at the 556 ug/plate samples and above. The precipitate was still visible at concentrations of 1667 and 5000 ug/plate when the colonies were counted, but did not impede the counting.

RANGE-FINDING/SCREENING STUDIES: The test substance was evaluated in a preliminary toxicity test using the Plate Incorporation Assay method. The test substance was tested at concentrations ranging from 21-5000 ug/plate in tester strain TA100 in the absence of metabolic activation. The test substance was not toxic up to 5000 ug/plate. It was therefore decided to use 5000 ug/plate as the highest concentration for the Ames Assay, which is the limit concentration according to the guidelines. Each of the other 4 concentrations was 1/3 of the preceding one.

COMPARISON WITH HISTORICAL CONTROL DATA: All solvent control values fell within historical range.

OTHER: All positive control substances increased the mutation frequency to more than the above mentioned threshold values. As 2-aminoanthracene, 1,8-dihydroxy-anthraquinone and 7,12-dimethyl-benz[a]anthracene required metabolic activation for mutagenicity, the results of these substances demonstrated the efficiency of the metabolizing system.
There were no such increases in the number of mutants in any of the tested bacterial strains at any of the tested concentrations of the test substance.The addition of the S9 metabolic activation did not change these results.
Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

The results were verified by a second, independent experiment.

Conclusions:
Interpretation of results (migrated information):
negative

According to the results of the study, Tungsten Oxide (WO3) was non-mutagenic in the Ames test with Salmonella tester strains TA97a, TA98, TA100, TA102 and TA1535 up to the limit concentration of 5000 ug/plate in the presence and absence of metabolic activation.
Executive summary:

No genotoxicity data are available for tungstic acid (target substance). However, genotoxicity data are available for tungsten trioxide (source substance), which were used for read-across. Tungstic acid (WO3•H2O) is the hydrated form of tungsten trioxide (WO3). Based on Annex V, hydrates and water free forms (anhydrous) of compounds can be regarded as the same substance for registration purposes. Therefore, tungstic acid is considered equivalent to WO3. For more details on the rationale, refer to the attached description of the read-across approach.

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
supporting study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Remarks:
Data was taken directly from NTP website. A full study report was not available for review. Three bacterial strains were used. Five concentrations plus controls were evaluated. Assay was conducted both with and without metabolic activation.
Justification for type of information:
Tungstic acid (WO3•H2O) is the hydrated form of tungsten trioxide (WO3). Based on Annex V, hydrates and water free forms (anhydrous) of compounds can be regarded as the same substance for registration purposes. Therefore, tungstic acid is considered equivalent to WO3. For more details on the rationale, refer to the attached description of the read-across approach.
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
yes
Remarks:
3 bacterial strains were used, while 5 are recommended. 2-aminoanthracene should not be used as sole indicator of the efficacy of S-9. Each batch of S-9 should be characterized with a mutagen that requires metabolic activation by microsomal enzymes.
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Target gene:
histidine locus
Species / strain / cell type:
E. coli WP2 uvr A pKM 101
Species / strain / cell type:
S. typhimurium TA 100
Species / strain / cell type:
S. typhimurium TA 98
Metabolic activation:
with and without
Metabolic activation system:
male Sprague Dawley rat liver S9
Test concentrations with justification for top dose:
0, 100, 500, 1000, 5000, 10000 µg/plate
Vehicle / solvent:
water
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
no
Positive controls:
yes
Positive control substance:
methylmethanesulfonate
Remarks:
without activation Migrated to IUCLID6: Used with E. coli WP2 uvr A pKM 101 strain
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: 2-aminoanthracene (or occassionally, sterigmatocystin) was used with strains E. coli WP2 uvr A pKM 101, S. typhimurium TA98 and TA100
Remarks:
with activation
Details on test system and experimental conditions:
METHOD OF APPLICATION: preincubation


Evaluation criteria:
Means and standard deviations were calculated for the number of mutants in every concentration group.
Key result
Species / strain:
E. coli WP2 uvr A pKM 101
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
not specified
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
not specified
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
not specified
Positive controls validity:
valid
Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.
Conclusions:
Interpretation of results (migrated information):
negative

According to the results of the study, Tungsten trioxide was non-mutagenic in the Ames test with Salmonella tester strains TA98, TA100 and E. coli pKM101 up to 10000 ug/plate in the presence and absence of metabolic activation.
Executive summary:

No genotoxicity data are available for tungstic acid (target substance). However, genotoxicity data are available for tungsten trioxide (source substance), which were used for read-across. Tungstic acid (WO3•H2O) is the hydrated form of tungsten trioxide (WO3). Based on Annex V, hydrates and water free forms (anhydrous) of compounds can be regarded as the same substance for registration purposes. Therefore, tungstic acid is considered equivalent to WO3. For more details on the rationale, refer to the attached description of the read-across approach.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Justification for classification or non-classification

Two in vitro reverse gene mutation assays and an in vitro chromosome aberration assay of sufficient quality on tungsten trioxide (source substance) were negative for mutagenicity. In addition, an in vitro L5178Y TK +/- Mouse Lymphoma Forward Mutation Assay on sodium tungstate dihydrate (source substance), used for read-across to tungstic acid, were negative for mutagenicity. Therefore, based on the weight-of-evidence from the available data, tungstic acid does not warrant classification for mutagenicity.