Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro cytogenicity / chromosome aberration study in mammalian cells
Remarks:
Type of genotoxicity: chromosome aberration
Type of information:
experimental study
Adequacy of study:
key study
Study period:
22-jan-2010 to 26-feb-2010
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: The study has been performed according to OECD and/or EC guidelines and according to GLP principles.

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2010
Report date:
2010

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.10 (Mutagenicity - In Vitro Mammalian Chromosome Aberration Test)
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Type of assay:
in vitro mammalian chromosome aberration test

Test material

Constituent 1
Reference substance name:
Linseed oil, oxidized
EC Number:
272-038-8
EC Name:
Linseed oil, oxidized
Cas Number:
68649-95-6
Molecular formula:
Not applicable (a generic molecular formula cannot be provided for this specific UVCB substance).
IUPAC Name:
Oxidation products of seed oil obtained from Linum usitatissimum, Linaceae (linseed)
Details on test material:
- Name of test material (as cited in study report): Blown linseed oil
- Substance type: Hazy yellow to brown liquid
- Physical state: Liquid
- Stability under test conditions: Stable
- Storage condition of test material: At room temperature in the dark


Method

Species / strain
Species / strain / cell type:
lymphocytes: human peripheral
Details on mammalian cell type (if applicable):
- Type and identity of media:
Blood samples
Blood samples were collected by venapuncture using the Venoject multiple sample blood collecting system with a suitable size sterile vessel containing sodium heparin. Immediately after blood collection lymphocyte cultures were started.

Culture medium
Culture medium consisted of RPMI 1640 medium, supplemented with 20% (v/v) heat-inactivated (56°C; 30 min) foetal calf serum, L-glutamine (2 mM), penicillin/streptomycin (50 U/mL and 50 µg/mL respectively) and 30 U/mL heparin.

Lymphocyte cultures
Whole blood (0.4 mL) treated with heparin was added to 5 mL or 4.8 mL culture medium (in the absence and presence of S9-mix, respectively). Per culture 0.1 ml (9 mg/mL) phytohaemagglutinin was added.
Metabolic activation:
with and without
Metabolic activation system:
Rat liver S9-mix induced by a combination of phenobarbital and ß-naphthoflavone
Test concentrations with justification for top dose:
Dose range finding test:
Without S9-mix, 24/48hr exposure; 24/48 hr fixation: 1, 3, 10, 33, 100, 333 and 1000 µg/mL
Combined Dose range finding/First cytogenetic test:
Without and with S9-mix, 3hr exposure; 24 hr fixation: 10, 33 and 100 µg/mL
Second cytogenetic test:
Without S9-mix, 24 hr exposure; 24 hr fixation: 10, 33, 100 µg/mL
Without S9-mix, 48 hr exposure; 48 hr fixation: 10, 33, 100 µg/mL
With S9-mix, 3 hr exposure; 48 hr fixation: 10, 33, 100 µg/mL
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: DMSO
Blown linseed oil was suspended in dimethyl sulfoxide at concentrations of 100 mg/ml and above. The stock solution was treated with ultrasonic waves to obtain a homogeneous suspension. At concentrations of 33 mg/ml and below the test substance was dissolved in dimethyl sulfoxide.

- Justification for choice of solvent/vehicle: In DMSO a homogeneous suspension could be obtained and DMSO has been accepted and approved by authorities and international guidelines
Controlsopen allclose all
Negative solvent / vehicle controls:
yes
Remarks:
DMSO
Positive controls:
yes
Positive control substance:
mitomycin C
Remarks:
without S9 Migrated to IUCLID6: in Hank's Balanced Salt Solution: 0.5 µg/ml for a 3 h exposure period, 0.2 µg/ml for a 24 h exposure period and 0.1 µg/ml for a 48 h exposure period
Positive control substance:
cyclophosphamide
Remarks:
without S9 Migrated to IUCLID6: in Hank's Balanced Salt Solution: 10 µg/ml
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium

DURATION
- Preincubation period: 48 hr
- Exposure duration: 3 hr (with and without S9-mix), 24 and 48 hr (without S9-mix)
- Fixation time (start of exposure up to fixation or harvest of cells): 24 and 48 hr

SPINDLE INHIBITOR (cytogenetic assays): colchicine
STAIN (for cytogenetic assays): Giemsa

