Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Effects on fertility

Description of key information

Subtilisin is not a reproductive toxicant.

Link to relevant study records

Referenceopen allclose all

Endpoint:
screening for reproductive / developmental toxicity
Data waiving:
study scientifically not necessary / other information available
Justification for data waiving:
the study does not need to be conducted because (i) the substance is of low toxicological activity (no evidence of toxicity seen in any of the tests available), (ii) it can be proven from toxicokinetic data that no systemic absorption occurs via relevant routes of exposure (e.g. plasma/blood concentrations below detection limit using a sensitive method and absence of the substance and of metabolites of the substance in urine, bile or exhaled air) and (iii) there is no or no significant human exposure
other:
Justification for type of information:
From the toxicokinetic information available, it can be concluded that the bioavailability of enzymes is low due to the fact that no significant absorption can be expected through the respiratory and/or gastrointestinal tract and/or through the skin. Exposure to enzymes will be limited because of the DMEL (derived minimum exposure levels) settings for workers, professionals and consumers to prevent respiratory allergy (supported by exposure scenarios and DMEL values) (ref. 58). Apart from the irritation potential of some proteases, respiratory allergy is generally considered to be the only human health hazard of enzymes indicating that this is the most sensitive endpoint considering enzyme toxicity. Concentrations that are not expected to result in respiratory allergy will certainly not result in any other toxic effect (ref. 59). This conclusion is substantiated by the material that follows.
Although endocrine disrupting chemicals are a broad group of chemicals consisting of man-made and natural compounds it is unlikely that enzymes have the potential to cause endocrine disruption. The enzymatic structure is different from any endocrine disrupter known to date (ref 1). Indeed, enzymes are much larger than endocrine disrupters in general excluding mechanisms such as direct action on hormone receptors (EDSTAC (Endocrine Disruptor Screening and Testing Advisory Committee, US EPA), (Ref. 2)). Due to the high biodegradability of enzymes, it is highly unlikely that they could reach target organs or sites to any significant amount or of any significant period of time. Testing of enzymes in currently available screening assays typically based on hormone receptor binding cannot be expected to provide any evidence for endocrine disruption due to the specific features of enzymes.
Data from acute and subchronic oral toxicity studies provide evidence that enzymes are of very low toxicological activity (ref. 3;4-53, 59, 60). Typically, the derived NOAEL values are significantly higher than the maximum doses applied. None of the oral toxicity studies performed by members of the consortium in the past 40 years, as well as published data from other studies revealed any effect that indicates that enzymes could have an adverse effect on the reproduction system in males or females.
Complementing the above information is data from 26 industrial studies (Novozymes, unpublished data) on fertility and/or teratogenicity and/or reproduction studies primarily in rodents but also other species like dogs and rabbits which did not identify any evidence for reproductive toxicity of enzymes. Both proteolytic and non-proteolytic enzymes have been investigated for their teratogenic and reproductive toxicity potential. Several of these studies have been published in peer reviewed articles (ref. 24;29;33;54). Enzymes have been produced and used for many years without any evidence for reproductive potential in humans. OEL for workers is set to be 60ng/m3 to protect against respiratory sensitization. Considering that endocrine disrupting chemicals in general are a factor of 100 000 less potent than physiologically relevant hormones (ref. 55), the low worker exposure to enzymes due to rigorous application of airborne limit and very low exposure to consumers (below 15 ng/m3, which is the highest known consumer exposure and only the case when using pre-spotters (ref. 56)) and the low bioavailability together with the high biodegradability of enzymes, no reproductive toxicity effect can be expected in humans. Furthermore, enzymes have been used for decades to treat pancreatic insufficiency in both children and adults without any evidence of reproductive toxicity (ref. 57).
In conclusion, toxicokinetic data together with the enzymatic structure and the weight of evidence from animal studies and human exposure provide no evidence for reproductive toxicity of enzymes.
References
1) Whaley,D.A., Keyes,D., and Khorrami,B. (2001) Incorporation of endocrine disruption into chemical hazard scoring for pollution prevention and current list of endocrine disrupting chemicals. Drug and Chemical Toxicology an International Journal for Rapid Communication 24, 359-420
2) Hong,H., Tong,W., Fang,H., Shi,L., Xie,Q., Wu,J., Perkins,R., Walker,J.D., Branham,W., and Sheehan,D.M. (2002) Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environmental Health Perspectives 110, 29-36
3) Laake,K. (1980) ENZYMIC DRUGS. Side Effects of Drugs Annual 222-225 4) Amalfitano,A., Bengur,A.R., Morse,R.P., Majure,J.M., Case,L.E., Veerling,D.L., Mackey,J., Kishnani,P., Smith,W., Vie-Wylie,A., Sullivan,J.A., Hoganson,G.E., Phillips,J.A., Schaefer,G.B., Charrow,J., Ware,R.E., Bossen,E.H., and Chen,Y.T. (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genetics in Medicine 3, 132-138
4) Amalfitano,A., Bengur,A.R., Morse,R.P., Majure,J.M., Case,L.E., Veerling,D.L., Mackey,J., Kishnani,P., Smith,W., Vie-Wylie,A., Sullivan,J.A., Hoganson,G.E., Phillips,J.A., Schaefer,G.B., Charrow,J., Ware,R.E., Bossen,E.H., and Chen,Y.T. (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genetics in Medicine 3, 132-138
5) Andersen,J.R., Diderichsen,B.K., Hjortkjaer,R.K., De Boer,A.S., Bootman,J., West,H., and Ashby,R. (1987) DETERMINING THE SAFETY OF MALTOGENIC AMYLASE PRODUCED BY RECOMBINANT DNA TECHNOLOGY. Journal of Food Protection 50, 521-526
6) Ankel,E.G., Zirneski,J., Ring,B.J., and Holcenberg,J.S. (1984) Effect of asparaginase on cell membranes of sensitive and resistant mouse lymphoma cells. In Vitro 20, 376-384
7) Ashby,R., Hjortkjaer,R.K., Stavnsbjerg,M., Gurtler,H., Pedersen,P.B., Bootman,J., Hodson-Walker,G., Tesh,J.M., Willoughby,C.R., and Et,A. (1987) SAFETY EVALUATION OF STREPTOMYCES-MURINUS GLUCOSE ISOMERASE. Toxicology Letters (Shannon) 36, 23-36
8) Bar,A., Krul,C.A.M., Jonker,D., and de,V.N. (2004) Safety evaluation of an alpha-cyclodextrin glycosyltranferase preparation. Regulatory Toxicology and Pharmacology 39, S47-S56
9) Bergman,A. and Broadmeadow,A. (1997) An overview of the safety evaluation of the Thermomyces lanuginosus xylanase enzyme (SP 628) and the Aspergillus aculeatus xylanase enzyme (SP 578). Food additives and contaminants 14, 389-398
10) Biziulevichius,G.A. and Arestov,I.G. (1997) Safety of lysosubtilin per os in mice, rabbits and calves. Veterinary research 28, 385-395
11) Brinch,D.S. and Pedersen,P.B. (2002) Toxicological studies on Laccase from Myceliophthora thermophila expressed in Aspergillus oryzae. Regulatory toxicology and pharmacology : RTP 35, 296-307
12) Brinch,D.S. and Pedersen,P.B. (2002) Toxicological studies on Polyporus pinsitus laccase expressed by Aspergillus oryzae intended for use in food. Food additives and contaminants 19, 323-334
13) Broadmeadow,A., Clare,C., and De Boer,A.S. (1994) An overview of the safety evaluation of the Rhizomucor miehei lipase enzyme. Food additives and contaminants 11, 105-119
14) Broadwell,A.H., Baumann,L., and Baumann,P. (1990) The 42- and 51-kilodalton mosquitocidal proteins of Bacillus sphaericus 2362: construction of recombinants with enhanced expression and in vivo studies of processing and toxicity. Journal of bacteriology 172, 2217-2223
15) Bui,Q., Geronian,K., Gudi,R., Wagner,V., Kim,D., and Cerven,D. (2004) Safety evaluation of marmanase enzyme, produced by Bacillus lentus, intended for use in animal feed. International Journal of Toxicology 23, 398
16) Baer,A., Til,H.P., and Timonen,M. (1995) Subchronic oral toxicity study with regular and enzymatically depolymerized sodium carboxymethylcellulose in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 33, 909-917
17) Cerven,D., DeGeorge,G., and Bethell,D. (2008) 28-Day repeated dose oral toxicity of recombinant human apo- lactoferrin or recombinant human lysozyme in rats. Regulatory Toxicology and Pharmacology 51, 162-167
18) Ciofalo,V., Barton,N., Kretz,K., Baird,J., Cook,M., and Shanahan,D. (2003) Safety evaluation of a phytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed. Regulatory Toxicology and Pharmacology 37, 286-292
19) Coenen,T.M., Schoenmakers,A.C., and Verhagen,H. (1995) Safety evaluation of beta-glucanase derived from Trichoderma reesei: summary of toxicological data. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 33, 859-866
20) Coenen,T.M., Aughton,P., and Verhagen,H. (1997) Safety evaluation of lipase derived from Rhizopus oryzae: summary of toxicological data. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 35, 315-322
21) Coenen,T.M. and Aughton,P. (1998) Safety evaluation of amino peptidase enzyme preparation derived from Aspergillus niger. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 36, 781-789
