Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 242-520-2 | CAS number: 18718-07-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- The experimental phase of this study was performed between 26 September 2012 and 09 November 2012.
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: see 'Remark'
- Remarks:
- Study conducted to GLP and in compliance with agreed protocols, with no deviations from standard test guidelines and no methodological deficiencies. This study is conducted according to an appropriate guideline and under the conditions of GLP, the study is therefore considered to be acceptable and to adequately satisfy both the guideline requirement and the regulatory requirement as a key study for Regulation (EC) No. 1907/2006 (REACH). The reliability has been assigned in accordance with 'practical guide 6: How to report read-across and categories' which states that the maximum reliability for a read-across study is 2. The study is considered to be adequate and reliable for the purpose of registration under REACH (Regulation (EC) No. 1907/2006. Read-across in accordance with Annex XI, Section 1.5 of Regulation (EC) No. 1907/2006 (REACH) is justified on the following basis: Manganese phosphates such as manganese hydrogen phosphate and manganese bis(dihydrogen phosphate) are soluble manganese-containing inorganic compounds. The toxicology of these materials is considered to be related to the presence of the Mn2+ ion (as phosphate itself is not considered to be toxic). As such it is scientifically justified to read-across to other manganese phosphates. When considering a testing strategy for manganese phosphates, tests have been performed on manganese hydrogen phosphate as that contributes the greater amount of Mn2+ on a %w/w basis (36.4% as compared to 22% in manganese bis(dihydrogen phosphate. These results will be directly read across to manganese bis(dihydrogen phosphate) as they are representative of a worst-case for manganese phosphates.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 013
- Report date:
- 2013
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
- Deviations:
- no
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals
- Deviations:
- no
- Principles of method if other than guideline:
- Not applicable.
- GLP compliance:
- yes (incl. QA statement)
- Remarks:
- Date of inspection: 10 July 2012, date of signature: 30 November 2012
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Manganese hydrogen phosphate
- EC Number:
- 257-147-0
- EC Name:
- Manganese hydrogen phosphate
- Cas Number:
- 51349-94-1
- IUPAC Name:
- manganese(2+) hydrogen phosphate
- Test material form:
- solid: particulate/powder
- Remarks:
- migrated information: powder
- Details on test material:
- Sponsor's identification : IP 35: Manganese hydrogen phosphate
Description : Pale pink powder
Purity : 98%
Batch number : MV 500
EC Number : 257-147-0
CAS Number : 51349-94-1
Date received : 06 September 2012
Expiry date : Not supplied
Storage conditions : Room temperature in the dark
The integrity of supplied data relating to the identity, purity and stability of the test item is the responsibility of the Sponsor. A Certificate of Analysis was provided by the sponsor.
Constituent 1
Method
- Target gene:
- Histidine for Salmonella.
Tryptophan for E.Coli
Species / strainopen allclose all
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Details on mammalian cell type (if applicable):
- Not applicable.
- Additional strain / cell type characteristics:
- not applicable
- Species / strain / cell type:
- E. coli WP2 uvr A
- Details on mammalian cell type (if applicable):
- Not applicable.
- Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- phenobarbitone/betanaphthoflavone induced rat liver, S9
- Test concentrations with justification for top dose:
- Preliminary Toxicity Test: 0, 0.15, 0.5, 1.5, 5, 15, 50, 150, 500, 1500 and 5000 μg/plate
main test:
Experiment one: 50, 150, 500, 1500 and 5000 μg/plate
Experiment two: 50, 150, 500, 1500 and 5000 µg/plate - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: dimethyl sulphoxide
- Justification for choice of solvent/vehicle: The test item was insoluble in sterile distilled water, dimethyl sulphoxide, acetone, dimethyl formamide and acetonitrile at 50 mg/ml and tetrahydrofuran at 200 mg/ml in solubility checks performed in-house. The test item formed the best doseable suspension in dimethyl sulphoxide, therefore, this solvent was selected as the vehicle. The test item was accurately weighed and approximate half-log dilutions prepared in dimethyl sulphoxide by mixing on a vortex mixer and sonication for 15 minutes at 40°C on the day of each experiment. Formulated concentrations were adjusted to allow for the stated water/impurity content (2%) of the test item. All formulations were used within four hours of preparation an were assumed to be stable for this period. Analysis for concentration, homogeneity and stability of the test item formulations is not a requirement of the test guidelines and was, therefore, not determined. This is an exception with regard to GLP and has been reflected in the GLP compliance statement. Prior to use, the solvent was dried to remove water using molecular sieves i.e. 2 mm sodium alumino-silicate pellets with a nominal pore diameter of 4 x 10-4 microns.
