Registration Dossier

Ecotoxicological information

Short-term toxicity to aquatic invertebrates

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
short-term toxicity to aquatic invertebrates
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
study well documented, meets generally accepted scientific principles, acceptable for assessment
Remarks:
The study was well documented and meets generally accepted scientific principles, but was not conducted in compliance with GLP and no analytical monitoring was conducted.
Qualifier:
according to guideline
Guideline:
other: Bringmann and Kuhn (1977)
Deviations:
not specified
Principles of method if other than guideline:
Method: The methodology is not presented in a detailed manner however the principles of the methods correspond to the ones in the OECD guideline 202 for the acute immobilisation test on D. magna.
GLP compliance:
no
Analytical monitoring:
no
Vehicle:
no
Details on test solutions:
PREPARATION AND APPLICATION OF TEST SOLUTION

- Method: dispersion
Test organisms (species):
Daphnia magna
Details on test organisms:
TEST ORGANISM

- Common name: water flea

- Strain: Daphnia magna IRCHA

- Source: Laboratory culture

- Age at study initiation: <24h

- Feeding during test: not reported


ACCLIMATION

- Acclimation period: not reported

- Type and amount of food: dry algae
Test type:
static
Water media type:
freshwater
Limit test:
no
Total exposure duration:
24 h
Hardness:
Not Reported
Test temperature:
ca. 20 °C
pH:
7.6-7.7
Dissolved oxygen:
saturated oxygen levels in test water
Salinity:
N. A.
Nominal and measured concentrations:
A range of concentrations to achieve three or more responses between 0 and 100% immobilisation. Details on concentrations tested not reported.
Details on test conditions:
TEST SYSTEM

- Test vessel: flask

- Size: 50 ml

- Aeration: none

- No. of organisms per vessel: 10

- No. of vessels per concentration: 2

- No. of vessels per control: 2



TEST MEDIUM / WATER PARAMETERS

- Source/preparation of dilution water: standardised synthetic fresh water

- Intervals of water quality measurement: daily


OTHER TEST CONDITIONS

- Photoperiod: 9h aritificial light



EFFECT PARAMETERS MEASURED: immobility.
Reference substance (positive control):
no
Duration:
24 h
Dose descriptor:
EC0
Effect conc.:
152 mg/L
Nominal / measured:
nominal
Conc. based on:
test mat.
Basis for effect:
mobility
Duration:
24 h
Dose descriptor:
EC50
Effect conc.:
201 mg/L
Nominal / measured:
nominal
Conc. based on:
test mat.
Basis for effect:
mortality
Duration:
24 h
Dose descriptor:
EC100
Effect conc.:
270 mg/L
Nominal / measured:
nominal
Conc. based on:
test mat.
Basis for effect:
mortality
Reported statistics and error estimates:
Reported as standard statistical methods available at the time the study was conducted and analysis of EC50 on probit scale.
Validity criteria fulfilled:
not specified
Conclusions:
A 24 h EC50 of 201 mg/L has been determined for the effects of the test substance on immobility of the freshwater flea Daphnia magna.

Description of key information

EC50 (24 h) 201 mg/L D. magna

Key value for chemical safety assessment

Fresh water invertebrates

Fresh water invertebrates
Effect concentration:
201 mg/L

Additional information

A 24 h EC50 of 201 mg/L has been determined for the effects of hexan-1-ol on immobility of the freshwater invertebrate Daphnia magna. This represents the lowest reliable measured value available for this endpoint on hexanol.

A short term toxicity test with Nitocria spinipes has determined an LC50 value of 317 mg/L in brackish water. Estimates have determined EC50 values in the range of 110 -123 mg/L.

Discussion of trends in the Category of C6-24 linear and essentially-linear aliphatic alcohols:

Linear LCAAs

The data presented in the table below show the toxicity of the linear LCAAs to increase from an EC50 of 200 mg/L for C6 to 0.77 mg/L for C12. Effects have also been observed in tests with C13 and C14 LCAAs but at concentrations that exceeded the solubility of the alcohols. Although not explicitly identified in the test reports, physical effects (rather than true toxicity) cannot therefore be excluded from the interpretation of the results for these two LCAAs. In the Unilever (1994) study with C14 the authors have recorded that the test substance adhered to the daphnids at concentrations higher than the water solubility of 1-tetradecanol. This indicates that physical fouling is likely to have caused the effects seen at the EC50 value of 4 mg/L.