22) Coenen,T.M., Bertens,A.M., de Hoog,S.C., and Verspeek-Rip,C.M. (2000) Safety evaluation of a lactase enzyme preparation derived from Kluyveromyces lactis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 38, 671-677
23) Cook,M.W. and Thygesen,H.V. (2003) Safety evaluation of a hexose oxidase expressed in Hansenula polymorpha. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 41, 523-529
24) Deboer,A.S., Marshall,R., Broadmeadow,A., and Hazelden,K. (1993) Toxicological Evaluation of Acetolactate Decarboxylase. Journal of Food Protection 56, 510-517
25) Durden,D.L. and Distasio,J.A. (1981) CHARACTERIZATION OF THE EFFECTS OF ASPARAGINASE FROM ESCHERICHIA-COLI AND A GLUTAMINASE-FREE ASPARAGINASE FROM VIBRIO-SUCCINOGENES ON SPECIFIC CELL MEDIATED CYTO TOXICITY. International Journal of Cancer 27, 59-66
26) Elvig,S.G. and Pedersen,P.B. (2003) Safety evaluation of a glucanase preparation intended for use in food including a subchronic study in rats and mutagenicity studies. Regulatory Toxicology and Pharmacology 37, 11-19
27) Gao,C., Zhang,A., Lin,Y., Han,S., and Wang,L. (2007) Relationship between the domain structures of several nuclear receptors and the effect differences of environmental endocrine disrupting chemicals. Asian Journal of Ecotoxicology 2, 363-374
28) Gao,F., Jiang,Y., Zhou,G.H., and Han,Z.K. (2007) The effects of xylanase supplementation on growth, digestion, circulating hormone and metabolite levels, immunity and gut microflora in cockerels fed on wheat-based diets. British Poultry Science 48, 480-488
29) Greenough,R.J., Everett,D.J., and Stavnsbjerg,M. (1991) Safety evaluation of alkaline cellulase. Food Chem.Toxicol 29, 781-785
30) Greenough,R.J., Perry,C.J., and Stavnsbjerg,M. (1996) Safety evaluation of a lipase expressed in Aspergillus oryzae. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 34, 161-166
31) Harbak,L. and Thygesen,H.V. (2002) Safety evaluation of a xylanase expressed in Bacillus subtilis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 40, 1-8
32) Harper,A.F., Skaggs,J.H., Veit,H.P., and Kornegay,E.T. (1999) Efficacy and safety of Novo SP938 microbial phytase supplementation of a corn-soybean meal diet fed to growing pigs. Journal of Animal Science 77, 174-175
33) Hjortkjaer,R.K., Bille-Hansen,V., Hazelden,K.P., McConville,M., McGregor,D.B., Cuthbert,J.A., Greenough,R.J., Chapman,E., Gardner,J.R., and Ashby,R. (1986) Safety evaluation of Celluclast, an acid cellulase derived from Trichoderma reesei. Food Chem.Toxicol 24, 55-63
34) Hjortkjaer,R.K., Stavnsbjerg,M., Pedersen,P.B., Heath,J., Wilson,J.A., Marshall,R.R., and Clements,J. (1993) Safety evaluation of esperase. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 31, 999-1011
35) Holcenberg,J.S., Borella,L.D., Camitta,B.M., and Ring,B.J. (1979) HUMAN PHARMACOLOGY AND TOXICOLOGY OF SUCCINYLATED ACINETOBACTER GLUTAMINASE ASPARAGINASE. Cancer Research 39, 3145-3151
36) Hytonen,M., Vanhanen,M., Keskinen,H., Tuoni,T., Tupasela,O., and Nordman,H. (1994) Pharyngeal edema caused by occupational exposure to cellulase enzyme. Allergy: European Journal of Allergy and Clinical Immunology 49, 782-784
37) Janer,G., Hakkert,B.C., Piersma,A.H., Vermeire,T., and Slob,W. (2007) A retrospective analysis of the added value of the rat two-generation reproductive toxicity study versus the rat subchronic toxicity study. Reproductive Toxicology 24, 103-113
38) Jensen,B.F. and Eigtved,P. (1990) Safety Aspects of Microbial Enzyme Technology, Exemplified by the Safety Assessment of An Immobilized Lipase Preparation, Lipozyme. Food Biotechnology 4, 699-725
39) Klinge,L., Straub,V., Neudorf,U., and Volt,T. (2005) Enzyme replacement therapy in classical infantile Pompe disease: Results of a ten-month follow-up study. Neuropediatrics 36, 6-11
40) Klinge,L., Straub,V., Neudorf,U., Schaper,J., Bosbach,T., G÷rlinger,K., Wallot,M., Richards,S., and Voit,T. (2005) Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscular disorders : NMD 15, 24-31
41) Kondo,M., Ogawa,T., Matsubara,Y., Mizutani,A., Murata,S., and Kitagawa,M. (1994) Safety evaluation of lipase G from Penicillium camembertii. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 32, 685-696
42) Kopetzki,E., Lehnert,K., and Buckel,P. (1994) Enzymes in diagnostics: Achievements and possibilities of recombinant DNA technology. Clinical Chemistry 40, 688-704
43) Kornegay,E.T., Skaggs,J.H., Denbow,D.M., Larsen,C.T., and Veit,H.P. (1999) Efficacy and safety of Novo SP938 microbial phytase supplementation of a low-P corn-soybean meal diet fed to turkeys. Poultry Science 78, 15
44) Landry,T.D., Chew,L., Davis,J.W., Frawley,N., Foley,H.H., Stelman,S.J., Thomas,J., Wolt,J., and Hanselman,D.S. (2003) Safety evaluation of an alpha-amylase enzyme preparation derived from the archaeal order Thermococcales as expressed in Pseudomonas fluorescens biovar I. Regulatory toxicology and pharmacology : RTP 37, 149-168
45) Lane,R.W., Yamakoshi,J., Kikuchi,M., Mizusawa,K., Henderson,L., and Smith,M. (1997) Safety evaluation of tannase enzyme preparation derived from Aspergillus oryzae. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 35, 207-212
46) MacKenzie,K.M., Petsel,S.R., Weltman,R.H., and Zeman,N.W. (1989) Subchronic toxicity studies in dogs and in utero rats fed diets containing Bacillus stearothermophilus alpha-amylase from a natural or recombinant DNA host. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 27, 599-606
47) Modderman,J.P. and Foley,H.H. (1995) Safety evaluation of pullulanase enzyme preparation derived from Bacillus licheniformis containing the pullulanase gene from Bacillus deramificans. Regulatory Toxicology and Pharmacology 21, 375-381
48) Ohshita,K., Nakajima,Y., Yamakoshi,J., Kataoka,S., Kikuchi,M., and Pariza,M.W. (2000) Safety evaluation of yeast glutaminase. Food and Chemical Toxicology 38, 661-670
49) Olempska-Beer,Z.S., Merker,R.I., Ditto,M.D., and DiNovi,M.J. (2006) Food-processing enzymes from recombinant microorganisms--a review. Regulatory toxicology and pharmacology : RTP 45, 144-158
50) Ollenschlaeger,G., Roth,E., Linkesch,W., Jansen,S., Simmel,A., and Moedder,B. (1988) ASPARAGINASE-INDUCED DERANGEMENTS OF GLUTAMINE METABOLISM THE PATHOGENETIC BASIS FOR SOME DRUG-RELATED SIDE EFFECTS. European Journal of Clinical Investigation 18, 512-516
51) Otamiri,T. (1989) Phospholipase C-mediated intestinal mucosal damage is ameliorated by quinacrine. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 27, 399-402
52) Zhang,Z.B., Kornegay,E.T., Radcliffe,J.S., Denbow,D.M., Veit,H.P., and Larsen,C.T. (2000) Comparison of genetically engineered microbial and plant phytase for young broilers. Poultry Science 79, 709-717
53) Zhang,Z.B., Kornegay,E.T., Radcliffe,J.S., Wilson,J.H., Veit,H.P., and Fontenot,J.P. (2000) Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. Journal of Animal Science 78, 2868-2878
54) Stavnsbjerg,M., Hjortkjaer,R.K., Billehansen,V., Jensen,B.F., Greenough,R.J., McConville,M., Holmstroem,M., and Hazelden,K.P. (1986) Toxicological Safety Evaluation of A Bacillus-Acidopullulyticus Pullulanase. Journal of Food Protection 49, 146-153
55) Harvey,P.W. and Johnson,I. (2002) Approaches to the assessment of toxicity data with endpoints related to endocrine disruption. Journal of Applied Toxicology 22, 241-247
56) US SDA. Risk assessment guidance for enzyme-containing products. 2005. Washington, Soap and Detergent Association.
57) Barak,A., Dulitzki,M., Efrati,O., Augarten,A., Szeinberg,A., Reichert,N., Modan,D., Weiss,B., Miller,M., Katzanelson,D., and Yahav,Y. (2005) Pregnancies and outcome in women with cystic fibrosis. Israel Medical Association journal : IMAJ 7, 95-98
58) D.A. Basketter, C. Broekhuizen, M. Fieldsend, S. Kirkwood, R. Mascarenhas, K. Maurer, C. Pedersen, C. Rodriguez & H.E. Schiff: Defining occupational and consumer exposure limits for enzyme protein respiratory allergens under REACH, Toxicology 268: 165-170, 2010.
59) Basketter D., Berg N., Broekhuizen C., Fieldsend M., Kirkwood S., Kluin C., Mathieu S. and Rodriguez C.Enzymes in Cleaning Products: An Overview of Toxicological Properties and Risk Assessment/Management. 2012a. Reg. Toxicol. Pharmacol, 64/1: 117-123
60) Basketter D.; N. Berg; F. Kruszewski; K. Sarlo; B. Concoby. The Toxicology and Immunology of Detergent Enzymes. 2012b. J. Immunotox., 9, 320-326.
Endpoint:
multi-generation reproductive toxicity
Data waiving:
study scientifically not necessary / other information available
Justification for data waiving:
the study does not need to be conducted because (i) the substance is of low toxicological activity (no evidence of toxicity seen in any of the tests available), (ii) it can be proven from toxicokinetic data that no systemic absorption occurs via relevant routes of exposure (e.g. plasma/blood concentrations below detection limit using a sensitive method and absence of the substance and of metabolites of the substance in urine, bile or exhaled air) and (iii) there is no or no significant human exposure
other:
Reproductive effects observed:
not specified
Effect on fertility: via oral route
Endpoint conclusion:
no study available
Effect on fertility: via inhalation route
Endpoint conclusion:
no study available
Effect on fertility: via dermal route
Endpoint conclusion:
no study available
Additional information

Short description of key information:
Subtilisin does not affect fertility.

