Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 269-049-5 | CAS number: 68186-87-8 This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77347.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to microorganisms
Administrative data
- Endpoint:
- activated sludge respiration inhibition testing
- Data waiving:
- study scientifically not necessary / other information available
- Justification for data waiving:
- the study does not need to be conducted because the substance is highly insoluble in water, hence indicating that aquatic toxicity is unlikely to occur
- Justification for type of information:
- JUSTIFICATION FOR DATA WAIVING
According to Annex VIII, Column 2, Section 9.1.4. of Regulation (EC) 1907/2006, the test for activated sludge respiration inhibition does not need to be conducted “if there are mitigating factors indicating that aquatic toxicity is unlikely to occur, for instance if the substance is highly insoluble in water”.
Cobalt zinc aluminate blue spinel can be considered environmentally and biologically inert due to the characteristics of the synthetic process (calcination at a high temperature of approximately 1000°C), rendering the substance to be of a unique, stable crystalline structure in which all atoms are tightly bound and not prone to dissolution in environmental and physiological media. This assumption is supported by available transformation/dissolution data (Grané, 2010) that indicate a very low release of pigment components at pH 6, the pH that maximises dissolution. Transformation/dissolution tests at a loading of 1 mg/L and pH 6 resulted in dissolved cobalt and zinc concentrations that remained below the LOD (i.e. < 0.11 µg Co/L and < 0.07 µg Zn/L, respectively) during the 28-d test. Dissolved aluminium concentrations after 7 and 28 days amount to 48.75 and 23.48 µg Al/L, respectively. Thus, the rate and extent to which Cobalt zinc aluminate blue spinel produces soluble (bio)available ionic and other aluminium-, cobalt- and zinc-bearing species in environmental media is limited. Hence, the pigment can be considered as environmentally and biologically inert during short- and long-term exposure. The poor solubility of Cobalt zinc aluminate blue spinel is expected to determine its behaviour and fate in the environment, and subsequently its potential for ecotoxicity.
Proprietary studies are not available for Cobalt zinc aluminate blue spinel. The poorly soluble substance Cobalt zinc aluminate blue spinel is evaluated by comparing the dissolved metal ion levels resulting from the transformation/dissolution test after 7 d at a loading rate of 1 mg/L with the lowest acute ecotoxicity reference values (ERVs) as determined for the (soluble) metal ions. The ERVs are based on the lowest EC50/LC50 values for algae, invertebrates and fish. Acute ERVs were obtained from the Metals classification tool (MeClas) database as follows: Acute ERVs for aluminium are 1,040 µg Al/L at pH 6 and 3,390 µg Al/L at pH 8. The acute ERV for cobalt is 52.0 µg Co/L, and for zinc the acute ERVs are 413 µg Zn/L at pH 6 and 136 µg Zn/L at pH 8. Cobalt and zinc ion concentrations remained below the LOD (i.e. < 0.11 µg Co/L and < 0.07 µg Zn/L, respectively) after 7 days in the T/D test and are thus well below respective ERVs. Thus, only aluminium concentrations are taken into account. The dissolved aluminium concentration of 48.75 µg Al/L in the T/D test after 7 days at pH 6 is significantly lower than the lowest short-term ERVs (1,040 µg Al/L and 3,390 µg Al/L at pH 6 and 8, respectively). Hence, the substance Cobalt zinc aluminate blue spinel is not sufficiently soluble to cause short-term toxicity at the level of the acute ERVs (expressed as EC50/LC50).
In accordance with Figure IV.4 “Classification strategy for determining acute aquatic hazard for metal compounds” of ECHA Guidance on the Application of the CLP Criteria (Version 5.0, July 2017) and section 4.1.2.10.2. of Regulation (EC) No 1272/2008, the substance Cobalt zinc aluminate blue spinel is poorly soluble and does not meet classification criteria for acute (short-term) aquatic hazard.
Regarding the long-term toxicity, the poorly soluble substance Cobalt zinc aluminate blue spinel is evaluated by comparing the dissolved metal ion levels resulting from the transformation/dissolution test after 28 days at a loading rate of 1 mg/L with the lowest chronic ecotoxicity reference values (ERVs) as determined for the (soluble) metal ions. The ERVs are based on the lowest EC10/NOEC values for algae, invertebrates and fish. In accordance with the Classification and Labelling Committee in 1999 (see report 013-003-00-7 submitted to the C&L Committee, 1999) a chronic ERV for dissolved aluminium ions has not been derived since a concern for long-term (chronic) toxicity of aluminium ions was not identified (no classification). Due to the lack of a chronic hazard potential for dissolved aluminium ions, only cobalt and zinc concentrations and the respective chronic ERVs are taken into account. Respective chronic ERVs were obtained from the Metals classification tool (MeClas) database and are for cobalt 7.6 µg Co/L, for zinc 82 µg Zn/L at pH 6 and 19 µg Zn/L at pH 8. Since cobalt and zinc ion concentrations remained below the LOD (i.e. < 0.11 µg Co/L and < 0.07 µg Zn/L, respectively) during the 28-days T/D test and are well below respective chronic ecotoxicity ERVs, there is not a concern for long-term (chronic) toxicity of cobalt and zinc ions. Hence, the substance Cobalt zinc aluminate blue spinel is not sufficiently soluble to cause long-term toxicity at the level of the chronic ERVs (expressed as NOEC/EC10).
In accordance with Figure IV.5 „Classification strategy for determining long-term aquatic hazard for metal compounds “of ECHA Guidance on the Application of the CLP Criteria (Version 5.0, July 2017) and section 4.1.2.10.2. of Regulation (EC) No 1272/2008, the substance Cobalt zinc aluminate blue spinel is poorly soluble and also does not meet classification criteria for chronic (long-term) aquatic hazard.
Cobalt zinc aluminate blue spinel is poorly soluble. Based on the poor solubility and the corresponding lack of a toxic potential, inhibition of activated sludge respiration or toxicity to microorganisms is not expected. In accordance with Annex VIII, Column 2, Section 9.1.4. of Regulation (EC) 1907/2006, the test for activated sludge respiration inhibition is not necessary.
Data source
Materials and methods
Results and discussion
Applicant's summary and conclusion
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.