 

The lowest reliable short-term EC/LC50 values for invertebrates exposed to linear LCAAs are presented in the following table.


Table: Key studies for invertebrate short-term toxicity studies on single carbon chain length linear LCAAs.

CAS #

Chemical name

Comment

Water solubility (mg/L)

Species

Method/ Guideline

Exposure regime

Endpoint

Value (mg/L)1

Reliability code

Reference

111-27-3

1-Hexanol

 

5900 at 20°C

Daphnia magna

Not specified

Static

24 h EC50

200 (n)

2

Bringmann and Kuhn, 1982

111-70-6

1-Heptanol

SUPPORTING

1300 at 20°C

D. magna

Not specified

Static

24 h EC50

82 (n)

2

Bringmann and Kuhn, 1982

111-87-5

1-Octanol

 

550 at 25°C

D. magna

Not specified

Static

24 h EC50

20 (n)

2

Bringmann and Kuhn, 1982

143-08-8

1-Nonanol

 

130 at 20°C

Nitocra spinipes (brackish)

Not specified

Static

96 h EC50

25 (n)

2

Bengtsson, Renberg, and Tarkpea, 1984

112-30-1

1-Decanol

 

40 mg/L at 20°C

N. spinipes (brackish)

Not specified

Static

96 h EC50

3.1 (n)

2

Bengtsson, Renberg, and Tarkpea, 1984

68516-18-7

Decene, hydroformylation products

Supporting.hydroformylation product (=C11)

No data

D. magna

EPA 1975

Static

48 h LC50

4.2 (n)

2

Burgess and Forbis, 1983b

112-42-5

1-Undecanol

 

8.0 at 20°C

N.spinipes (brackish)

Not specified

Static

96 h LC50

0.8-1.1 (n)

2

Bengtsson, Renberg, and Tarkpea, 1984

112-53-8

1-Dodecanol

 

1.9 at 20°C

D. magna

DIN 38412

Static

48 h EC50

0.77 (n)

2

Laboratory of Pharmacology and Toxicology, 1997

112-70-9

1-Tridecanol

SUPPORTING

0.38 at 20°C

D. magna

Not specified

Not specified

EC50 (duration unknown)

0.51 (>LoS)

4

Unilever, 1995

112-72-1

1-Tetradecanol

 

0.19 at 25°C

D. magna

Not specified

Not specified

48 h EC50

3.2

(>LoS)

2

Unilever, 2010

Notes:

1>LoS: LC50 observed was greater than the limit of solubility (n) based on nominal concentrations, (m) based on measured concentrations.

SUPPORTING denotes that the substance is not for registration but the data are used to support the category


Multi-constituents LCAAs

The data presented in the table below show the multi-constituent substances containing LCAAs with carbon numbers in the ranges of C7-9 to C12-15 to exert short-term toxicity at concentrations of between 0.23 and 30 mg/L. At these concentrations it is likely that all constituents will have been fully dissolved. The short-term EC50 of the C14-15 LCAAs to aquatic invertebrate was determined to be above the limit of solubility of the substance.

For the C12-14 and C12-18 multi-constituent substances there was evidence of toxic effects in tests conducted on test media prepared as water-accommodated fractions at loading rates that exceeded the solubility of some constituents. For the C16-18 substance there was evidence of effects in test media that could have contained undissolved test material. The possibility of physical effects (rather than true toxicity) contributing to the observed effects were not discussed in the test report but cannot be excluded.

 

The lowest reliable short-term EC/LC50 values for invertebrates exposed to multi-constituent LCAAs are presented in the following table.


Table: Invertebrate short-term toxicity studies on mixed carbon chain length (multi-constituent) LCAAs (species are freshwater unless noted otherwise).