Justification for selection of Effect on fertility via oral route:
Toxicokinetic data together with the molecular structure of subtilisin and the weight of evidence from animal studies and human exposure provides no evidence for toxicity on fertility.

Justification for selection of Effect on fertility via inhalation route:
Toxicokinetic data together with the molecular structure of subtilisin and the weight of evidence from animal studies and human exposure provides no evidence for toxicity on fertility.

Justification for selection of Effect on fertility via dermal route:
Toxicokinetic data together with the molecular structure of subtilisin and the weight of evidence from animal studies and human exposure provides no evidence for toxicity on fertility.

Effects on developmental toxicity

Description of key information

Subtilisin is not a teratogen.

Link to relevant study records

Referenceopen allclose all

Endpoint:
developmental toxicity
Remarks:
teratogenicity non-rodents
Data waiving:
other justification
Justification for data waiving:
the study does not need to be conducted because the substance is of low toxicological activity (no evidence of toxicity seen in any of the tests available), it can be proven from toxicokinetic data that no systemic absorption occurs via relevant routes of exposure (e.g. plasma/blood concentrations below detection limit using a sensitive method and absence of the substance and of metabolites of the substance in urine, bile or exhaled air) and there is no or no significant human exposure
Justification for type of information:
From the toxicokinetic information available, it can be concluded that the bioavailability of enzymes is low due to the fact that no significant absorption can be expected through the respiratory and/or gastrointestinal tract and/or through the skin. Exposure to enzymes will be limited because of the DMEL (derived minimum exposure levels) settings for workers, professionals and consumers to prevent respiratory allergy (supported by exposure scenarios and DMEL values) (ref. 58). Apart from the irritation potential of some proteases, respiratory allergy is generally considered to be the only human health hazard of enzymes indicating that this is the most sensitive endpoint considering enzyme toxicity. Concentrations that are not expected to result in respiratory allergy will certainly not result in any other toxic effect (ref. 59). This conclusion is substantiated by the material that follows. Although endocrine disrupting chemicals are a broad group of chemicals consisting of man-made and natural compounds it is unlikely that enzymes have the potential to cause endocrine disruption. The enzymatic structure is different from any endocrine disrupter known to date (ref 1). Indeed, enzymes are much larger than endocrine disrupters in general excluding mechanisms such as direct action on hormone receptors (EDSTAC (Endocrine Disruptor Screening and Testing Advisory Committee , US EPA), (Ref. 2)). Due to the high biodegradability of enzymes, it is highly unlikely that they could reach target organs or sites to any significant amount or of any significant period of time. Testing of enzymes in currently available screening assays typically based on hormone receptor binding cannot be expected to provide any evidence for endocrine disruption due to the specific features of enzymes. Data from acute and subchronic oral toxicity studies provide evidence that enzymes are of very low toxicological activity (ref. 3;4-53, 59, 60). Typically, the derived NOAEL values are significantly higher than the maximum doses applied. None of the oral toxicity studies performed by members of the consortium in the past 40 years, as well as published data from other studies revealed any effect that indicates that enzymes could have an adverse effect on the reproduction system in males or females. Complementing the above information is data from 26 industrial studies (Novozymes, unpublished data) on fertility and/or teratogenicity and/or reproduction studies primarily in rodents but also other species like dogs and rabbits which did not identify any evidence for reproductive toxicity of enzymes. Both proteolytic and non-proteolytic enzymes have been investigated for their teratogenic and reproductive toxicity potential. Several of these studies have been published in peer reviewed articles (ref. 24;29;33;54). Enzymes have been produced and used for many years without any evidence for reproductive potential in humans. OEL for workers is set to be 60ng/m3 to protect against respiratory sensitization. Considering that endocrine disrupting chemicals in general are a factor of 100 000 less potent than physiologically relevant hormones (ref. 55), the low worker exposure to enzymes due to rigorous application of airborne limit and very low exposure to consumers (below 15 ng/m3, which is the highest known consumer exposure and only the case when using pre-spotters (ref. 56)) and the low bioavailability together with the high biodegradability of enzymes, no reproductive toxicity effect can be expected in humans. Furthermore, enzymes have been used for decades to treat pancreatic insufficiency in both children and adults without any evidence of reproductive toxicity (ref. 57). In conclusion, toxicokinetic data together with the enzymatic structure and the weight of evidence from animal studies and human exposure provide no evidence for reproductive toxicity of enzymes. References 1) Whaley,D.A., Keyes,D., and Khorrami,B. (2001) Incorporation of endocrine disruption into chemical hazard scoring for pollution prevention and current list of endocrine disrupting chemicals. Drug and Chemical Toxicology an International Journal for Rapid Communication 24, 359-420 2) Hong,H., Tong,W., Fang,H., Shi,L., Xie,Q., Wu,J., Perkins,R., Walker,J.D., Branham,W., and Sheehan,D.M. (2002) Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environmental Health Perspectives 110, 29-36 3) Laake,K. (1980) ENZYMIC DRUGS. Side Effects of Drugs Annual 222-225 4) Amalfitano,A., Bengur,A.R., Morse,R.P., Majure,J.M., Case,L.E., Veerling,D.L., Mackey,J., Kishnani,P., Smith,W., Vie-Wylie,A., Sullivan,J.A., Hoganson,G.E., Phillips,J.A., Schaefer,G.B., Charrow,J., Ware,R.E., Bossen,E.H., and Chen,Y.T. (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genetics in Medicine 3, 132-138 4) Amalfitano,A., Bengur,A.R., Morse,R.P., Majure,J.M., Case,L.E., Veerling,D.L., Mackey,J., Kishnani,P., Smith,W., Vie-Wylie,A., Sullivan,J.A., Hoganson,G.E., Phillips,J.A., Schaefer,G.B., Charrow,J., Ware,R.E., Bossen,E.H., and Chen,Y.T. (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genetics in Medicine 3, 132-138 5) Andersen,J.R., Diderichsen,B.K., Hjortkjaer,R.K., De Boer,A.S., Bootman,J., West,H., and Ashby,R. (1987) DETERMINING THE SAFETY OF MALTOGENIC AMYLASE PRODUCED BY RECOMBINANT DNA TECHNOLOGY. Journal of Food Protection 50, 521-526 6) Ankel,E.G., Zirneski,J., Ring,B.J., and Holcenberg,J.S. (1984) Effect of asparaginase on cell membranes of sensitive and resistant mouse lymphoma cells. In Vitro 20, 376-384 7) Ashby,R., Hjortkjaer,R.K., Stavnsbjerg,M., Gurtler,H., Pedersen,P.B., Bootman,J., Hodson-Walker,G., Tesh,J.M., Willoughby,C.R., and Et,A. (1987) SAFETY EVALUATION OF STREPTOMYCES-MURINUS GLUCOSE ISOMERASE. Toxicology Letters (Shannon) 36, 23-36 8) Bar,A., Krul,C.A.M., Jonker,D., and de,V.N. (2004) Safety evaluation of an alpha-cyclodextrin glycosyltranferase preparation. Regulatory Toxicology and Pharmacology 39, S47-S56 9) Bergman,A. and Broadmeadow,A. (1997) An overview of the safety evaluation of the Thermomyces lanuginosus xylanase enzyme (SP 628) and the Aspergillus aculeatus xylanase enzyme (SP 578). Food additives and contaminants 14, 389-398 10) Biziulevichius,G.A. and Arestov,I.G. (1997) Safety of lysosubtilin per os in mice, rabbits and calves. Veterinary research 28, 385-395 11) Brinch,D.S. and Pedersen,P.B. (2002) Toxicological studies on Laccase from Myceliophthora thermophila expressed in Aspergillus oryzae. Regulatory toxicology and pharmacology : RTP 35, 296-307 12) Brinch,D.S. and Pedersen,P.B. (2002) Toxicological studies on Polyporus pinsitus laccase expressed by Aspergillus oryzae intended for use in food. Food additives and contaminants 19, 323-334 13) Broadmeadow,A., Clare,C., and De Boer,A.S. (1994) An overview of the safety evaluation of the Rhizomucor miehei lipase enzyme. Food additives and contaminants 11, 105-119 14) Broadwell,A.H., Baumann,L., and Baumann,P. (1990) The 42- and 51-kilodalton mosquitocidal proteins of Bacillus sphaericus 2362: construction of recombinants with enhanced expression and in vivo studies of processing and toxicity. Journal of bacteriology 172, 2217-2223 15) Bui,Q., Geronian,K., Gudi,R., Wagner,V., Kim,D., and Cerven,D. (2004) Safety evaluation of marmanase enzyme, produced by Bacillus lentus, intended for use in animal feed. International Journal of Toxicology 23, 398 16) Baer,A., Til,H.P., and Timonen,M. (1995) Subchronic oral toxicity study with regular and enzymatically depolymerized sodium carboxymethylcellulose in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 33, 909-917 17) Cerven,D., DeGeorge,G., and Bethell,D. (2008) 28-Day repeated dose oral toxicity of recombinant human apo- lactoferrin or recombinant human lysozyme in rats. Regulatory Toxicology and Pharmacology 51, 162-167 18) Ciofalo,V., Barton,N., Kretz,K., Baird,J., Cook,M., and Shanahan,D. (2003) Safety evaluation of a phytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed. Regulatory Toxicology and Pharmacology 37, 286-292 19) Coenen,T.M., Schoenmakers,A.C., and Verhagen,H. (1995) Safety evaluation of beta-glucanase derived from Trichoderma reesei: summary of toxicological data. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 33, 859-866 20) Coenen,T.M., Aughton,P., and Verhagen,H. (1997) Safety evaluation of lipase derived from Rhizopus oryzae: summary of toxicological data. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 35, 315-322 21) Coenen,T.M. and Aughton,P. (1998) Safety evaluation of amino peptidase enzyme preparation derived from Aspergillus niger. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 36, 781-789 22) Coenen,T.M., Bertens,A.M., de Hoog,S.C., and Verspeek-Rip,C.M. (2000) Safety evaluation of a lactase enzyme preparation derived from Kluyveromyces lactis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 38, 671-677 23) Cook,M.W. and Thygesen,H.V. (2003) Safety evaluation of a hexose oxidase expressed in Hansenula polymorpha. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 41, 523-529 24) Deboer,A.S., Marshall,R., Broadmeadow,A., and Hazelden,K. (1993) Toxicological Evaluation of Acetolactate Decarboxylase. Journal of Food Protection 56, 510-517 25) Durden,D.L. and Distasio,J.A. (1981) CHARACTERIZATION OF THE EFFECTS OF ASPARAGINASE FROM ESCHERICHIA-COLI AND A GLUTAMINASE-FREE ASPARAGINASE FROM VIBRIO-SUCCINOGENES ON SPECIFIC CELL MEDIATED CYTO TOXICITY. International Journal of Cancer 27, 59-66 26) Elvig,S.G. and Pedersen,P.B. (2003) Safety evaluation of a glucanase preparation intended for use in food including a subchronic study in rats and mutagenicity studies. Regulatory Toxicology and Pharmacology 37, 11-19 27) Gao,C., Zhang,A., Lin,Y., Han,S., and Wang,L. (2007) Relationship between the domain structures of several nuclear receptors and the effect differences of environmental endocrine disrupting chemicals. Asian Journal of Ecotoxicology 2, 363-374 28) Gao,F., Jiang,Y., Zhou,G.H., and Han,Z.K. (2007) The effects of xylanase supplementation on growth, digestion, circulating hormone and metabolite levels, immunity and gut microflora in cockerels fed on wheat-based diets. British Poultry Science 48, 480-488 29) Greenough,R.J., Everett,D.J., and Stavnsbjerg,M. (1991) Safety evaluation of alkaline cellulase. Food Chem.Toxicol 29, 781-785 30) Greenough,R.J., Perry,C.J., and Stavnsbjerg,M. (1996) Safety evaluation of a lipase expressed in Aspergillus oryzae. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 34, 161-166 31) Harbak,L. and Thygesen,H.V. (2002) Safety evaluation of a xylanase expressed in Bacillus subtilis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 40, 1-8 32) Harper,A.F., Skaggs,J.H., Veit,H.P., and Kornegay,E.T. (1999) Efficacy and safety of Novo SP938 microbial phytase supplementation of a corn-soybean meal diet fed to growing pigs. Journal of Animal Science 77, 174-175 33) Hjortkjaer,R.K., Bille-Hansen,V., Hazelden,K.P., McConville,M., McGregor,D.B., Cuthbert,J.A., Greenough,R.J., Chapman,E., Gardner,J.R., and Ashby,R. (1986) Safety evaluation of Celluclast, an acid cellulase derived from Trichoderma reesei. Food Chem.Toxicol 24, 55-63 34) Hjortkjaer,R.K., Stavnsbjerg,M., Pedersen,P.B., Heath,J., Wilson,J.A., Marshall,R.R., and Clements,J. (1993) Safety evaluation of esperase. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 31, 999-1011 35) Holcenberg,J.S., Borella,L.D., Camitta,B.M., and Ring,B.J. (1979) HUMAN PHARMACOLOGY AND TOXICOLOGY OF SUCCINYLATED ACINETOBACTER GLUTAMINASE ASPARAGINASE. Cancer Research 39, 3145-3151 36) Hytonen,M., Vanhanen,M., Keskinen,H., Tuoni,T., Tupasela,O., and Nordman,H. (1994) Pharyngeal edema caused by occupational exposure to cellulase enzyme. Allergy: European Journal of Allergy and Clinical Immunology 49, 782-784 37) Janer,G., Hakkert,B.C., Piersma,A.H., Vermeire,T., and Slob,W. (2007) A retrospective analysis of the added value of the rat two-generation reproductive toxicity study versus the rat subchronic toxicity study. Reproductive Toxicology 24, 103-113 38) Jensen,B.F. and Eigtved,P. (1990) Safety Aspects of Microbial Enzyme Technology, Exemplified by the Safety Assessment of An Immobilized Lipase Preparation, Lipozyme. Food Biotechnology 4, 699-725 39) Klinge,L., Straub,V., Neudorf,U., and Volt,T. (2005) Enzyme replacement therapy in classical infantile Pompe disease: Results of a ten-month follow-up study. Neuropediatrics 36, 6-11 40) Klinge,L., Straub,V., Neudorf,U., Schaper,J., Bosbach,T., G÷rlinger,K., Wallot,M., Richards,S., and Voit,T. (2005) Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscular disorders : NMD 15, 24-31 41) Kondo,M., Ogawa,T., Matsubara,Y., Mizutani,A., Murata,S., and Kitagawa,M. (1994) Safety evaluation of lipase G from Penicillium camembertii. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 32, 685-696 42) Kopetzki,E., Lehnert,K., and Buckel,P. (1994) Enzymes in diagnostics: Achievements and possibilities of recombinant DNA technology. Clinical Chemistry 40, 688-704 43) Kornegay,E.T., Skaggs,J.H., Denbow,D.M., Larsen,C.T., and Veit,H.P. (1999) Efficacy and safety of Novo SP938 microbial phytase supplementation of a low-P corn-soybean meal diet fed to turkeys. Poultry Science 78, 15 44) Landry,T.D., Chew,L., Davis,J.W., Frawley,N., Foley,H.H., Stelman,S.J., Thomas,J., Wolt,J., and Hanselman,D.S. (2003) Safety evaluation of an alpha-amylase enzyme preparation derived from the archaeal order Thermococcales as expressed in Pseudomonas fluorescens biovar I. Regulatory toxicology and pharmacology : RTP 37, 149-168 45) Lane,R.W., Yamakoshi,J., Kikuchi,M., Mizusawa,K., Henderson,L., and Smith,M. (1997) Safety evaluation of tannase enzyme preparation derived from Aspergillus oryzae. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 35, 207-212 46) MacKenzie,K.M., Petsel,S.R., Weltman,R.H., and Zeman,N.W. (1989) Subchronic toxicity studies in dogs and in utero rats fed diets containing Bacillus stearothermophilus alpha-amylase from a natural or recombinant DNA host. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 27, 599-606 47) Modderman,J.P. and Foley,H.H. (1995) Safety evaluation of pullulanase enzyme preparation derived from Bacillus licheniformis containing the pullulanase gene from Bacillus deramificans. Regulatory Toxicology and Pharmacology 21, 375-381 48) Ohshita,K., Nakajima,Y., Yamakoshi,J., Kataoka,S., Kikuchi,M., and Pariza,M.W. (2000) Safety evaluation of yeast glutaminase. Food and Chemical Toxicology 38, 661-670 49) Olempska-Beer,Z.S., Merker,R.I., Ditto,M.D., and DiNovi,M.J. (2006) Food-processing enzymes from recombinant microorganisms--a review. Regulatory toxicology and pharmacology : RTP 45, 144-158 50) Ollenschlaeger,G., Roth,E., Linkesch,W., Jansen,S., Simmel,A., and Moedder,B. (1988) ASPARAGINASE-INDUCED DERANGEMENTS OF GLUTAMINE METABOLISM THE PATHOGENETIC BASIS FOR SOME DRUG-RELATED SIDE EFFECTS. European Journal of Clinical Investigation 18, 512-516 51) Otamiri,T. (1989) Phospholipase C-mediated intestinal mucosal damage is ameliorated by quinacrine. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 27, 399-402 52) Zhang,Z.B., Kornegay,E.T., Radcliffe,J.S., Denbow,D.M., Veit,H.P., and Larsen,C.T. (2000) Comparison of genetically engineered microbial and plant phytase for young broilers. Poultry Science 79, 709-717 53) Zhang,Z.B., Kornegay,E.T., Radcliffe,J.S., Wilson,J.H., Veit,H.P., and Fontenot,J.P. (2000) Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. Journal of Animal Science 78, 2868-2878 54) Stavnsbjerg,M., Hjortkjaer,R.K., Billehansen,V., Jensen,B.F., Greenough,R.J., McConville,M., Holmstroem,M., and Hazelden,K.P. (1986) Toxicological Safety Evaluation of A Bacillus-Acidopullulyticus Pullulanase. Journal of Food Protection 49, 146-153 55) Harvey,P.W. and Johnson,I. (2002) Approaches to the assessment of toxicity data with endpoints related to endocrine disruption. Journal of Applied Toxicology 22, 241-247 56) US SDA. Risk assessment guidance for enzyme-containing products. 2005. Washington, Soap and Detergent Association. 57) Barak,A., Dulitzki,M., Efrati,O., Augarten,A., Szeinberg,A., Reichert,N., Modan,D., Weiss,B., Miller,M., Katzanelson,D., and Yahav,Y. (2005) Pregnancies and outcome in women with cystic fibrosis. Israel Medical Association journal : IMAJ 7, 95-98 58) D.A. Basketter, C. Broekhuizen, M. Fieldsend, S. Kirkwood, R. Mascarenhas, K. Maurer, C. Pedersen, C. Rodriguez & H.E. Schiff: Defining occupational and consumer exposure limits for enzyme protein respiratory allergens under REACH, Toxicology 268: 165-170, 2010. 59) Basketter D., Berg N., Broekhuizen C., Fieldsend M., Kirkwood S., Kluin C., Mathieu S. and Rodriguez C.Enzymes in Cleaning Products: An Overview of Toxicological Properties and Risk Assessment/Management. 2012a. Reg. Toxicol. Pharmacol, 64/1: 117-123 60) Basketter D.; N. Berg; F. Kruszewski; K. Sarlo; B. Concoby. The Toxicology and Immunology of Detergent Enzymes. 2012b. J. Immunotox., 9, 320-326.