Controlsopen allclose all
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rate for TA100
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 3 μg/plate
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- Without S9 mix
Migrated to IUCLID6: at 3 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rate for TA100
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene at 1 µg/plate
- Remarks:
- With S9 mix
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rate for TA1535
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 5 μg/plate
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- without S9 mix
Migrated to IUCLID6: at 5µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rate for TA1535
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene at 2 μg/plate
- Remarks:
- with S9 mix
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rate for WP2uvrA
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 2 μg/plate
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- without S9 mix
Migrated to IUCLID6: at 2 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rate for WP2uvrA
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene at 10 µg/plate
- Remarks:
- with S9 mix
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rate for TA98
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 0.2 μg/plate
- Positive control substance:
- 4-nitroquinoline-N-oxide
- Remarks:
- without S9 mix
Migrated to IUCLID6: at 0.2 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous muation rate for TA98
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 5 μg/plate
- Positive control substance:
- benzo(a)pyrene
- Remarks:
- with S9 mix
Migrated to IUCLID6: at 5 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Spontaneous mutation rate for TA1537
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Remarks:
- 80 μg/plate
- Positive control substance:
- 9-aminoacridine
- Remarks:
- without S9 mix
Migrated to IUCLID6: at 80 µg/plate
- Untreated negative controls:
- yes
- Remarks:
- Sponateous muation rate for TA1537
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene at 2 µg/plate
- Remarks:
- with S9 mix
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in agar (plate incorporation)
DURATION
- Preincubation period: 10h
- Exposure duration: 48 - 72 hrs
- Expression time (cells in growth medium): Not applicable
- Selection time (if incubation with a selection agent): Not applicable
- Fixation time (start of exposure up to fixation or harvest of cells): 48 -72 hrs
SELECTION AGENT (mutation assays): Not applicable.
NUMBER OF REPLICATIONS: Triplicate plating.
NUMBER OF CELLS EVALUATED: Not applicable.
DETERMINATION OF CYTOTOXICITY
- Method: plates were assessed for numbers of revertant colonies and examined for effects on the growth of the bacterial background lawn.
OTHER EXAMINATIONS: None - Evaluation criteria:
- Acceptance Criteria
The reverse mutation assay may be considered valid if the following criteria are met:
All bacterial strains must have demonstrated the required characteristics as determined by their respective strain checks according to Ames et al (1975), Maron and Ames (1983) and Mortelmans and Zeiger (2000).
All tester strain cultures should exhibit a characteristic number of spontaneous revertants per plate in the vehicle and untreated controls. Acceptable ranges are presented in the General Study Plan, Section 4 (negative controls). Combined historical negative and solvent control ranges for 2010 and 2011 can be found in the study report (Appendix 2).
All tester strain cultures should be in the range of 0.9 to 9 x 109 bacteria per ml.
Diagnostic mutagens (positive control chemicals) must be included to demonstrate both the intrinsic sensitivity of the tester strains to mutagen exposure and the integrity of the S9-mix. All of the positive control chemicals used in the study should induce marked increases in the frequency of revertant colonies, both with or without metabolic activation. The historical ranges of the positive controls for 2010 and 2011 are presented inthe study report in Appendix 2.
There should be a minimum of four non-toxic test item dose levels.
There should be no evidence of excessive contamination.
Evaluation Criteria
There are several criteria for determining a positive result. Any, one, or all of the
following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby (1979)).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al (1989)).
