Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 209-400-1 | CAS number: 576-26-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
A qualitative judgement on the toxicokinetic behaviour was performed based on physico-chemical characteristics. 2,6-Xylenol is expected to be well absorbed via the oral, dermal and inhalation routes. Absorption factors of 100 % are proposed. The substance is anticipated to be widely distributed through the body, metabolised and excreted mainly in the urine.
Key value for chemical safety assessment
- Absorption rate - oral (%):
- 100
- Absorption rate - dermal (%):
- 100
- Absorption rate - inhalation (%):
- 100
Additional information
Absorption
Mechanisms by which substances can be absorbed in the gastro-intestinal (GI) tract include the passage of small water-soluble molecules (molecular weight up to around 200) through aqueous pores or carriage of such molecules across membranes with the bulk passage of water. As 2,6-xylenol is soluble in water (6 g/L) and has a relatively low molecular weight (122 grams/mole), this passive diffusion will be the predominant mechanism for absorption in the GI tract. Although ionized substances do not readily diffuse across biological membranes, the pKa of 2,6-xylenol (10.6) indicates that the hydroxyl group will not significantly be dissociated in the biologically relevant pH range (up to pH 8). In addition moderate octanol/water partition coefficient (logPow) values (between -1 and 4) are favourable for absorption by passive diffusion, being applicable for 2,6-xylenol (logPow = 2.3). Consequently, it can be concluded that 2,6-xylenol will show a high systemic exposure after oral administration. For risk assessment purposes oral absorption of 2,6-xylenol is set at 100 %. The results of the toxicity studies do not provide reasons to deviate from this proposed oral absorption factor.
Due to the low vapour pressure (20 Pa) and relatively high boiling point (202 degrees C) it is not expected that 2,6-xylenol will reach the nasopharyngeal region or subsequently the tracheobronchial or pulmonary region. In addition, only particles with aerodynamic diameters below 100 µm have the potential to be inhaled by humans; as 2,6-xylenol is described as a molten mass, particles below 100 µm are anticipated not to be present. In view of its moderate lipophilic character (logPow = 2.3) and water solubility (6 g/L), any 2,6-xylenol reaching the tracheobronchial region may be taken up by passive diffusion. For risk assessment purposes the inhalation absorption of 2,6-xylenol is set at 100 %.
2,6-Xylenol is a solid substance and hence will have to dissolve into the surface moisture of the skin before uptake can begin. Although 2,6-xylenol has a relatively high water solubility (6 g/L) its octanol/water partition coefficient (log Pow = 2.3) indicates a sufficiently lipophilic character to penetrate the lipid-rich stratum corneum. 2,6-Xylenol is sufficiently soluble in water to partition from the stratum corneum into the epidermis. Its chemical structure as well as its molecular mass do not indicate that dermal uptake will be slowed. With a molecular mass below 500 and log Pow in the range [-1, 4], the data meet the criteria for 100 % dermal absorption as given in the ECHA Endpoint Specific Guidance 7.c for the implementation of REACH (R.7.12 “Guidance on Toxicokinetics”). As 2,6-xylenol is corrosive to the skin, damage to the skin surface may enhance penetration. The further results of the toxicity studies do not provide reasons to deviate from this proposed dermal absorption factor of 100 %.
Distribution
Once absorbed the water soluble 2,6-xylenol is expected to widely distribute through the body. Its moderate lipophilic character indicates that 2,6-xylenol is likely to distribute into cells and the intracellular concentration may be higher than extracellular concentration. Wide distribution through the body is confirmed from the histopathologic findings in the repeated dose studies. Once exposure stops, the concentration within the body will decline at a rate determined by the half-life of the substance.
Metabolism and excretion
2,6-Xylenol is expected to undergo Phase I reactions including aliphatic and aromatic hydroxylation and further oxidation. Phase II reactions, including glucuronidation and sulfonation, will further increase water solubility. The mutagenic response in the presence of metabolic activation, compared to the negative response without metabolic activation in the in vitro chromosome aberration study indicates metabolism of 2,6-xylenol. Finally, based on the high water solubility and the low molecular weight, 2,6-xylenol and its conjugation products are expected to be mainly excreted in the urine.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.