Species:
other: non-rodent
Endpoint:
developmental toxicity
Remarks:
Teratogenicity - Rodents
Data waiving:
study scientifically not necessary / other information available
Justification for data waiving:
the study does not need to be conducted because the substance is of low toxicological activity (no evidence of toxicity seen in any of the tests available), it can be proven from toxicokinetic data that no systemic absorption occurs via relevant routes of exposure (e.g. plasma/blood concentrations below detection limit using a sensitive method and absence of the substance and of metabolites of the substance in urine, bile or exhaled air) and there is no or no significant human exposure
Justification for type of information:
From the toxicokinetic information available, it can be concluded that the bioavailability of enzymes is low due to the fact that no significant absorption can be expected through the respiratory and/or gastrointestinal tract and/or through the skin. Exposure to enzymes will be limited because of the DMEL (derived minimum exposure levels) settings for workers, professionals and consumers to prevent respiratory allergy (supported by exposure scenarios and DMEL values) (ref. 58). Apart from the irritation potential of some proteases, respiratory allergy is generally considered to be the only human health hazard of enzymes indicating that this is the most sensitive endpoint considering enzyme toxicity. Concentrations that are not expected to result in respiratory allergy will certainly not result in any other toxic effect (ref. 59). This conclusion is substantiated by the material that follows. Although endocrine disrupting chemicals are a broad group of chemicals consisting of man-made and natural compounds it is unlikely that enzymes have the potential to cause endocrine disruption. The enzymatic structure is different from any endocrine disrupter known to date (ref 1). Indeed, enzymes are much larger than endocrine disrupters in general excluding mechanisms such as direct action on hormone receptors (EDSTAC (Endocrine Disruptor Screening and Testing Advisory Committee , US EPA), (Ref. 2)). Due to the high biodegradability of enzymes, it is highly unlikely that they could reach target organs or sites to any significant amount or of any significant period of time. Testing of enzymes in currently available screening assays typically based on hormone receptor binding cannot be expected to provide any evidence for endocrine disruption due to the specific features of enzymes. Data from acute and subchronic oral toxicity studies provide evidence that enzymes are of very low toxicological activity (ref. 3;4-53, 59, 60). Typically, the derived NOAEL values are significantly higher than the maximum doses applied. None of the oral toxicity studies performed by members of the consortium in the past 40 years, as well as published data from other studies revealed any effect that indicates that enzymes could have an adverse effect on the reproduction system in males or females. Complementing the above information is data from 26 industrial studies (Novozymes, unpublished data) on fertility and/or teratogenicity and/or reproduction studies primarily in rodents but also other species like dogs and rabbits which did not identify any evidence for reproductive toxicity of enzymes. Both proteolytic and non-proteolytic enzymes have been investigated for their teratogenic and reproductive toxicity potential. Several of these studies have been published in peer reviewed articles (ref. 24;29;33;54). Enzymes have been produced and used for many years without any evidence for reproductive potential in humans. OEL for workers is set to be 60ng/m3 to protect against respiratory sensitization. Considering that endocrine disrupting chemicals in general are a factor of 100 000 less potent than physiologically relevant hormones (ref. 55), the low worker exposure to enzymes due to rigorous application of airborne limit and very low exposure to consumers (below 15 ng/m3, which is the highest known consumer exposure and only the case when using pre-spotters (ref. 56)) and the low bioavailability together with the high biodegradability of enzymes, no reproductive toxicity effect can be expected in humans. Furthermore, enzymes have been used for decades to treat pancreatic insufficiency in both children and adults without any evidence of reproductive toxicity (ref. 57). In conclusion, toxicokinetic data together with the enzymatic structure and the weight of evidence from animal studies and human exposure provide no evidence for reproductive toxicity of enzymes. References 1) Whaley,D.A., Keyes,D., and Khorrami,B. (2001) Incorporation of endocrine disruption into chemical hazard scoring for pollution prevention and current list of endocrine disrupting chemicals. Drug and Chemical Toxicology an International Journal for Rapid Communication 24, 359-420 2) Hong,H., Tong,W., Fang,H., Shi,L., Xie,Q., Wu,J., Perkins,R., Walker,J.D., Branham,W., and Sheehan,D.M. (2002) Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environmental Health Perspectives 110, 29-36 3) Laake,K. (1980) ENZYMIC DRUGS. Side Effects of Drugs Annual 222-225 4) Amalfitano,A., Bengur,A.R., Morse,R.P., Majure,J.M., Case,L.E., Veerling,D.L., Mackey,J., Kishnani,P., Smith,W., Vie-Wylie,A., Sullivan,J.A., Hoganson,G.E., Phillips,J.A., Schaefer,G.B., Charrow,J., Ware,R.E., Bossen,E.H., and Chen,Y.T. (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genetics in Medicine 3, 132-138 4) Amalfitano,A., Bengur,A.R., Morse,R.P., Majure,J.M., Case,L.E., Veerling,D.L., Mackey,J., Kishnani,P., Smith,W., Vie-Wylie,A., Sullivan,J.A., Hoganson,G.E., Phillips,J.A., Schaefer,G.B., Charrow,J., Ware,R.E., Bossen,E.H., and Chen,Y.T. (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genetics in Medicine 3, 132-138 5) Andersen,J.R., Diderichsen,B.K., Hjortkjaer,R.K., De Boer,A.S., Bootman,J., West,H., and Ashby,R. (1987) DETERMINING THE SAFETY OF MALTOGENIC AMYLASE PRODUCED BY RECOMBINANT DNA TECHNOLOGY. Journal of Food Protection 50, 521-526 6) Ankel,E.G., Zirneski,J., Ring,B.J., and Holcenberg,J.S. (1984) Effect of asparaginase on cell membranes of sensitive and resistant mouse lymphoma cells. In Vitro 20, 376-384 7) Ashby,R., Hjortkjaer,R.K., Stavnsbjerg,M., Gurtler,H., Pedersen,P.B., Bootman,J., Hodson-Walker,G., Tesh,J.M., Willoughby,C.R., and Et,A. (1987) SAFETY EVALUATION OF STREPTOMYCES-MURINUS GLUCOSE ISOMERASE. Toxicology Letters (Shannon) 36, 23-36 8) Bar,A., Krul,C.A.M., Jonker,D., and de,V.N. (2004) Safety evaluation of an alpha-cyclodextrin glycosyltranferase preparation. Regulatory Toxicology and Pharmacology 39, S47-S56 9) Bergman,A. and Broadmeadow,A. (1997) An overview of the safety evaluation of the Thermomyces lanuginosus xylanase enzyme (SP 628) and the Aspergillus aculeatus xylanase enzyme (SP 578). Food additives and contaminants 14, 389-398 10) Biziulevichius,G.A. and Arestov,I.G. (1997) Safety of lysosubtilin per os in mice, rabbits and calves. Veterinary research 28, 385-395 11) Brinch,D.S. and Pedersen,P.B. (2002) Toxicological studies on Laccase from Myceliophthora thermophila expressed in Aspergillus oryzae. Regulatory toxicology and pharmacology : RTP 35, 296-307 12) Brinch,D.S. and Pedersen,P.B. (2002) Toxicological studies on Polyporus pinsitus laccase expressed by Aspergillus oryzae intended for use in food. Food additives and contaminants 19, 323-334 13) Broadmeadow,A., Clare,C., and De Boer,A.S. (1994) An overview of the safety evaluation of the Rhizomucor miehei lipase enzyme. Food additives and contaminants 11, 105-119 14) Broadwell,A.H., Baumann,L., and Baumann,P. (1990) The 42- and 51-kilodalton mosquitocidal proteins of Bacillus sphaericus 2362: construction of recombinants with enhanced expression and in vivo studies of processing and toxicity. Journal of bacteriology 172, 2217-2223 15) Bui,Q., Geronian,K., Gudi,R., Wagner,V., Kim,D., and Cerven,D. (2004) Safety evaluation of marmanase enzyme, produced by Bacillus lentus, intended for use in animal feed. International Journal of Toxicology 23, 398 16) Baer,A., Til,H.P., and Timonen,M. (1995) Subchronic oral toxicity study with regular and enzymatically depolymerized sodium carboxymethylcellulose in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 33, 909-917 17) Cerven,D., DeGeorge,G., and Bethell,D. (2008) 28-Day repeated dose oral toxicity of recombinant human apo- lactoferrin or recombinant human lysozyme in rats. Regulatory Toxicology and Pharmacology 51, 162-167 18) Ciofalo,V., Barton,N., Kretz,K., Baird,J., Cook,M., and Shanahan,D. (2003) Safety evaluation of a phytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed. Regulatory Toxicology and Pharmacology 37, 286-292 19) Coenen,T.M., Schoenmakers,A.C., and Verhagen,H. (1995) Safety evaluation of beta-glucanase derived from Trichoderma reesei: summary of toxicological data. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 33, 859-866 20) Coenen,T.M., Aughton,P., and Verhagen,H. (1997) Safety evaluation of lipase derived from Rhizopus oryzae: summary of toxicological data. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 35, 315-322 21) Coenen,T.M. and Aughton,P. (1998) Safety evaluation of amino peptidase enzyme preparation derived from Aspergillus niger. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 36, 781-789 22) Coenen,T.M., Bertens,A.M., de Hoog,S.C., and Verspeek-Rip,C.M. (2000) Safety evaluation of a lactase enzyme preparation derived from Kluyveromyces lactis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 38, 671-677 23) Cook,M.W. and Thygesen,H.V. (2003) Safety evaluation of a hexose oxidase expressed in Hansenula polymorpha. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 41, 523-529 24) Deboer,A.S., Marshall,R., Broadmeadow,A., and Hazelden,K. (1993) Toxicological Evaluation of Acetolactate Decarboxylase. Journal of Food Protection 56, 510-517 25) Durden,D.L. and Distasio,J.A. (1981) CHARACTERIZATION OF THE EFFECTS OF ASPARAGINASE FROM ESCHERICHIA-COLI AND A GLUTAMINASE-FREE ASPARAGINASE FROM VIBRIO-SUCCINOGENES ON SPECIFIC CELL MEDIATED CYTO TOXICITY. International Journal of Cancer 27, 59-66 26) Elvig,S.G. and Pedersen,P.B. (2003) Safety evaluation of a glucanase preparation intended for use in food including a subchronic study in rats and mutagenicity studies. Regulatory Toxicology and Pharmacology 37, 11-19 27) Gao,C., Zhang,A., Lin,Y., Han,S., and Wang,L. (2007) Relationship between the domain structures of several nuclear receptors and the effect differences of environmental endocrine disrupting chemicals. Asian Journal of Ecotoxicology 2, 363-374 28) Gao,F., Jiang,Y., Zhou,G.H., and Han,Z.K. (2007) The effects of xylanase supplementation on growth, digestion, circulating hormone and metabolite levels, immunity and gut microflora in cockerels fed on wheat-based diets. British Poultry Science 48, 480-488 29) Greenough,R.J., Everett,D.J., and Stavnsbjerg,M. (1991) Safety evaluation of alkaline cellulase. Food Chem.Toxicol 29, 781-785 30) Greenough,R.J., Perry,C.J., and Stavnsbjerg,M. (1996) Safety evaluation of a lipase expressed in Aspergillus oryzae. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 34, 161-166 31) Harbak,L. and Thygesen,H.V. (2002) Safety evaluation of a xylanase expressed in Bacillus subtilis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 40, 1-8 32) Harper,A.F., Skaggs,J.H., Veit,H.P., and Kornegay,E.T. (1999) Efficacy and safety of Novo SP938 microbial phytase supplementation of a corn-soybean meal diet fed to growing pigs. Journal of Animal Science 77, 174-175 33) Hjortkjaer,R.K., Bille-Hansen,V., Hazelden,K.P., McConville,M., McGregor,D.B., Cuthbert,J.A., Greenough,R.J., Chapman,E., Gardner,J.R., and Ashby,R. (1986) Safety evaluation of Celluclast, an acid cellulase derived from Trichoderma reesei. Food Chem.Toxicol 24, 55-63 34) Hjortkjaer,R.K., Stavnsbjerg,M., Pedersen,P.B., Heath,J., Wilson,J.A., Marshall,R.R., and Clements,J. (1993) Safety evaluation of esperase. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 31, 999-1011 35) Holcenberg,J.S., Borella,L.D., Camitta,B.M., and Ring,B.J. (1979) HUMAN PHARMACOLOGY AND TOXICOLOGY OF SUCCINYLATED ACINETOBACTER GLUTAMINASE ASPARAGINASE. Cancer Research 39, 3145-3151 36) Hytonen,M., Vanhanen,M., Keskinen,H., Tuoni,T., Tupasela,O., and Nordman,H. (1994) Pharyngeal edema caused by occupational exposure to cellulase enzyme. Allergy: European Journal of Allergy and Clinical Immunology 49, 782-784 37) Janer,G., Hakkert,B.C., Piersma,A.H., Vermeire,T., and Slob,W. (2007) A retrospective analysis of the added value of the rat two-generation reproductive toxicity study versus the rat subchronic toxicity study. Reproductive Toxicology 24, 103-113 38) Jensen,B.F. and Eigtved,P. (1990) Safety Aspects of Microbial Enzyme Technology, Exemplified by the Safety Assessment of An Immobilized Lipase Preparation, Lipozyme. Food Biotechnology 4, 699-725 39) Klinge,L., Straub,V., Neudorf,U., and Volt,T. (2005) Enzyme replacement therapy in classical infantile Pompe disease: Results of a ten-month follow-up study. Neuropediatrics 36, 6-11 40) Klinge,L., Straub,V., Neudorf,U., Schaper,J., Bosbach,T., G÷rlinger,K., Wallot,M., Richards,S., and Voit,T. (2005) Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscular disorders : NMD 15, 24-31 41) Kondo,M., Ogawa,T., Matsubara,Y., Mizutani,A., Murata,S., and Kitagawa,M. (1994) Safety evaluation of lipase G from Penicillium camembertii. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 32, 685-696 42) Kopetzki,E., Lehnert,K., and Buckel,P. (1994) Enzymes in diagnostics: Achievements and possibilities of recombinant DNA technology. Clinical Chemistry 40, 688-704 43) Kornegay,E.T., Skaggs,J.H., Denbow,D.M., Larsen,C.T., and Veit,H.P. (1999) Efficacy and safety of Novo SP938 microbial phytase supplementation of a low-P corn-soybean meal diet fed to turkeys. Poultry Science 78, 15 44) Landry,T.D., Chew,L., Davis,J.W., Frawley,N., Foley,H.H., Stelman,S.J., Thomas,J., Wolt,J., and Hanselman,D.S. (2003) Safety evaluation of an alpha-amylase enzyme preparation derived from the archaeal order Thermococcales as expressed in Pseudomonas fluorescens biovar I. Regulatory toxicology and pharmacology : RTP 37, 149-168 45) Lane,R.W., Yamakoshi,J., Kikuchi,M., Mizusawa,K., Henderson,L., and Smith,M. (1997) Safety evaluation of tannase enzyme preparation derived from Aspergillus oryzae. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 35, 207-212 46) MacKenzie,K.M., Petsel,S.R., Weltman,R.H., and Zeman,N.W. (1989) Subchronic toxicity studies in dogs and in utero rats fed diets containing Bacillus stearothermophilus alpha-amylase from a natural or recombinant DNA host. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 27, 599-606 47) Modderman,J.P. and Foley,H.H. (1995) Safety evaluation of pullulanase enzyme preparation derived from Bacillus licheniformis containing the pullulanase gene from Bacillus deramificans. Regulatory Toxicology and Pharmacology 21, 375-381 48) Ohshita,K., Nakajima,Y., Yamakoshi,J., Kataoka,S., Kikuchi,M., and Pariza,M.W. (2000) Safety evaluation of yeast glutaminase. Food and Chemical Toxicology 38, 661-670 49) Olempska-Beer,Z.S., Merker,R.I., Ditto,M.D., and DiNovi,M.J. (2006) Food-processing enzymes from recombinant microorganisms--a review. Regulatory toxicology and pharmacology : RTP 45, 144-158 50) Ollenschlaeger,G., Roth,E., Linkesch,W., Jansen,S., Simmel,A., and Moedder,B. (1988) ASPARAGINASE-INDUCED DERANGEMENTS OF GLUTAMINE METABOLISM THE PATHOGENETIC BASIS FOR SOME DRUG-RELATED SIDE EFFECTS. European Journal of Clinical Investigation 18, 512-516 51) Otamiri,T. (1989) Phospholipase C-mediated intestinal mucosal damage is ameliorated by quinacrine. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 27, 399-402 52) Zhang,Z.B., Kornegay,E.T., Radcliffe,J.S., Denbow,D.M., Veit,H.P., and Larsen,C.T. (2000) Comparison of genetically engineered microbial and plant phytase for young broilers. Poultry Science 79, 709-717 53) Zhang,Z.B., Kornegay,E.T., Radcliffe,J.S., Wilson,J.H., Veit,H.P., and Fontenot,J.P. (2000) Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. Journal of Animal Science 78, 2868-2878 54) Stavnsbjerg,M., Hjortkjaer,R.K., Billehansen,V., Jensen,B.F., Greenough,R.J., McConville,M., Holmstroem,M., and Hazelden,K.P. (1986) Toxicological Safety Evaluation of A Bacillus-Acidopullulyticus Pullulanase. Journal of Food Protection 49, 146-153 55) Harvey,P.W. and Johnson,I. (2002) Approaches to the assessment of toxicity data with endpoints related to endocrine disruption. Journal of Applied Toxicology 22, 241-247 56) US SDA. Risk assessment guidance for enzyme-containing products. 2005. Washington, Soap and Detergent Association. 57) Barak,A., Dulitzki,M., Efrati,O., Augarten,A., Szeinberg,A., Reichert,N., Modan,D., Weiss,B., Miller,M., Katzanelson,D., and Yahav,Y. (2005) Pregnancies and outcome in women with cystic fibrosis. Israel Medical Association journal : IMAJ 7, 95-98 58) D.A. Basketter, C. Broekhuizen, M. Fieldsend, S. Kirkwood, R. Mascarenhas, K. Maurer, C. Pedersen, C. Rodriguez & H.E. Schiff: Defining occupational and consumer exposure limits for enzyme protein respiratory allergens under REACH, Toxicology 268: 165-170, 2010. 59) Basketter D., Berg N., Broekhuizen C., Fieldsend M., Kirkwood S., Kluin C., Mathieu S. and Rodriguez C.Enzymes in Cleaning Products: An Overview of Toxicological Properties and Risk Assessment/Management. 2012a. Reg. Toxicol. Pharmacol, 64/1: 117-123 60) Basketter D.; N. Berg; F. Kruszewski; K. Sarlo; B. Concoby. The Toxicology and Immunology of Detergent Enzymes. 2012b. J. Immunotox., 9, 320-326.
Species:
rat
Strain:
not specified
Abnormalities:
not specified
Developmental effects observed:
not specified
Effect on developmental toxicity: via oral route
Endpoint conclusion:
no study available
Effect on developmental toxicity: via inhalation route
Endpoint conclusion:
no study available
Effect on developmental toxicity: via dermal route
Endpoint conclusion:
no study available
Additional information

