Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 269-049-5 | CAS number: 68186-87-8 This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77347.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Monitoring data
Administrative data
- Endpoint:
- monitoring data
- Type of information:
- other: report
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- data from handbook or collection of data
Data source
Referenceopen allclose all
- Reference Type:
- publication
- Title:
- Unnamed
- Year:
- 2 005
- Report date:
- 2005
- Reference Type:
- other: GEMAS database
- Title:
- Chemistry of Europe’s agricultural soils - Part A: Methodology and interpretation of the GEMAS data set.
- Author:
- Reimann et al.
- Year:
- 2 014
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 021
- Report date:
- 2021
Materials and methods
Test guideline
- Qualifier:
- no guideline required
- Principles of method if other than guideline:
- Evaluation and summary of high quality environmental geochemical data for Europe, which is provided by the Forum of European Geological Surveys (FOREGS) and the European Geochemical Mapping of Agricultural and Grazing Land Soil (GEMAS), with respect to aluminium concentrations in stream water, stream sediment and topsoil, as well as in agricultural soil and grazing land.
- GLP compliance:
- no
- Type of measurement:
- other: Geochemical background and ambient aluminium concentrations in different environmental compartments across Europe
- Media:
- other: Natural stream water, stream sediment and topsoil, as well as agricultural and grazing land soils
Test material
- Reference substance name:
- not applicable
- IUPAC Name:
- not applicable
- Test material form:
- other: elemental concentrations
- Details on test material:
- natural occuring aluminium
Constituent 1
Study design
- Details on sampling:
- FOREGS and GEMAS data for EU-27 countries plus UK and Norway were considered, i.e. data from non-EEA countries such as Albania, Bosnia and Switzerland were excluded from further analysis.
FOREGS:
- The FOREGS sampling grid was based on GTN grid cells developed for Global Geochemical Baseline mapping. This grid divides the entire land surface into 160 km x 160 km cells covering an area of 4,500,000 km2.
- Sampling methodology, preparation and analysis are described by Salminen et al. (2005).
- FOREGS data for EU-27 countries plus UK and Norway were considered, i.e. data from non-EEA countries such as Albania and Switzerland were excluded from further analysis.
- A total of 795 stream water samples of aluminium and 839 sediment samples of aluminium oxide were processed in the FOREGS-program, including 742 paired samples, i.e. samples with the same coordinates for the sampling location of stream water and sediment.
- The FOREGS dataset reports aluminium/aluminium oxide concentrations for 833 topsoil samples sampled on a grid across Europe. A topsoil sample was taken at each site from 0-25 cm (excluding material from the organic layer where present).
- Reported aluminium oxide concentrations were converted into aluminium concentrations.
- High quality and consistency of the obtained data were ensured by using standardised sampling methods and by treating and analysing all samples in the same laboratory of each country.
GEMAS:
- Samples from 33 out of 38 European countries were analysed to develop a suitable harmonised geochemical data base for soils. The sampling started in the spring 2008 and the first four months of 2009.
- The whole GEMAS project area of 5,600,000 km2 was divided into a grid with 50 km x 50 km cells.
- To generate harmonised data sets, all project samples were processed by a central sample preparation facility in Slovakia.
- GEMAS data for EU-27 countries plus UK and Norway were considered, i.e. data from non-EEA countries such as Bosnia and Switzerland were excluded from further analysis.
- The GEMAS dataset reports aluminium concentrations for 1,867 samples from the regularly ploughed layer (Ap-horizon) of agricultural land (arable land; 0 - 20 cm) and for 1,781 samples from the top layer of grazing land (soil under permanent grass cover; 0 – 10 cm) sampled on a grid across Europe.
Results and discussion
Any other information on results incl. tables
FOREGS DATABASE STREAM WATER/SEDIMENT:
- Sampled stream water and sediments cover a wide range of environmental conditions. Water parameters such as pH, hardness and organic carbon concentrations extend over several magnitudes. Aluminium water levels range from 0.7 to 3,370.0 µg/L with 5th, 50th and 95th percentiles of 2.0, 17.1 and 313.9 µg/L, respectively.
