Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 201-039-8 | CAS number: 77-58-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Short description of key information on bioaccumulation potential result:
The following studies have been submitted to address the basic toxicokinetics endpoint:
Schilt, R & Zondervan-van den Beuken EK (2004) Dibutyltin dilaurate (DBTL, CAS# 77-58-7), Dibutyltin maleate (DBTM, CAS# 78-04-6), Dibutyltin oxide (DBTO, CAS# 818-08-6) and Dioctyltin oxide (DOTO, CAS# 870-08-6): Simulated gastric hydrolysis. 2004-07-12
Kimmel et al (1977) Bioorganotin Chemistyr. Metabolism of Organotin Compounds in Microsomal Monooxygenase Systems and in Mammals. J. Agric. Food Chem. 25(1): 1-9. (Presented as two separate summaries)
Yoder, RE (2000) Development of a Method to Directly Determine Monobutyltin Trichloride and Dibutyltin Dichloride Under Simulated Gastric Conditions 2000-05-11
Bautista & Herzig (2000) Simulated Gastric Hydrolysis of Butyltin and Octyltin Mercaptides 2000-05-26
Gillard-Factor & Yoder (2000) MS Study of the Hydrolysis of Various Organotins Under Simulated Gastric Conditions Elf Atochem 2000-05-23
All studies were assigned a reliability score of 2. All studies except Schilt, & Zondervan-van den Beuken (2004) were performed on read-across subtances. Both Kimmel studies were performed on dibutyltin di(acetate), all other studies were performed on dibutyltin bis-EHMA.
Short description of key information on absorption rate:
The following study was included to address dermal absorption:
Ward, R.J. (2003) Dibutyltin bis(2-ethylhexyl mercaptoacetate): in vitro absorption through human and rat epidermis. Testing Laboratory: Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, SK10 4TJ, UK. Owner Company: Tin Stabilizer Association, 1900 Arch Street, Philadelphia, PA 19103-1498, USA. Project No.: JV1699. Company study number: CO1374. Report date: 2003-01-08
The study was assigned a reliability score of 2 as the study was read-across from dibutyltin bis(2-ethylhexylmercaptoacetate).
Key value for chemical safety assessment
- Absorption rate - dermal (%):
- 1
Additional information
The results obtained from an in vitro gastric hydrolysis study (Yoder 2000) support the use of Dibutyltin Dichloride (DBTC) as an appropriate surrogate for mammalian toxicology studies of the corresponding DBT moiety. A study conducted via the oral route on the thioester DBT (2-EHMA) demonstrated this substance readily hydrolized to DBTC under physiological conditions (100% hydrolysis within 1hour). Thus, it is considered that DBTC is an appropriate anchor compound and surrogate for the repeat dose toxicity, genotoxicity, reproduction and developmental toxicity and other long term toxicology endpoints, for all dibutyltin compounds when they are assessed following oral administration of the test material. Acute toxicity and irritation endpoints are not covered under the category approach and were evaluated individually for each dibutyltin compound. Sensitization, although not related to the hydrolysis discussion above, is considered acceptable to read across for Dibutyltin substances and as a group they are considered to be sensitisers.
In addition actual available data for the substance is limited to an in vitro study demontrating that DBTL may be quickly hydrolised at a pH compatible with stomach acid to form other butyl tin derivatives and therefore data from other dibutyl tin compounds can be used in case of oral exposure. Further data reviewed by the EU’s Scientific Panel on Contaminants in the Food Chain (EFSA/SPCFC) indicated that tributyl tin may be dubutylated to dibutyl- and monobutyl tin, and dibutyl tin acetate is further metabolised to monobutyl tin. These data would suggest that the toxicity of all the butylated tin compounds can be read across.
The EFSA/SPCFC review suggets that oral absorption of tributyl and dibutyl tin is incomplete, based on 41% unmetabolised dibutyl tin acetate recovered from the faeces of treated mice. A figure of 50% is considered and appropriate estimate of oral absorption.
In the 2003 Dermal Absorption study by Ward, 100 µL/cm2(= 21120 µg tin/cm2) was found to alter the barrier function of the rat epidermis. At 100 µL/cm2, approximately up to 18-45 % of the tin dose was unaccounted for, possibly due to adherence of the test material to the glass apparatus. The absorption of tin through human epiderims was very slow, when compared with the absorption rates of other penetrants. The proportions of dibutyltin bis(2-ethylhexylmercaptoacetate) absorbed through human epidermis were 0.0004% and 0.0010% (occluded and unoccluded respectively) after 24 hours exposure, compared to 0.261% and 0.189% through rat epidermis. The majority of the applied tin dose was washed from the surface of the epidermis during decontamination, only a relatively small proportion of the dose (human up to 1%; rat up to 10%) remained associated with the epidermis and therefore was not regarded as systemically available.
Discussion on bioaccumulation potential result:
All the studies presented were performed to a good standard and included a good level of detail in the reporting of the methods and the results.
