Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 271-138-9 | CAS number: 68516-20-1 A complex combination of hydrocarbons produced by the distillation of products from a steam-cracking process. It consists predominantly of aromatic hydrocarbons having carbon numbers predominantly in the range of C7 through C12 and boiling in the range of approximately 130°C to 220°C(266°F to 428°F).
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to aquatic algae and cyanobacteria
Administrative data
Link to relevant study record(s)
- Endpoint:
- toxicity to aquatic algae and cyanobacteria
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: This summary has a reliability of 2 because the results are estimated using a computer model that is appropriate for use with this petroleum substance.
- Justification for type of information:
- Petrotox is a well-documented and peer reviewed model that is widely used across the petrochemicals industry. This substance fits within the criteria of the model and there are no reservations about the validity of the model runs. It is expected that this data is reliable with restrictions.
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- The aquatic toxicity was estimated by a QSAR, the PETROTOX computer model. This model combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components with the Target Lipid Model used to calculate acute and chronic toxicity of non-polar narcotic chemicals. PETROTOX computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partition coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.
- GLP compliance:
- no
- Remarks:
- The data were calculated by a computer model
- Analytical monitoring:
- not required
- Test organisms (species):
- Raphidocelis subcapitata (previous names: Pseudokirchneriella subcapitata, Selenastrum capricornutum)
- Water media type:
- freshwater
- Limit test:
- no
- Total exposure duration:
- 72 h
- Key result
- Duration:
- 72 h
- Dose descriptor:
- EL50
- Effect conc.:
- 0.79 mg/L
- Nominal / measured:
- nominal
- Conc. based on:
- test mat.
- Basis for effect:
- growth rate
- Remarks on result:
- other: QSAR calculation
- Executive summary:
The aquatic toxicity was estimated using the PETROTOX computer model, which combines a partitioning model (used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading) with the Target Lipid Model (used to calculate acute and chronic toxicity of non-polar narcotic chemicals). PETROTOX computes toxicity based on the summation of the aqueous phase concentrations of hydrocarbon block(s) that represent a petroleum substance and membrane water partition coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.
The estimated 72-hr EL50 value for growth rate of Pseudokirschneriella subcapitata is 0.79 mg/L.
Reference
Description of key information
The aquatic toxicity was estimated using the PETROTOX computer model, which combines a partitioning model (used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading) with the Target Lipid Model (used to calculate acute and chronic toxicity of non-polar narcotic chemicals). PETROTOX computes toxicity based on the summation of the aqueous phase concentrations of hydrocarbon block(s) that represent a petroleum substance and membrane water partition coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.
The estimated 72-hr EL50 value for growth rate of Pseudokirschneriella subcapitata is 0.79 mg/L.
Supporting data on Toluene and Ethylbenzene, two constituents in Category J were used to support the QSAR prediction. An experimental 72 -hour EC50 of 4.6 mg/l was reported for ethylbenzene and a 3 -hour EC50 of 134 mg/l for toluene was reported.
Key value for chemical safety assessment
- EC50 for freshwater algae:
- 0.79 mg/L
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.