- In the sediment, aluminium concentrations range from 1,058.5 to 137,075.9 mg/kg with 5th, 50th and 95th percentiles of 12,225.7, 55,042.1 and 94,735.9 mg/kg, respectively (Table 1).
- Taking into account the high quality and representativeness of the data set, the 95th percentile of 313.9 µg/L can be regarded as representative background concentration for dissolved aluminium in European surface waters and the 95th percentile of 94,735.9 mg/kg as representative background concentration of aluminium in European stream sediments.
- Regarding the partitioning of aluminium in the water column, stream water/sediment partition coefficients range from 15,747 to 94,090,878 L/kg. Since FOREGS sampled on a grid aiming to equally represent geochemical baseline concentrations across Europe, a European median log Kp value of 6.39 is derived.
Table 1: Water parameters and aluminium/aluminium oxide concentrations of stream sediment and stream water and respective partitioning.
|
Parameter |
# |
Unit |
Min. |
Max. |
5th P |
50th P |
95th P |
water |
pH 1 |
734 2 |
- |
9.80 |
4.50 |
8.50 |
7.70 |
6.10 |
water |
Ca |
742 |
mg/L |
0.23 |
592.00 |
1.63 |
42.63 |
146.97 |
water |
Cl |
742 |
mg/L |
0.14 |
4,560.00 |
0.49 |
9.19 |
67.33 |
water |
HCO3 |
740 3 |
mg/L |
0.69 |
1,804.42 |
5.36 |
131.52 |
374.14 |
water |
K |
742 |
mg/L |
< 0.01 |
182.00 |
0.15 |
1.63 |
9.80 |
water |
Mg |
742 |
mg/L |
0.05 |
230.00 |
0.46 |
6.20 |
37.85 |
water |
Na |
742 |
mg/L |
0.23 |
4,030.00 |
1.00 |
6.73 |
48.26 |
water |
NO3 |
742 |
mg/L |
< 0.04 |
107.00 |
< 0.04 |
3.10 |
39.89 |
water |
DOC |
735 4 |
mg/L |
< 0.50 |
57.94 |
0.60 |
4.79 |
23.07 |
water |
SO42- |
742 |
mg/L |
< 0.30 |
2,420.00 |
1.18 |
17.03 |
166.75 |
water |
Al |
742 |
µg/L |
0.70 |
3,370.00 |
2.00 |
17.10 |
313.90 |
sediment |
Al2O3 |
742 |
% |
0.20 |
25.90 |
2.31 |
10.40 |
17.90 |
sediment |
Al 5 |
742 |
mg/kg |
1,058.50 |
137,075.93 |
12,225.69 |
55,042.07 |
94,735.87 |
Partitioning (Kp) |
Al (sed/water) |
742 |
L/kg |
15,746 |
94,089,011 |
152,295 |
2,452,151 |
23,238,707 |
Log Kp |
Al (sed/water) |
742 |
- |
4.20 |
7.97 |
5.18 |
6.39 |
7.37 |
1 Statistics are based on H+ concentrations rather than pH.
2 Removal of 2 outliers < pH 4.3 and 6 negative values.
3 Removal of 2 outliers < 0.01.
4 Removal of 1 outlier > 70 mg/L and 1 negative values.
5 Values converted from Al2O3.
FOREGS DATABASE Background soil concentrations
- Sampled soils cover a wide range of environmental conditions. Soil parameters, including pH and TOC, cover several magnitudes.
- Baseline aluminium levels in topsoil range from 1,958.2 to 141,151.2 mg/kg with 5th, 50th and 95th percentiles of 16,322.1, 58,376.4 and 92,121.4 mg/kg, respectively (see Table 2).
- Taking into account the high quality and representativeness of the data set, the 95th percentile of 92,121.4 mg/kg can be regarded as representative background concentration of aluminium in topsoil of EU countries.
Table 2: Concentrations of aluminium/aluminium oxide in topsoil samples.
