Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 231-780-2 | CAS number: 7727-18-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
When exposed to humidity of air, VOCl3 instantaneously decomposes in V2O5 and HCl, following the equation:
2 VOCl3 + 3 H2O => V2O5 + 6 HCl
That is why no data is available for VOCl3 as such.
Released into water, vanadium is expected to exist primarily in the tetravalent and pentavalent forms. Both species are known to bind strongly to mineral or biogenic surfaces by adsorption or complexing. The chemical formulas of the vanadyl species most commonly reported in water are VO(2+) and VO(OH)(1+), and the vanadate species H2VO4(1-) and HVO4(2-).
In aquatic compartment, this vanadate ion is then the most common form and its partition coefficients have been deeply studied. The conclusions given in the adsorption section (high Kp) showed a very strong affinity of vanadium to particulate matter, and then a low mobility in soils.
These coefficients are very important and will be used for the environmental assessment.
The references pointed in the following endpoints support this vanadium behaviour in environment and allowed a good assessment of this compound regarded its ecotoxic potential.
Vanadium behaviour in soil compartment was also studied and showed that vanadium is found in rocks and soil in the relatively insoluble trivalent form, and can also be present in the pentavalent form as vanadates.
Weathering decomposes parent rock and increases vanadium availability in soils. Jacks (1976) found that the bulk of vanadium deposited in the environment is retained in the soil, mainly in association with organic matter.
The mobility of vanadium in soils is affected by pH. Vanadium is fairly mobile in neutral or alkaline soils relative to other metals, but its mobility decreases in acidic soils. In the presence of humic acids, mobile metavanadate anions can be converted to the immobile vanadyl cations resulting in local accumulation. Under oxidizing, unsaturated conditions some mobility is observed, but under reducing, saturated conditions vanadium is immobile. The pentavalent cation is considerably more soluble than the trivalent cation, is readily dissolved by groundwater, and can be transported over long distances.
(references: CICAD 29:VANADIUM PENTOXIDE AND OTHER INORGANIC VANADIUM COMPOUNDS, World Health Organization Geneva, 2001 and Ecological Soil Screening Levels for Vanadium, U.S. Environmental Protection Agency, April 2005)
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.