NUMBER OF REPLICATIONS: duplicates in two independent experiments

NUMBER OF CELLS EVALUATED: 100 metaphase chromosome spreads per culture

DETERMINATION OF CYTOTOXICITY
- Method: mitotic index of each culture was determined by counting the number of metaphases per 1000 cells

OTHER EXAMINATIONS:
- Determination of polyploidy: yes
- Determination of endoreplication: yes
Evaluation criteria:
A test substance was considered positive (clastogenic) in the chromosome aberration test if:
a) It induced a dose-related statistically significant (Chi-square test, one-sided, p < 0.05) increase in the number of cells with chromosome aberrations.
b) A statistically significant and biologically relevant increase in the frequencies of the number of cells with chromosome aberrations was observed in the absence of a clear dose-response relationship.

A test substance was considered negative (not clastogenic) in the chromosome aberration test if none of the tested concentrations induced a statistically significant (Chi-square test, one-sided, p < 0.05) increase in the number of cells with chromosome aberrations.
Statistics:
The incidence of aberrant cells (cells with one or more chromosome aberrations, gaps included or excluded) for each exposure group outside the laboratory historical control data range was compared to that of the solvent control using Chi-square statistics.

Results and discussion

Test results
Key result
Species / strain:
lymphocytes: human peripheral
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity, but tested up to precipitating concentrations
Vehicle controls validity:
valid
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: No
- Effects of osmolality: No
- Precipitation: Precipitation in the exposure medium was observed at dose levels of 100 µg/ml and above

RANGE-FINDING/SCREENING STUDIES:
- No toxicity was observed up to and including the highest precipitating tested dose

COMPARISON WITH HISTORICAL CONTROL DATA:
- The number of cells with chromosome aberrations found in the solvent and positive control cultures was within the laboratory historical control data range.

ADDITIONAL INFORMATION ON CYTOTOXICITY:
- Precipitation was seen at the highest tested dose level selected for scoring.

Any other information on results incl. tables

No effects of Blown linseed oil on the number of polyploid cells and cells with endoreduplicated chromosomes were observed both in the absence and presence of S9-mix. Therefore it can be concluded that Blown linseed oil does not disturb mitotic processes and cell cycle progression and does not induce numerical chromosome aberrations under the experimental conditions described in this report.

Applicant's summary and conclusion

Conclusions:
Interpretation of results (migrated information):
negative

The positive and negative controls were within the historical control data.

Blown linseed oil did not induce a statistically significant or biologically relevant increase in the number of cells with chromosome aberrations in the absence and presence of S9-mix, in either of the two independently repeated experiments.

Finally, it is concluded that this test is valid and that Blown linseed oil is not clastogenic in human lymphocytes under the experimental conditions described in the report.
Executive summary:

The ability of the test item to induce chromosome aberrations was evaluated in cultured peripheral human lymphocytes in the presence and in the absence of a metabolic activation system. Based on pre-tests the test substance was evaluated as soluble in DMSO at concentrations of 33 mg/mL and below but clearly formed a suspension at concentrations of >= 100 mg/mL.

In the first cytogenetic assay the test item was tested up to 100 µg/mL for a 3 h exposure time with a 24 h fixation time in the absence and presence of 1.8 % (v/v) S9-fraction.

In the second cytogenetic assay, the test item was tested up to 100 µg/mL for a 24 h and 48 h continuous exposure time with a 24 h and 48 h fixation time in the absence of S9-mix. In the presence of S9-mix the test item was also tested up to 100 µg/mL for a 3 h exposure time with a 48 h fixation time. Precipitation was obvious at 100 µg/mL.

The number of cells with chromosome aberrations found in the solvent control cultures was within the laboratory historical control data range. Positive control chemicals, mitomycin C and cyclophosphamide, both produced a statistically significant increase in the incidence of cells with chromosome aberrations, indicating that the test conditions were adequate. The test item did not induce a statistically significant or biologically relevant increase in the number of cells with chromosome aberrations in the absence and presence of S9-mix, in either of the two independently repeated experiments. No effects on the number of polyploid cells and cells with endoreduplicated chromosomes were observed both in the absence and presence of S9-mix. Therefore it can be concluded that the test item does not disturb mitotic processes and cell cycle progression and does not induce numerical chromosome aberrations under the experimental conditions described in this report.