Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Link to relevant study record(s)

Description of key information

Short description of key information on bioaccumulation potential result: 
The following studies have been submitted to address the toxicokinetics:
Ishizaka et al (1989). Metabolism of Dibutyltin Dichloride in Male Rats. J. Agric. Food Chem. 37: 1096-1101.
Kimmel et al (1977) Bioorganotin Chemistyr. Metabolism of Organotin Compounds in Microsomal Monooxygenase Systems and in Mammals. J. Agric. Food Chem. 25(1): 1-9. (Presented as two separate summaries)
Yoder, RE (2000) Development of a Method to Directly Determine Monobutyltin Trichloride and Dibutyltin Dichloride Under Simulated Gastric Conditions 2000-05-11
Bautista & Herzig (2000) Simulated Gastric Hydrolysis of Butyltin and Octyltin Mercaptides 2000-05-26
Gillard-Factor & Yoder (2000) MS Study of the Hydrolysis of Various Organotins Under Simulated Gastric Conditions Elf Atochem 2000-05-23
All studies were assigned a reliability score of 2. All studies except Ishizaka et al (1989) were performed on read-across subtances. Both Kimmel studies were performed on dibutyltin di(acetate), all other studies were performed on dibutyltin bis-EHMA.
Short description of key information on absorption rate:
The following study was included to address dermal absorption:
Ward, R.J. (2003) Dibutyltin bis(2-ethylhexyl mercaptoacetate): in vitro absorption through human and rat epidermis. Testing Laboratory: Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, SK10 4TJ, UK. Owner Company: Tin Stabilizer Association, 1900 Arch Street, Philadelphia, PA 19103-1498, USA. Project No.: JV1699. Company study number: CO1374. Report date: 2003-01-08
The study was assigned a reliability score of 2 as the study was read-across from dibutyltin bis(2-ethylhexylmercaptoacetate).

Key value for chemical safety assessment

Absorption rate - dermal (%):
1

Additional information

The results obtained from an in vitro gastric hydrolysis study (Yoder 2000) support the use of Dibutyltin Dichloride (DBTC) as an appropriate surrogate for mammalian toxicology studies of the corresponding DBT moiety. A study conducted via the oral route on the thioester DBT (2-EHMA) demonstrated this substance readily hydrolized to DBTC under physiological conditions (100% hydrolysis within 1hour). Thus, it is considered that DBTC is an appropriate anchor compound and surrogate for the repeat dose toxicity, genotoxicity, reproduction and developmental toxicity and other long term toxicology endpoints, for all dibutyltin compounds when they are assessed following oral administration of the test material. Acute toxicity and irritation endpoints are not covered under the category approach and were evaluated individually for each dibutyltin compound. Sensitization, although not related to the hydrolysis discussion above, is considered acceptable to read across for Dibutyltin substances and as a group they are considered to be sensitisers.

Available ADME data for DBTC, using intraperitoneal injection, indicate an half-life of approximately 3-5 days in liver, kidney and blood. Further data reviewed by the EU’s Scientific Panel on Contaminants in the Food Chain (EFSA/SPCFC) indicated that tributyl tin may be debutylated to dibutyl- and monobutyl tin, dibutyl tin acetate is further metabolised to monobutyltin. These data would suggest that the toxicity of all of the butylated tins can qualitatively be read across. The extent of metabolism would appear limited (for instance, only 3.5% of dibutyltin acetate being recovered as monobutyltin). The validity of any read-across from tributyltin to dibutyltin NOAELs is therefore limited. DNELs proposed in this CSR on the basis of robust toxicity data specifically for dibutyltin are entirely appropriate.

The EFSA/SPCFC review suggests that oral absorption of tributyl and dibutyltins is incomplete; a figure of 50% oral absorption is considered appropriate (based on 41% unmetabolised dibutyltin di(acetate) recovered from the faeces of mice). Existing dermal penetration data for organotin compounds indicates dermal absorption to be low. By read-across from available data, a value of 1% for dermal absorption is considered appropriate.

In the 2003 Dermal Absorption study by Ward, 00 µL/cm2(= 21120 µg tin/cm2) was found to alter the barrier function of the rat epidermis. At 100 µL/cm2, approximately up to 18-45 % of the tin dose was unaccounted for, possibly due to adherence of the test material to the glass apparatus. The absorption of tin through human epiderims was very slow, when compared with the absorption rates of other penetrants. The proportions of dibutyltin bis(2-ethylhexylmercaptoacetate) absorbed through human epidermis were 0.0004% and 0.0010% (occluded and unoccluded respectively) after 24 hours exposure, compared to 0.261% and 0.189% through rat epidermis. The majority of the applied tin dose was washed from the surface of the epidermis during decontamination, only a relatively small proportion of the dose (human up to 1%; rat up to 10%) remained associated with the epidermis and therefore was not regarded as systemically available.

Discussion on bioaccumulation potential result:

All the studies presented were performed to a good standard and included a good level of detail in the reporting of the methods and the results.

