Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 214-703-7 | CAS number: 1187-93-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Henry's Law constant
Administrative data
Link to relevant study record(s)
- Endpoint:
- Henry's law constant
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- QMRF and QPRF are attached
- Guideline:
- other: REACH guidance on QSARs R.6
- Principles of method if other than guideline:
- HENRYWIN estimates Henry's Law Constant (HLC) by two separate methods that yield two separate estimates. The first method is the Bond Contribution Method and the second is the Group Contribution Method. The Bond Method is able to estimate many more types of structures than the Group Method because it has a more extensive library of bond contribution values
- GLP compliance:
- no
- Specific details on test material used for the study:
- SMILE: FC(F)(F)OC(F)=C(F)F
- H:
- 32 100 Pa m³/mol
- Temp.:
- 25 °C
- Remarks on result:
- other: Bond Contribution Method
Reference
Description of key information
The Henry’s Law Constant of PMVE was estimated by QSAR (HENRYWIN model v.3.20, EPI Suite v 4.0). The model predicts a Henry’s Law constant = 32100 Pa.m3/mol indicating that PMVE is expected to rapidly distribute from the water to the atmosphere.
Key value for chemical safety assessment
- Henry's law constant (H) (in Pa m³/mol):
- 32 100
- at the temperature of:
- 25 °C
Additional information
According to Appendix R.7.1-4 “Henry’s law constant and evaporation rate” from the Guidance on Information Requirements and Chemical Safety Assessment Chapter R.7a: Endpoint Specific Guidance, Henry’s law constant is one of the most important factors in determining the environmental fate of chemicals. This physical law states that the mass of gas dissolved by a given volume of solvent is proportional to the pressure of the gas with which it is in equilibrium. The relative constant quantifies the partitioning of chemicals between the aqueous phase and the gas phase such as rivers, lakes and seas with respect to the atmosphere (gas phase). Indeed, this constant is a fundamental input for fugacity models that estimate the multimedia partitioning of chemicals (Mackay, 1991). According to RAECH guidance R.7.a for substances with HLC values around 100 Pa·m3/mol the volatilisation will be rapid.
PMVE is a gas at ambient conditions which boils at -26 °C (Yaws, Carl L. ©2010 Knovel). In order to evaluate the Henry’s Law constant of PMVE a QSAR evaluation was applied (HENRYWIN model v.3.20, EPI Suite v 4.0). The model predicts a Henry’s Law constant = 32100 Pa.m3/mol indicating that PMVE is expected to rapidly distribute from the water to the atmosphere.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.