Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 236-948-9 | CAS number: 13560-89-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Hydrolysis
Administrative data
Link to relevant study record(s)
- Endpoint:
- hydrolysis
- Type of information:
- calculation (if not (Q)SAR)
- Remarks:
- Migrated phrase: estimated by calculation
- Adequacy of study:
- disregarded due to major methodological deficiencies
- Reliability:
- 3 (not reliable)
- Rationale for reliability incl. deficiencies:
- significant methodological deficiencies
- Remarks:
- The method of calculation is not specified
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- Estimation of first-order rate constant, method of calculation not specified.
- GLP compliance:
- no
- Radiolabelling:
- no
- Analytical monitoring:
- not required
- Buffers:
- none
- Estimation method (if used):
- not specified
- Details on test conditions:
- no test
- Number of replicates:
- none
- Positive controls:
- no
- Negative controls:
- no
- Statistical methods:
- not specified
- Transformation products:
- not specified
- Details on hydrolysis and appearance of transformation product(s):
- No details reported
- Details on results:
- The first-order rat constant for the oxidation of Dechlorane Plus in water was estimated to be 1/10000000000 / sec corresponding to an oxidation half-life in water of 2100 years.
- Validity criteria fulfilled:
- no
- Conclusions:
- No valid results, as the method of estimation and calculation was not described.
- Executive summary:
The rate of oxidation of Dechlorane Plus in water was estimated as first-order rate constant with 1/10000000000 / sec corresponding to an oxidation half-life in water of 2100 years. The method of estimation and calculation was not reported.
- Endpoint:
- hydrolysis
- Data waiving:
- study technically not feasible
- Justification for data waiving:
- the study does not need to be conducted because the substance is highly insoluble in water
Referenceopen allclose all
Description of key information
In accordance with column 2 of REACH Annex VIII, section 9.2.2.1, the study does not need to be conducted for substances highly insoluble in water.
Key value for chemical safety assessment
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.