CAS #

Chemical name

Comment

Water solubility (mg/L)

Species

Method/ Guideline2

Exposure regime

Endpoint

Value (mg/L)3

Reliability code

Reference

 

Alcohols, C7-9

 

510 mg/L at a loading rate of 1000 mg/L (estimated)

Daphnia magna

OECD 202

Semi-static

48 h EC50

5.9

1

Fraunhofer Institute, 2005a

Mixture of 68527-05-9 and 70955-11-2-

Mixture of hexane and octene hydroformylation products

i.e. alcohols, C7-9
SUPPORTING

No data

D. magna

EPA 1975

Static

48 h LC50

30 (n)

2

Burgess and Forbis, 1983c

 68515-81-1

Nonanol, branched and linear

 Read-across from C9

121 (estimated)

Nitocra spinipes (brackish)

Not specified

Static

96 h EC50

25 (n)

2

Bengtsson, Renberg, and Tarkpea, 1984

 

Alcohols, C9-11- branched and linear

 Also valid for Alcohols, C9-11 CAS 66455-17-2

44 at a loading rate of 1000 mg/L. (estimated)

D. magna

Not specified

Static

48 h EC50

7 (n)

2

Shell Research Limited, 1983

 

Alcohols, C9-11- branched and linear

Also valid for Alcohols, C9-11 CAS 66455-17-2

44 at a loading rate of 1000 mg/L. (estimated)

Crangon crangon (marine)

UK MAFF

Semi-static

96 h LC50

4.6 (n)

2

Huntingdon Life Sciences Ltd. 1991a.

Mixture of 68516-18-7, 68527-05-9 and 70955-11-2-

Mixture of octane and decene hydroformylation products

SUPPORTING

No data

D. magna

EPA 1975

Static

48 h LC50

11 (n)

2

Burgess and Forbis, 1983d

 90342-32-8

Decanol, branched and linear

 Read-across from C10

26.17 at 20°C

N. spinipes (brackish)

Not specified

Static

96 h EC50

3.1 (n)

2

Bengtsson, Renberg, and Tarkpea, 1984

 128973-77-3

Undecanol, branched and linear

 

Reaction mass of 2-methyldecan-1-ol and 2-propyloctan-1-ol and 2-ethylnonan-1-ol and 2-butylheptan-1-ol

 Read-across from C11

6.3 at 25°C

N. spinipes (brackish)

Not specified

Static

96 h LC50

0.8-1.1 (n)

2

Bengtsson, Renberg, and Tarkpea, 1984

 740817-83-8

Alcohols, C12-13-branched and linear

 

2.4 at 25oC

D. magna

OECD 202 WAF

Static

48 h EL50

0.23(n)

1

Shell, 2000a

 75782-87-5

Alcohols, C12-13

 

2.4 at 25oC

C. crangon (marine)

UK MAFF

Semi-static

96 h LC50

>10 (n) (>LoS)

2

Huntingdon Life Sciences Ltd. 1991b.

 740817-83-8

Alcohols, C12-13-branched and linear

 

2.9-3.1 at 20°C

D. magna

OECD 202 WAF

Static

48 h EL50

2.8 (n)

1

TNO, 2000b

80206-82-2

Alcohols, C 12-14

Type A
SUPPORTING

4.6 predicted at 1000 mg/L loading rate

D. magna

EU 92/69/EWG WAF

Static

48 h EL50

63 (n) (>LoS)

1

Henkel, 1998b

90604-40-3

Alcohols, C12-15-branched and linear

 

0.80 at 20°C

D. magna

OECD 202 WAF

Static

48 h EL50

<1.0

1

Shell, 2001a

67762-25-8

Alcohols, C 12-18

Type A
SUPPORTING

1.7 predicted at 100 mg/L loading rate

D. magna

EU 92/69/EWG

Static

48 h EL50

40 (n) (>LoS)

1

Henkel, 1998a

68002-94-8

Alcohols, C 16-18 and 18 Unsaturated 

SUPPORTING

0.044 predicted at 1000 mg/L loading rate

D. magna

EU Guideline 92/69/EWG

Static

48 h EC50

70 (n) (>LoS)

2

Henkel KGaA. 1995.