5. Fold increase greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out-of-historical range response). - Statistics:
- Standard deviation
Results and discussion
Test resultsopen allclose all
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Remarks:
- Tested up to maximum recommended dose of 5000 µg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Remarks:
- Tested up to maximum recommended dose of 5000 µg/plate
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Water solubility: The test material formed the best doseable suspension in dimethyl sulphoxide at 50 mg/ml in solubility checks performed in-house.
- Precipitation: A pale, fine precipitate was observed at 5000 µg/plate, this observation did not prevent the scoring of revertant colonies.
RANGE-FINDING/SCREENING STUDIES:
Preliminary Toxicity Test:
The test item was non-toxic to the strains of bacteria used (TA100 and WP2uvrA). The test item formulation and S9-mix used in this experiment were both shown to be sterile.
COMPARISON WITH HISTORICAL CONTROL DATA:
Prior to use, the master strains were checked for characteristics, viability and spontaneous reversion rate (all were found to be satisfactory).
Results for the negative controls (spontaneous mutation rates) were considered to be acceptable.
All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies thus confirming the activity of the S9-mix and the sensitivity of the bacterial strains.
ADDITIONAL INFORMATION ON CYTOTOXICITY: None - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Any other information on results incl. tables
Preliminary Toxicity Test
The test material was non-toxic to the strains of bacteria used (TA100 and WP2uvrA-)
The numbers of revertant colonies for the toxicity assay were:
With (+) or without (-) S9-mix |
Strain |
Dose (μg/plate) |
||||||||||
0 |
0.15 |
0.5 |
1.5 |
5 |
15 |
50 |
150 |
500 |
1500 |
5000 |
||
- |
TA100 |
91 |
108 |
88 |
99 |
104 |
94 |
105 |
94 |
89 |
C |
92P |
+ |
TA100 |
99 |
121 |
128 |
131 |
109 |
134 |
125 |
114 |
116 |
108 |
92P |
- |
Wp2uvrA |
20 |
33 |
18 |
26 |
28 |
27 |
32 |
29 |
27 |
24 |
28P |
+ |
Wp2uvrA |
27 |
40 |
37 |
31 |
43 |
21 |
28 |
28 |
31 |
29 |
16P |
P = Precipitate
C – Contaminated
Mutation Test
Prior to use, the master strains were checked for characteristics, viability and spontaneous reversion rate (all were found to be satisfactory). The amino acid supplemented top agar and S9-mix used in both experiments was shown to be sterile.
The culture density for each bacterial strain was also checked and considered acceptable. These data are not given in the report.
Results for the negative controls (spontaneous mutation rates) are presented in Table 1 and were considered to be acceptable. These data are for concurrent untreated control plates performed on the same day as the Mutation Test.
The individual plate counts, the mean number of revertant colonies and the standard deviations, for the test item, positive and vehicle controls, both with and without metabolic activation, are presented in Table 2 and Table 3 for Experiment 1 and Table 4 and Table 5 for Experiment 2.
A history profile of vehicle/untreated and positive control values (reference items) for 2010 and 2011 are presented in Appendix 2.
The test item caused no visible reduction in the growth of the bacterial background lawn at any dose level and was, therefore, tested up to the maximum recommended dose level of 5000 μg/plate. A test item precipitate (fine and particulate in appearance) was noted at 5000 μg/plate, this observation did not prevent the scoring of revertant colonies.
No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation or exposure method.
All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies thus confirming the activity of the S9-mix and the sensitivity of the bacterial strains.
All tables and appendices are provided as attachments due to the fact that they are too large to transcribe into the available free text fields.
The test item, IP 35: Manganese hydrogen phosphate, was considered to be non-mutagenic under the conditions of this test.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
negative
The test material was considered to be non-mutagenic under the conditions of this test.
This study is conducted according to an appropriate guideline and under the conditions of GLP, the study is therefore considered to be acceptable and to adequately satisfy both the guideline requirement and the regulatory requirement as a key study for this endpoint.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.