Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 429-270-1 | CAS number: 136210-30-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Biodegradation in water: screening tests
Administrative data
Link to relevant study record(s)
Description of key information
The substance is not readily biodegradable with 13% degradation oberved in 28 days (Bayer, 1998a) and also not inherently biodegradable with 0% degradation observed in 28 days (Currenta, 2009a).
Key value for chemical safety assessment
- Biodegradation in water:
- under test conditions no biodegradation observed
Additional information
The ready biodegradability of aspartic acid, N,N'-[methylenebis(2-methyl-4,1-cyclohexanediyl)]bis-, 1,1',4,4'-tetraethyl ester was determined according to the OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test) with the following result (Bayer AG, 1998a): 13 % degradation after 28 days.
The study on ready biodegradability (Bayer AG, 1998a) was performed with aspartic acid, N,N'-[methylenebis(2-methyl-4,1-cyclohexanediyl)]bis-, 1,1',4,4'-tetraethyl ester which is a structural analogue to aspartic acid, N,N'-(methylenedi-4,1-cyclohexanediyl)bis-, 1,1',4,4'-tetraethyl ester. Both substances are diethyl esters of aspartic acid linked to a dicyclohexylmethyldiamine moiety. The difference between these two substances is merely the presence of two methyl groups connected to the cyclohexane rings. This structural analogy was confirmed by the Member State responsible for the notification of both substances under the NONS regulation. The Member State decided that test results obtained for one substance can be transferred to the other substance and that testing of both substances is usually not required. This decision is in accordance with the grouping of substances and read-across approach in Annex XI, 1.5 of the REACH Regulation.
The inherent biodegradability of aspartic acid, N,N'-(methylenedi-4,1-cyclohexanediyl)bis-, 1,1',4,4'-tetraethyl ester was determined according to the OECD Guideline 302 C (Inherent Biodegradability: Modified MITI Test (II) (1981)) with the following result (Currenta, 2009a): 0 % degradation after 28 days.
The inherent degradability was determined on the basis of the oxygen consumption. As the test item contains nitrogen, the result has to be corrected for the oxygen consumed by nitrification rather than by degradation processes. Due to practicability, that oxygen demand was solely determined at termination of the test (day 28) causing a lower degradation as observed on day 27.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.