Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: Guideline study; GLP; Only a summary was available in English.

Data source

Reference
Reference Type:
publication
Title:
Unnamed
Year:
2001

Materials and methods

Test guideline
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
Trimethylamine
EC Number:
200-875-0
EC Name:
Trimethylamine
Cas Number:
75-50-3
Molecular formula:
C3H9N
IUPAC Name:
N,N-dimethylmethanamine
Details on test material:
Methylamine, 30.8% in an aqueous solution.

Method

Species / strainopen allclose all
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Species / strain / cell type:
E. coli WP2 uvr A
Metabolic activation:
with and without
Test concentrations with justification for top dose:
0 - 5000 µg
Details on test system and experimental conditions:
Ames test

Results and discussion

Test resultsopen allclose all
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Remarks on result:
other: all strains/cell types tested
Remarks:
Salmonella typhimurium TA1535, TA1537, TA98, TA100 and Escherichia coli WP2 uvrA; Pre-incubation Method

Applicant's summary and conclusion

Conclusions:
Interpretation of results:negative
Trimethylamine showed no gene mutation effects to S.typhimurium strains TA98, TA100, TA1535, and TA1537 and E.coli strain WP2 uvr A.
Executive summary:

Gene mutation properties of trimethylamine were investigated in a bacterial reverse mutation assay (Ames test; Nakajima et al., 2001). The test was performed according to OECD guideline 471 with Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 as well as with Escherichia coli strain WP2 uvr A. The concentrations of the test substance ranged from 0 to 5000 µg and the test result was negative in all strains, with and without metablic activation system.