Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Ecotoxicological information

Toxicity to terrestrial arthropods

Currently viewing:

Administrative data

Link to relevant study record(s)

Description of key information

The chemical safety assessment according to Annex I of Regulation (EC) No. 1907/2006 does not indicate the need to investigate further the toxicity to terrestrial arthropods. 

Key value for chemical safety assessment

Additional information

In accordance with Regulation (EC) No. 1907/2006, Annex X, Column 2, 9.4 further studies on the effects on terrestrial organisms do not have to be conducted since the chemical safety assessment indicates that there is no need. No experimental data on toxicity to terrestrial arthropods are available forSorbitan monolaurate, ethoxylated (CAS No. 9005-64-5). The substance is expected to show high adsorption potential due to its surface active structural properties. Therefore, tests with soil-dwelling organisms that feed on soil particles are most relevant for these substances.

The terrestrial toxicity of Sorbitan esters has been tested on the earthworm Eisenia fetida with the read across substances Sorbitan, octanoate (2:3) (CAS No. 91844-53-0) and Anhydro-D-glucitol trioleate (CAS No. 26266-58-0). No mortality was observed during the 14-day exposure period at the test concentration of 1000 mg/kg dw. Due to the structural similarity of the substances, no effects are thus expected for Sorbitan monolaurate, ethoxylated either (see analogue justification in IUCLID Section 13). Testing the toxicity on earthworm, evaluates the exposure to the test substance via soil pore water, surface contact as well as by ingestion of soil particles. This is of particular importance as one should focus on the pathway of exposure (ECHA, 2012). As such one can thus assume that earthworms would be highly exposed to toxicants in soil and hence are sensitive to the potential adverse effects of the substance.

Based on the available data, the terrestrial toxicity of Sorbitan monolaurate, ethoxylated is very low. Also, the long-term NOEC based on reproduction of Daphnia magna is high (10 mg/L). Additionally, the substance is not expected to remain in the terrestrial environment, due to ready biodegradation. Bioaccumulation is not likely due to rapid metabolism. Esters are known to hydrolyse into carboxylic acids and alcohols by esterases (Fukami and Yokoi, 2012). Carboxylesterase activity has been noted in a wide variety of tissues in invertebrates as well as in fish (Leinweber, 1987; Soldano et al, 1992; Barron et al., 1999, Wheelock et al., 2008). Therefore, it is expected that under physiological conditions, Sorbitan monolaurate, ethoxylated will hydrolyse to D-glucitol and the respective fatty acids. The hydrolysis of Sorbitan fatty acid esters occurs within a maximum of 48h for mono-, di- and tri-ester (Croda 1951, Mattson and Nolen 1972, Treon 1967, Wick and Joseph 1953). The resulting fatty acids are either metabolised via the β-oxidation pathway in order to generate energy for the cell or reconstituted into glyceride esters and stored in the fat depots in the body (Berg, 2002). D-glucitol is primarily metabolised in the liver. The first step of its metabolism involves oxidation by L-iditol dehydrogenase to fructose, which is metabolised by the fructose metabolic pathway (Senti, 1986). D-glucitol is naturally found in several berries and fruits as well as in seaweed and algae (US FDA, 1972) and is thus naturally present in the terrestrial environment. The ethoxylation is not expected to significantly increase the toxicity of D-glucitol. Using the OECD toolbox Vs. 2.3, the liver metabolism simulator provided 42 potential metabolites indicating that the ethoxylated part of the substance remains intact. Studies on genotoxicity (Ames test, chromosomal aberration and gene mutation in mammalian cells) were negative, indicating no reactivity of the test substance or its metabolites under the test conditions. Additionally, Sorbitan monolaurate, ethoxylated is readily biodegradable and is thus expected to be rapidly removed from the terrestrial environment by soil microorganisms.

Based on this information, toxicity to terrestrial arthropods is not expected to be of concern, and consequently, no further testing is required.



Barron, M.G., Mayes, M.A., Murphy, P.G., Nolan, R.J. (1990): Pharmacokinetics and metabolism of triclopyr butoxyethyl ester in coho salmon. Aquatic Tox., 16, 19-32.

Berg, J.M., Tymoczko, J.L. and Stryer, L., 2002, Biochemistry, 5th edition, W.H. Freeman and Company

Croda (Atlas Powder Company), 1951-12-20: Effect in vitro of pancreatic lipase on the following: Tween 60, 65, 80, Myrj 45, 52, Span 60 (WER-149-329, 1951-12-20)

ECHA (2012) Guidance on information requirements and chemical safety assessment Chapter R.7b: Endpoint specific guidance, European Chemicals Agency, Helsinki

Fukami and Yokoi (2012). The Emerging Role of Human Esterases. Drug Metabolism and Pharmacokinetics, Advance publication July 17th, 2012.

Leinweber, F.J. (1987): Possible physiological roles of carboxylic ester hydrolases. Drug. Metab. Rev. 18: 379-439.

Mattson, F.H. and Nolen, G.A., 1972: Absorbability by rats of compounds containing from one to eight ester groups. J Nutrition, 102: 1171-1176

Senti, F.R. 1986. Health aspects of sugar alcohols and lactose. Contract No. 223-83-2020, Center for food safety and applied nutrition, Food and Drug Administration, Dept. of Health and Human Services, Washington, DC 20204, USA

Soldano, S., Gramenzi, F., Cirianni, M., Vittozzi, L. (1992): Xenobiotic-metabolizing enzyme systems in test fish - IV. Comparative studies of liver microsomal and cytosolic hydrolases. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. 101(1), 117-123.

Treon J.F. et al., 1967: Physiologic and metabolic patterns of non-ionic surfactants: Chem. Phys. Appl. Surface Active Subst., Proc. Int. Congr., 4th, 1964, 3, 381-395. Edited by Paquot, C., Gordon Breach Sci. Publ., London, England

Wheelock, C.E., Phillips, B.M., Anderson, B.S., Miller, J.L., Hammock, B.D. (2008): Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Reviews in Environmental Contamination and Toxicology 195:117-178.

Wick A.N. and Joseph L., 1953: The metabolism of Sorbitan monostearate. Food Research, 18, 79