Justification for selection of Effect on developmental toxicity: via oral route:
Toxicokinetic data together with the molecular structure of subtilisin and the weight of evidence from animal studies and human exposure provides no evidence for developmental toxicity.

Justification for selection of Effect on developmental toxicity: via inhalation route:
Toxicokinetic data together with the molecular structure of subtilisin and the weight of evidence from animal studies and human exposure provides no evidence for developmental toxicity.

Justification for selection of Effect on developmental toxicity: via dermal route:
Toxicokinetic data together with the molecular structure of subtilisin and the weight of evidence from animal studies and human exposure provides no evidence for developmental toxicity.

Toxicity to reproduction: other studies

Additional information

From the toxicokinetic information available, it can be concluded that the bioavailability of enzymes is low due to the fact that no significant absorption can be expected through the respiratory and/or gastrointestinal tract and/or through the skin. Exposure to enzymes will be limited because of the DMEL (derived minimum exposure levels) settings for workers, professionals and consumers to prevent respiratory allergy (supported by exposure scenarios and DMEL values) (ref. 58). Apart from the irritation potential of some proteases, respiratory allergy is generally considered to be the only human health hazard of enzymes indicating that this is the most sensitive endpoint considering enzyme toxicity. Concentrations that are not expected to result in respiratory allergy will certainly not result in any other toxic effect (ref. 59). This conclusion is substantiated by the material that follows.


Although endocrine disrupting chemicals are a broad group of chemicals consisting of man-made and natural compounds it is unlikely that enzymes have the potential to cause endocrine disruption. The enzymatic structure is different from any endocrine disrupter known to date (ref 1). Indeed, enzymes are much larger than endocrine disrupters in general excluding mechanisms such as direct action on hormone receptors (EDSTAC (Endocrine Disruptor Screening and Testing Advisory Committee, US EPA), (Ref. 2)). Due to the high biodegradability of enzymes, it is highly unlikely that they could reach target organs or sites to any significant amount or of any significant period of time. Testing of enzymes in currently available screening assays typically based on hormone receptor binding cannot be expected to provide any evidence for endocrine disruption due to the specific features of enzymes.


Data from acute and subchronic oral toxicity studies provide evidence that enzymes are of very low toxicological activity (ref. 3;4-53, 59, 60). Typically, the derived NOAEL values are significantly higher than the maximum doses applied. None of the oral toxicity studies performed by members of the consortium in the past 40 years, as well as published data from other studies revealed any effect that indicates that enzymes could have an adverse effect on the reproduction system in males or females.


Complementing the above information is data from 26 industrial studies (Novozymes, unpublished data) on fertility and/or teratogenicity and/or reproduction studies primarily in rodents but also other species like dogs and rabbits which did not identify any evidence for reproductive toxicity of enzymes. Both proteolytic and non-proteolytic enzymes have been investigated for their teratogenic and reproductive toxicity potential. Several of these studies have been published in peer reviewed articles (ref. 24;29;33;54). Enzymes have been produced and used for many years without any evidence for reproductive potential in humans. OEL for workers is set to be 60 ng/m3 to protect against respiratory sensitization. Considering that endocrine disrupting chemicals in general are a factor of 100 000 less potent than physiologically relevant hormones (ref. 55), the low worker exposure to enzymes due to rigorous application of airborne limit and very low exposure to consumers (below 15 ng/m3, which is the highest known consumer exposure and only the case when using pre-spotters (ref. 56)) and the low bioavailability together with the high biodegradability of enzymes, no reproductive toxicity effect can be expected in humans. Furthermore, enzymes have been used for decades to treat pancreatic insufficiency in both children and adults without any evidence of reproductive toxicity (ref. 57).


In conclusion, toxicokinetic data together with the enzymatic structure and the weight of evidence from animal studies and human exposure provide no evidence for reproductive toxicity of enzymes.


References


1) Whaley,D.A., Keyes,D., and Khorrami,B. (2001) Incorporation of endocrine disruption into chemical hazard scoring for pollution prevention and current list of endocrine disrupting chemicals. Drug and Chemical Toxicology an International Journal for Rapid Communication 24, 359-420


2) Hong,H., Tong,W., Fang,H., Shi,L., Xie,Q., Wu,J., Perkins,R., Walker,J.D., Branham,W., and Sheehan,D.M. (2002) Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environmental Health Perspectives 110, 29-36


3) Laake,K. (1980) ENZYMIC DRUGS. Side Effects of Drugs Annual 222-225 4) Amalfitano,A., Bengur,A.R., Morse,R.P., Majure,J.M., Case,L.E., Veerling,D.L., Mackey,J., Kishnani,P., Smith,W., Vie-Wylie,A., Sullivan,J.A., Hoganson,G.E., Phillips,J.A., Schaefer,G.B., Charrow,J., Ware,R.E., Bossen,E.H., and Chen,Y.T. (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genetics in Medicine 3, 132-138


4) Amalfitano,A., Bengur,A.R., Morse,R.P., Majure,J.M., Case,L.E., Veerling,D.L., Mackey,J., Kishnani,P., Smith,W., Vie-Wylie,A., Sullivan,J.A., Hoganson,G.E., Phillips,J.A., Schaefer,G.B., Charrow,J., Ware,R.E., Bossen,E.H., and Chen,Y.T. (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genetics in Medicine 3, 132-138


5) Andersen,J.R., Diderichsen,B.K., Hjortkjaer,R.K., De Boer,A.S., Bootman,J., West,H., and Ashby,R. (1987) DETERMINING THE SAFETY OF MALTOGENIC AMYLASE PRODUCED BY RECOMBINANT DNA TECHNOLOGY. Journal of Food Protection 50, 521-526


6) Ankel,E.G., Zirneski,J., Ring,B.J., and Holcenberg,J.S. (1984) Effect of asparaginase on cell membranes of sensitive and resistant mouse lymphoma cells. In Vitro 20, 376-384


7) Ashby,R., Hjortkjaer,R.K., Stavnsbjerg,M., Gurtler,H., Pedersen,P.B., Bootman,J., Hodson-Walker,G., Tesh,J.M., Willoughby,C.R., and Et,A. (1987) SAFETY EVALUATION OF STREPTOMYCES-MURINUS GLUCOSE ISOMERASE. Toxicology Letters (Shannon) 36, 23-36


8) Bar,A., Krul,C.A.M., Jonker,D., and de,V.N. (2004) Safety evaluation of an alpha-cyclodextrin glycosyltranferase preparation. Regulatory Toxicology and Pharmacology 39, S47-S56


9) Bergman,A. and Broadmeadow,A. (1997) An overview of the safety evaluation of the Thermomyces lanuginosus xylanase enzyme (SP 628) and the Aspergillus aculeatus xylanase enzyme (SP 578). Food additives and contaminants 14, 389-398


10) Biziulevichius,G.A. and Arestov,I.G. (1997) Safety of lysosubtilin per os in mice, rabbits and calves. Veterinary research 28, 385-395


11) Brinch,D.S. and Pedersen,P.B. (2002) Toxicological studies on Laccase from Myceliophthora thermophila expressed in Aspergillus oryzae. Regulatory toxicology and pharmacology : RTP 35, 296-307


12) Brinch,D.S. and Pedersen,P.B. (2002) Toxicological studies on Polyporus pinsitus laccase expressed by Aspergillus oryzae intended for use in food. Food additives and contaminants 19, 323-334


13) Broadmeadow,A., Clare,C., and De Boer,A.S. (1994) An overview of the safety evaluation of the Rhizomucor miehei lipase enzyme. Food additives and contaminants 11, 105-119


14) Broadwell,A.H., Baumann,L., and Baumann,P. (1990) The 42- and 51-kilodalton mosquitocidal proteins of Bacillus sphaericus 2362: construction of recombinants with enhanced expression and in vivo studies of processing and toxicity. Journal of bacteriology 172, 2217-2223


15) Bui,Q., Geronian,K., Gudi,R., Wagner,V., Kim,D., and Cerven,D. (2004) Safety evaluation of marmanase enzyme, produced by Bacillus lentus, intended for use in animal feed. International Journal of Toxicology 23, 398


16) Baer,A., Til,H.P., and Timonen,M. (1995) Subchronic oral toxicity study with regular and enzymatically depolymerized sodium carboxymethylcellulose in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 33, 909-917


17) Cerven,D., DeGeorge,G., and Bethell,D. (2008) 28-Day repeated dose oral toxicity of recombinant human apo- lactoferrin or recombinant human lysozyme in rats. Regulatory Toxicology and Pharmacology 51, 162-167


18) Ciofalo,V., Barton,N., Kretz,K., Baird,J., Cook,M., and Shanahan,D. (2003) Safety evaluation of a phytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed. Regulatory Toxicology and Pharmacology 37, 286-292


19) Coenen,T.M., Schoenmakers,A.C., and Verhagen,H. (1995) Safety evaluation of beta-glucanase derived from Trichoderma reesei: summary of toxicological data. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 33, 859-866


20) Coenen,T.M., Aughton,P., and Verhagen,H. (1997) Safety evaluation of lipase derived from Rhizopus oryzae: summary of toxicological data. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 35, 315-322


21) Coenen,T.M. and Aughton,P. (1998) Safety evaluation of amino peptidase enzyme preparation derived from Aspergillus niger. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 36, 781-789


22) Coenen,T.M., Bertens,A.M., de Hoog,S.C., and Verspeek-Rip,C.M. (2000) Safety evaluation of a lactase enzyme preparation derived from Kluyveromyces lactis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 38, 671-677