Notes:

1Compositional Types are described in section 1.4.7 of the category report.

2WAF denotes test medium was a water-accommodated fraction

3>LoS: EC50 observed was greater than the limit of solubility of at least some constituents of the substance. (n) based on nominal concentrations, (m) based on measured concentrations.

SUPPORTING denotes that the substance is not for registration but the data are used to support the category

n/a denotes not applicable


The data for nonanol, branched and linear, decanol branched and linear, decanol branched and undecanol branched and reaction mass of 2-methyldecan-1-ol and 2-propyloctan-1-ol and 2-ethylnonan-1-ol and 2-butylheptan-1-ol alcohols have been read-across from their linear LCAAs counterparts (C9, C10 and C11) since they are essentially linear LCAAs.

The measured data do not permit a definite toxicity cut-off to be identified for the single carbon number LCAAs or the multi-constituent substances. This is because the potential for physical effects to contribute to the results obtained for the C13 and 14 single carbon number alcohols, and the multi-constituent substances containing constituents with carbon numbers that are all >C12, cannot be excluded. However, it is reasonable to conclude from the data that are presented that it is unlikely that linear LCAAs with carbon numbers >C13 and multi-constituent LCAAs with carbon numbers all >C13 would be toxic.

 

References

 

Bengtsson, B., Renberg, L., and Tarkpea, M. (1984). Molecular structure and aquatic toxicity-An example with C1-C13 aliphatic alcohols. Chemosphere 13(5/6):613-622.

 

Bringmann, V. and Kuhn, R.1982. Results of toxic action of water pollutants on Daphnia magna Straus tested by an improved standardized procedure. Z. Wasser Abwasser Forsch. 15(1):1-6.

 

Burgess, D. and Forbis, A.D. 1983b. Acute toxicity of oxo alcohol 1100 to Daphnia magna. Static acute bioassay report 30851.

 

Burgess, D. and Forbis, A.D. 1983d. Acute toxicity of oxo alcohol 7911 to Daphnia magna. Static acute bioassay report 30848.

 

Burgess, D. and Forbis, A.D. 1983c. Acute toxicity of oxo alcohol 7900 to Daphnia magna. Static acute bioassay report 30845.

 

Fraunhofer Institute, 2005a, Daphnia, acute immobilization, Linevol 79. Study SDA-04/4-20, Fraunhofer Institute.

 

Henkel, 1998a. Henkel Report No. R9800103.

 

Henkel,1998b. Henkel KGaA Report No. R9800104.

 

Henkel KGaA., 1995. Report No. 9400262. May 1995.

 

Huntingdon Life Sciences Ltd.(HLS).1991a. Report No. SLL 207(a)/91714.

 

Huntingdon Life Sciences Ltd.(HLS).1991b. Report No. SLL 207(b)/91602.

 

Laboratory of Pharmacology and Toxicology. 1997. Examination of 1-Dodecanol in an acute immobilization test in Daphnia magna. LPT Report No. 10762/97.

 

Shell, 2000a. Shell. RTS Report No. CT.00.47050.

 

Shell, 2001a. Shell. RTS Report No. OG.01.49011.

 

Shell Research Limited, 1983. Toxicity tests with Daphnia magna: Acute toxicity of eight test materials to a newly-introduced strain of D. magna in reconstituted fresh water. Shell Research Limited, Sittingbourne Research Centre. SBGR.83.100.

 

TNO Nutrition and Food Research Institute. 2000b. Static acute toxicity test with compound 33A abd the crustacean species Daphnia magna. TNO report V98.1320.

 

Unilever, 1995. Acute toxicity of 1-tetradecanol to Daphnia magna. Unilever. Study AT/ALC/BK4.

 

Unilever, 2010. The Acute toxicity of 1-tetradecanol to Daphnia magna. Testing laboratory: Unilever Port Sunlight Research Laboratory, Quarry Road East, Bebington, Wirral Merseyside, L63 3JW, UK. Owner Company: Unilever. Company study no.: AT/ACL/BK4. Report date: 2010-08-01 (2010 study report summarising a 1994 study).