Parameter |
Unit |
# |
Min. |
Max. |
5th P |
50th P |
95th P |
pH 1 |
- |
802 |
7.55 |
3.38 |
7.31 |
5.49 |
4.28 |
TOC |
% |
799 |
0.07 |
46.61 |
0.56 |
1.72 |
5.86 |
Al2O3 |
% |
833 |
0.37 |
26.67 |
3.08 |
11.03 |
17.41 |
Al 2 |
mg/kg |
833 |
1,958.2 |
141,151.2 |
16,322.1 |
58,376.4 |
92,121.4 |
1 Statistics are based on H+ concentrations rather than pH.
2 Values converted from Al2O3.
GEMAS DATABASE AGRICULTURAL AND GRAZING LAND SOIL CONCENTRATIONS:
- Aluminium levels of agricultural soil range from 351.6 to 64,527.0 mg/kg with 5th, 50th and 95th percentiles of 2,508.0, 10,769.4 and 23,999.1 mg/kg, respectively (see Table 3). In grazing land, soil concentrations of aluminium range from 627.3 to 62,541.8 mg/kg with 5th, 50th and 95th percentiles of 2,335.6, 10,506.8 and 25,326.4 mg/kg, respectively (see Table 4).
Table 3: Agricultural soil concentrations.
Parameter |
Unit |
Method |
# |
Min. |
Max. |
5th P |
50th P |
95th P |
CEC |
meq/100g |
AAS |
1,867 |
1.80 |
48.30 |
6.10 |
15.80 |
33.30 |
pH (CaCl2) |
pH |
pH-meter |
1,867 |
3.32 |
7.98 |
4.14 |
5.71 |
7.45 |
TOC |
% |
IR |
1,854 |
0.40 |
46.00 |
0.70 |
1.70 |
5.67 |
Aluminium |
mg/kg |
AR |
1,867 |
351.60 |
64,526.98 |
2,508.03 |
10,769.43 |
23,999.05 |
Aluminium |
mg/kg |
XRF |
1,867 |
1,958.00 |
143,850.00 |
16,120.80 |
55,730.00 |
83,606.10 |
Aluminium |
mg/kg |
MMI |
1,867 |
< 1.00 |
450.00 |
10.00 |
69.00 |
450.00 |
Table 4: Grazing land soil concentrations.
Parameter |
Unit |
Method |
# |
Min. |
Max. |
5th P |
50th P |
95th P |
CEC |
meq/100g |
AAS |
1,781 |
2.54 |
49.88 |
8.27 |
17.96 |
37.74 |
pH (CaCl2) |
pH |
pH-meter |
1,780 |
3.26 |
8.06 |
4.03 |
5.38 |
7.45 |
TOC |
% |
IR |
1,780 |
0.41 |
49.00 |
0.94 |
2.80 |
11.05 |
Aluminium |
mg/kg |
AR |
1,781 |
627.25 |
62,541.83 |
2,335.60 |
10,506.82 |
25,326.43 |
Aluminium |
mg/kg |
XRF |
1,781 |
1,535.00 |
141,429.00 |
14,397.00 |
52,348.00 |
84,106.00 |
Applicant's summary and conclusion
- Conclusions:
- Representative background or ambient concentrations of aluminium/aluminium oxide in environmental compartments are tabulated below.
compartment, unit, concentration (50th P), concentration (95th P)
background stream water, µg/L Al, 17.1, 313.9
background stream water sediment, % Al2O3, 10.4, 17.9
, mg/kg Al, 55,042.1*, 94,735.9*
background topsoil, % Al2O3, 11.0, 17.4
, mg/kg Al, 58,376.4*, 92,121.4*
agricultural soil, mg/kg Al, 10,769.4, 23,999.1
grazing land soil, mg/kg Al, 10,506.8, 25,326.4
* based on measured Al2O3.
Based on the FOREGS dataset, the 95th percentile of 313.9 µg/L can be regarded as representative background concentration for dissolved aluminium in European surface waters and the 95th percentile of 94,735.9 mg/kg as representative background concentration of European stream sediments. Regarding the respective partitioning between sediment and water, a European median log Kp value of 6.39 is derived.
Based on the FOREGS dataset, the 95th percentile of 92,121.4 mg/kg can be regarded as representative background concentration of aluminium in topsoil of EU countries. Representative aluminium concentrations (95th percentile) of agricultural and grazing land soil (i.e. ambient levels) amount to 23,999.1 and 25,326.4 mg/kg, respectively, according to the GEMAS dataset.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.