Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 412-440-4 | CAS number: 2725-22-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Biodegradation in water
Estimation Programs Interface Suite was run to predict the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that test chemical is expected to be not readily biodegradable.
Biodegradation in water and sediment
Estimation Programs Interface prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 1.26% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 60 days (1440 hrs). The half-life (60 days estimated by EPI suite) indicates that the chemical is persistent in water and the exposure risk to aquatic animals is moderate to high whereas the half-life period of test chemical in sediment is estimated to be 541.66 days (13000 hrs). Based on this half-life value, it indicates that test chemical is persistent in sediment.
Biodegradation in soil
The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database. If released into the environment, 31.5% of the chemical will partition into soil according to the Mackay fugacity model level III. The half-life period of test chemical in soil is estimated to be 120 days (2880 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low
Additional information
Biodegradation in water
Predicted data for the test chemical and experimental studies for its read across substance were reviewed for the biodegradation end point and their results are summarized as below:
In the first study the Estimation Programs Interface Suite was run to predict the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that the chemical is expected to be not readily biodegradable.
In a supporting weight of evidence study from secondary sources, biodegradation study was conducted for assessing the effect of test chemical. The study was performed in accordance with the OECD TG 301 B at a temperature of 22 ± 2°C. Anaerobic bacteria collected from activated sludge of the sewage treatment plant was used as a test inoculum. Test chemical conc. used for the study was 10.7 mg/l and 20.2 mg/l, respectively. Aniline (20 mg/l) was used as a reference substance during the study. Reference substance aniline undergoes 84.3% degradation after 28 days. The percentage degradation of test chemical (at 10.7 and 20.2 mg/l conc.) was determined to be 6% and 5% by CO2 evolution parameter, respectively. Thus, based on percentage degradation, test chemical was considered to be not readily biodegradable.
For the test chemical, biodegradation study was conducted for assessing the effect of test chemical (J-CHECK, 2021). Activated sludge was used as a test inoculum. Concentration of inoculum i.e, sludge used was 30 mg/l and initial test substance conc. used in the study was 100 mg/l, respectively. The percentage degradation of test chemical was determined to be 0% and 4% by oxygen consumption and HPLC parameter, respectively. Thus, based on percentage degradation, test chemical was considered to be not readily biodegradable.
On the basis of above results for test chemical, it is concluded that the test chemical is expected to be not readily biodegradable in nature.
Biodegradation in water and sediment
Estimation Programs Interface prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 1.26% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 60 days (1440 hrs). The half-life (60 days estimated by EPI suite) indicates that the chemical is persistent in water and the exposure risk to aquatic animals is moderate to high whereas the half-life period of test chemical in sediment is estimated to be 541.66 days (13000 hrs). Based on this half-life value, it indicates that test chemical is persistent in sediment.
Biodegradation in soil
The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database. If released into the environment, 31.5% of the chemical will partition into soil according to the Mackay fugacity model level III. The half-life period of test chemical in soil is estimated to be 120 days (2880 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.