23) Cook,M.W. and Thygesen,H.V. (2003) Safety evaluation of a hexose oxidase expressed in Hansenula polymorpha. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 41, 523-529


24) Deboer,A.S., Marshall,R., Broadmeadow,A., and Hazelden,K. (1993) Toxicological Evaluation of Acetolactate Decarboxylase. Journal of Food Protection 56, 510-517


25) Durden,D.L. and Distasio,J.A. (1981) CHARACTERIZATION OF THE EFFECTS OF ASPARAGINASE FROM ESCHERICHIA-COLI AND A GLUTAMINASE-FREE ASPARAGINASE FROM VIBRIO-SUCCINOGENES ON SPECIFIC CELL MEDIATED CYTO TOXICITY. International Journal of Cancer 27, 59-66


26) Elvig,S.G. and Pedersen,P.B. (2003) Safety evaluation of a glucanase preparation intended for use in food including a subchronic study in rats and mutagenicity studies. Regulatory Toxicology and Pharmacology 37, 11-19


27) Gao,C., Zhang,A., Lin,Y., Han,S., and Wang,L. (2007) Relationship between the domain structures of several nuclear receptors and the effect differences of environmental endocrine disrupting chemicals. Asian Journal of Ecotoxicology 2, 363-374


28) Gao,F., Jiang,Y., Zhou,G.H., and Han,Z.K. (2007) The effects of xylanase supplementation on growth, digestion, circulating hormone and metabolite levels, immunity and gut microflora in cockerels fed on wheat-based diets. British Poultry Science 48, 480-488


29) Greenough,R.J., Everett,D.J., and Stavnsbjerg,M. (1991) Safety evaluation of alkaline cellulase. Food Chem.Toxicol 29, 781-785


30) Greenough,R.J., Perry,C.J., and Stavnsbjerg,M. (1996) Safety evaluation of a lipase expressed in Aspergillus oryzae. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 34, 161-166


31) Harbak,L. and Thygesen,H.V. (2002) Safety evaluation of a xylanase expressed in Bacillus subtilis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 40, 1-8


32) Harper,A.F., Skaggs,J.H., Veit,H.P., and Kornegay,E.T. (1999) Efficacy and safety of Novo SP938 microbial phytase supplementation of a corn-soybean meal diet fed to growing pigs. Journal of Animal Science 77, 174-175


33) Hjortkjaer,R.K., Bille-Hansen,V., Hazelden,K.P., McConville,M., McGregor,D.B., Cuthbert,J.A., Greenough,R.J., Chapman,E., Gardner,J.R., and Ashby,R. (1986) Safety evaluation of Celluclast, an acid cellulase derived from Trichoderma reesei. Food Chem.Toxicol 24, 55-63


34) Hjortkjaer,R.K., Stavnsbjerg,M., Pedersen,P.B., Heath,J., Wilson,J.A., Marshall,R.R., and Clements,J. (1993) Safety evaluation of esperase. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 31, 999-1011


35) Holcenberg,J.S., Borella,L.D., Camitta,B.M., and Ring,B.J. (1979) HUMAN PHARMACOLOGY AND TOXICOLOGY OF SUCCINYLATED ACINETOBACTER GLUTAMINASE ASPARAGINASE. Cancer Research 39, 3145-3151


36) Hytonen,M., Vanhanen,M., Keskinen,H., Tuoni,T., Tupasela,O., and Nordman,H. (1994) Pharyngeal edema caused by occupational exposure to cellulase enzyme. Allergy: European Journal of Allergy and Clinical Immunology 49, 782-784


37) Janer,G., Hakkert,B.C., Piersma,A.H., Vermeire,T., and Slob,W. (2007) A retrospective analysis of the added value of the rat two-generation reproductive toxicity study versus the rat subchronic toxicity study. Reproductive Toxicology 24, 103-113


38) Jensen,B.F. and Eigtved,P. (1990) Safety Aspects of Microbial Enzyme Technology, Exemplified by the Safety Assessment of An Immobilized Lipase Preparation, Lipozyme. Food Biotechnology 4, 699-725


39) Klinge,L., Straub,V., Neudorf,U., and Volt,T. (2005) Enzyme replacement therapy in classical infantile Pompe disease: Results of a ten-month follow-up study. Neuropediatrics 36, 6-11


40) Klinge,L., Straub,V., Neudorf,U., Schaper,J., Bosbach,T., G÷rlinger,K., Wallot,M., Richards,S., and Voit,T. (2005) Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscular disorders : NMD 15, 24-31


41) Kondo,M., Ogawa,T., Matsubara,Y., Mizutani,A., Murata,S., and Kitagawa,M. (1994) Safety evaluation of lipase G from Penicillium camembertii. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 32, 685-696


42) Kopetzki,E., Lehnert,K., and Buckel,P. (1994) Enzymes in diagnostics: Achievements and possibilities of recombinant DNA technology. Clinical Chemistry 40, 688-704


43) Kornegay,E.T., Skaggs,J.H., Denbow,D.M., Larsen,C.T., and Veit,H.P. (1999) Efficacy and safety of Novo SP938 microbial phytase supplementation of a low-P corn-soybean meal diet fed to turkeys. Poultry Science 78, 15


44) Landry,T.D., Chew,L., Davis,J.W., Frawley,N., Foley,H.H., Stelman,S.J., Thomas,J., Wolt,J., and Hanselman,D.S. (2003) Safety evaluation of an alpha-amylase enzyme preparation derived from the archaeal order Thermococcales as expressed in Pseudomonas fluorescens biovar I. Regulatory toxicology and pharmacology : RTP 37, 149-168


45) Lane,R.W., Yamakoshi,J., Kikuchi,M., Mizusawa,K., Henderson,L., and Smith,M. (1997) Safety evaluation of tannase enzyme preparation derived from Aspergillus oryzae. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 35, 207-212


46) MacKenzie,K.M., Petsel,S.R., Weltman,R.H., and Zeman,N.W. (1989) Subchronic toxicity studies in dogs and in utero rats fed diets containing Bacillus stearothermophilus alpha-amylase from a natural or recombinant DNA host. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 27, 599-606


47) Modderman,J.P. and Foley,H.H. (1995) Safety evaluation of pullulanase enzyme preparation derived from Bacillus licheniformis containing the pullulanase gene from Bacillus deramificans. Regulatory Toxicology and Pharmacology 21, 375-381


48) Ohshita,K., Nakajima,Y., Yamakoshi,J., Kataoka,S., Kikuchi,M., and Pariza,M.W. (2000) Safety evaluation of yeast glutaminase. Food and Chemical Toxicology 38, 661-670


49) Olempska-Beer,Z.S., Merker,R.I., Ditto,M.D., and DiNovi,M.J. (2006) Food-processing enzymes from recombinant microorganisms--a review. Regulatory toxicology and pharmacology : RTP 45, 144-158


50) Ollenschlaeger,G., Roth,E., Linkesch,W., Jansen,S., Simmel,A., and Moedder,B. (1988) ASPARAGINASE-INDUCED DERANGEMENTS OF GLUTAMINE METABOLISM THE PATHOGENETIC BASIS FOR SOME DRUG-RELATED SIDE EFFECTS. European Journal of Clinical Investigation 18, 512-516


51) Otamiri,T. (1989) Phospholipase C-mediated intestinal mucosal damage is ameliorated by quinacrine. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 27, 399-402


52) Zhang,Z.B., Kornegay,E.T., Radcliffe,J.S., Denbow,D.M., Veit,H.P., and Larsen,C.T. (2000) Comparison of genetically engineered microbial and plant phytase for young broilers. Poultry Science 79, 709-717


53) Zhang,Z.B., Kornegay,E.T., Radcliffe,J.S., Wilson,J.H., Veit,H.P., and Fontenot,J.P. (2000) Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. Journal of Animal Science 78, 2868-2878


54) Stavnsbjerg,M., Hjortkjaer,R.K., Billehansen,V., Jensen,B.F., Greenough,R.J., McConville,M., Holmstroem,M., and Hazelden,K.P. (1986) Toxicological Safety Evaluation of A Bacillus-Acidopullulyticus Pullulanase. Journal of Food Protection 49, 146-153


55) Harvey,P.W. and Johnson,I. (2002) Approaches to the assessment of toxicity data with endpoints related to endocrine disruption. Journal of Applied Toxicology 22, 241-247


56) US SDA. Risk assessment guidance for enzyme-containing products. 2005. Washington, Soap and Detergent Association.


57) Barak,A., Dulitzki,M., Efrati,O., Augarten,A., Szeinberg,A., Reichert,N., Modan,D., Weiss,B., Miller,M., Katzanelson,D., and Yahav,Y. (2005) Pregnancies and outcome in women with cystic fibrosis. Israel Medical Association journal : IMAJ 7, 95-98


58) D.A. Basketter, C. Broekhuizen, M. Fieldsend, S. Kirkwood, R. Mascarenhas, K. Maurer, C. Pedersen, C. Rodriguez & H.E. Schiff: Defining occupational and consumer exposure limits for enzyme protein respiratory allergens under REACH, Toxicology 268: 165-170, 2010.


59) Basketter D., Berg N., Broekhuizen C., Fieldsend M., Kirkwood S., Kluin C., Mathieu S. and Rodriguez C.Enzymes in Cleaning Products: An Overview of Toxicological Properties and Risk Assessment/Management. 2012a. Reg. Toxicol. Pharmacol, 64/1: 117-123


60) Basketter D.; N. Berg; F. Kruszewski; K. Sarlo; B. Concoby. The Toxicology and Immunology of Detergent Enzymes. 2012b. J. Immunotox., 9, 320-326.

Justification for classification or non-classification

Subtilisin is not classified as it is not a reproductive toxicant. (For further justification see discussion above)

Additional information