 

The first study, Ishizaka et al (1989) investigated the distribution, half-life and metabolites of dibutyltin dichloride.. Dibutyltin dichloride was administered intraperitoneally to male rats, butyl(3-hydroxybuty1)tin dichloride (M-2), butyl(4-hydroxybuty1)tin dichloride (M-3), and butyltin trichloride (M-4) were detected as acid-stable metabolites. M-1 was found in every organ, urine, and blood. M-2 was found in every organ and urine. M-3 was found only in urine. M-4 was found in every organ and urine. No other significant metabolite was detected in the extract. The concentration changes of M-1 in liver, kidney, and blood suggests that the half-lives in these organs are about 3-5 days.

 

The two Kimmel et al (1977) studies summarised were published within the same report. The first study presented investigated the metabolic fate of dibutyltin acetate was examined in a microsomal monooxygenase metabolism system (MO) derived from either rat or rabbit livers. Comparative data was also provided on other alkyltins in the MO system. Metabolism of Bu2Sn(OAc)2 yields BuSnX3, possibly by both nonenzymatic destannylation and by a- and β-carbon hydroxylation and decomposition of the hydroxy derivatives. The unidentified polar metabolites are probably formed by two or more sites of hydroxylation at different butyl groups. Bu3SnX and Bu2SnX2 bind extensively in some tissue fractions, making analysis difficult analysis and a plausible explanation for the relatively low metabolite yields. The second study investigated the metabolism of Bu2Sn(OAc)2 which yields BuSnX3, possibly by both nonenzymatic destannylation and by a- and β-carbon hydroxylation and decomposition of the hydroxy derivatives. The unidentified polar metabolites are probably formed by two or more sites of hydroxylation at different butyl groups. Bu3SnX and Bu2SnX2 bind extensively in some tissue fractions, making analysis difficult analysis and a plausible explanation for the relatively low metabolite yields.

 

The further three studies presented were individual studies presented within a comprehensive unpublished report by the ORTEP stabilizer Task Force (The Simulated Gastric Hydrolysis of Tin Mercaptide Stabilizers (2000)).

 

Yoder, RE (2000): A direct injection gas chromatographic (GC) method has been developed to quantify monobutyltin trichloride (MBTC) and dibutyltin dichloride (DBTC) produced during the hydrolysis of Bu2Sn(EHMA)2 under simulated gastric conditions (37°C, pH = 1.2 or 4). DBTC can be quantified in the range of 0.1 to 5 µg/mL (as tin). MBTC can be quantified in the range of 0.2 to 5 µg/ml (as tin) at pH = 1.2, but can not be quantified at pH = 4. The repeatability of results is about ± 10%, relative. Results indicate that the hydrolysis of Bu2Sn(EHMA)2 is very rapid at pH = 1.2.

 

Bautista & Herzig (2000): Under acidic conditions, mono- or di- alkyltin mercaptides undergo a tin-EHMA bond break releasing EHMA. The free EHMA undergoes additional hydrolysis with ethyl hexanol and thioglycolic acid as products. EHMA and ethyl hexanol are easily quantified at low ppm level by GC-AED. The water soluble thioglycolic acid could be determined indirectly by total sulfur analysis-ICP emission spectroscopy.

 

Gillard-Factor & Yoder (2000): Direct infusion electrospray MS is used to study the hydrolysis of Bu2Sn(EHMA)2 to its corresponding chloride derivative under simulated gastric conditions (pH = 1 and pH = 4). The results indicate that the hydrolysis occurs more completely at pH = 1 than at pH = 4. In addition, the same behaviour is observed for the four organotins investigated in this study.

Discussion on absorption rate:

Ward, R.J. (2003) was presented as the key study for this endpoint. The study was performed to the guideline OECD 428 and in compliance with GLP. The study was assigned a reliability score of 2 as the study was performed on dibutyltin 2-bis (2-ethylhexyl mercaptoacetate) and read-across to the substance in question, but is still considered reliable and adequate for assessment. From the study, the following points were noted:

1. Following 24 hours dermal contact, the amount of dibutyltin bis(2-ethylhexlymercaptoacetate) required to alter the barrier function of rat epidermis was approximately 100 µL/cm2 (= 21120 µg tin/cm2).

2. The results indicate that at a dose level of 100 µL/cm2, approximately up to 18-45 % of the tin dose was unaccounted for, possibly due to adherence of the test material to the glass apparatus used during the study, especially during the decontamination process.

3. At 100 µL/cm2, the absorption of tin through human epiderims was very slow, when compared with the absorption rates of other penetrants measured using the same in vitro technique. (Dugard et al 1984; Dugard and Scott, 1984).

4. The proportions of dibutyltin bis(2-ethylhexylmercaptoacetate) absorbed through human epidermis were 0.0004% and 0.0010% (occluded and unoccluded respectively) of dose after 24 hours exposure, compared to 0.261% and 0.189% through rat epidermis.

5. The absorption of tin from dibutyltin bis(2-ethylhexylmercaptoacetate) through rat epidermis significantly overestimated absorption through human epidermis.

6. The vast majority of the applied tin dose was washed from the surface of the epidermis during the decontamination process, with only relatively small proportions of the dose (human up to 1%; rat up to 10%) remaining associated with the epidermis and therefore not regarded as systemically available.