The two Kimmel et al (1977) studies summarised were published within the same report. The first study presented investigated the metabolic fate of dibutyltin acetate was examined in a microsomal monooxygenase metabolism system (MO) derived from either rat or rabbit livers. Comparative data was also provided on other alkyltins in the MO system. Metabolism of Bu2Sn(OAc)2 yields BuSnX3, possibly by both nonenzymatic destannylation and by a- and β-carbon hydroxylation and decomposition of the hydroxy derivatives. The unidentified polar metabolites are probably formed by two or more sites of hydroxylation at different butyl groups. Bu3SnX and Bu2SnX2 bind extensively in some tissue fractions, making analysis difficult analysis and a plausible explanation for the relatively low metabolite yields. The second study investigated the metabolism of Bu2Sn(OAc)2 which yields BuSnX3, possibly by both nonenzymatic destannylation and by a- and β-carbon hydroxylation and decomposition of the hydroxy derivatives. The unidentified polar metabolites are probably formed by two or more sites of hydroxylation at different butyl groups. Bu3SnX and Bu2SnX2 bind extensively in some tissue fractions, making analysis difficult analysis and a plausible explanation for the relatively low metabolite yields.
In Schilt, & Zondervan-van den Beuken (2004) three separate experiments were performed on dibutyltin dilaurate (DBTL, CAS # 77-58-7), The substance was individually tested under low pH (-1-2) conditions (0.07 N HC1) at 37 °C in order to simulate the hydrolytic action by mammalian gastric contents.
The hypothesis was that in the hydrochloric acid solution the tin-ligand bond breaks, leading to formation of the corresponding alkyltin chloride and simultaneous liberation of the ligand.
The degree of hydrolysis for the test substance DBTL was studied by determination of the amount of DBTC formed after 0.5, 1.0, 2.0 and 4.0 hours, using GC-FPD.
Where possible the laurate ligand was also analyzed.
The hydrolysis of DBTL to DBTC plus the ligand was rapid. The calculated percentage of hydrolysis was 87.8% after 2 hours for DBTL. The half-life of DBTL under simulated gastric hydrolysis conditions was < 0.5 hours.
The further three studies presented were individual studies presented within a comprehensive unpublished report by the ORTEP stabilizer Task Force (The Simulated Gastric Hydrolysis of Tin Mercaptide Stabilizers (2000)).
Yoder, RE (2000): A direct injection gas chromatographic (GC) method has been developed to quantify monobutyltin trichloride (MBTC) and dibutyltin dichloride (DBTC) produced during the hydrolysis of Bu2Sn(EHMA)2under simulated gastric conditions (37°C, pH = 1.2 or 4). DBTC can be quantified in the range of 0.1 to 5 µg/mL (as tin). MBTC can be quantified in the range of 0.2 to 5 µg/ml (as tin) at pH = 1.2, but can not be quantified at pH = 4. The repeatability of results is about ± 10%, relative. Results indicate that the hydrolysis of Bu2Sn(EHMA)2is very rapid at pH = 1.2.
Bautista & Herzig (2000): Under acidic conditions, mono- or di- alkyltin mercaptides undergo a tin-EHMA bond break releasing EHMA. The free EHMA undergoes additional hydrolysis with ethyl hexanol and thioglycolic acid as products. EHMA and ethyl hexanol are easily quantified at low ppm level by GC-AED. The water soluble thioglycolic acid could be determined indirectly by total sulfur analysis-ICP emission spectroscopy.
Gillard-Factor & Yoder (2000): Direct infusion electrospray MS is used to study the hydrolysis of Bu2Sn(EHMA)2to its corresponding chloride derivative under simulated gastric conditions (pH = 1 and pH = 4). The results indicate that the hydrolysis occurs more completely at pH = 1 than at pH = 4. In addition, the same behaviour is observed for the four organotins investigated in this study.
Discussion on absorption rate:
Ward, R.J. (2003) was presented as the key study for this endpoint. The study was performed to the guideline OECD 428 and in compliance with GLP. The study was assigned a reliability score of 2 as the study was performed on dibutyltin 2-bis (2-ethylhexyl mercaptoacetate) and read-across to the substance in question, but is still considered reliable and adequate for assessment. From the study, the following points were noted:
1. Following 24 hours dermal contact, the amount of dibutyltin bis(2-ethylhexlymercaptoacetate) required to alter the barrier function of rat epidermis was approximately 100 µL/cm^2 (= 21120 µg tin/cm^2).
2. The results indicate that at a dose level of 100 µL/cm^2, approximately up to 18-45 % of the tin dose was unaccounted for, possibly due to adherence of the test material to the glass apparatus used during the study, especially during the decontamination process.
3. At 100 µL/cm^2, the absorption of tin through human epiderims was very slow, when compared with the absorption rates of other penetrants measured using the same in vitro technique. (Dugard et al 1984; Dugard and Scott, 1984).
4. The proportions of dibutyltin bis(2-ethylhexylmercaptoacetate) absorbed through human epidermis were 0.0004% and 0.0010% (occluded and unoccluded respectively) of dose after 24 hours exposure, compared to 0.261% and 0.189% through rat epidermis.
5. The absorption of tin from dibutyltin bis(2-ethylhexylmercaptoacetate) through rat epidermis significantly overestimated absorption through human epidermis.
6. The vast majority of the applied tin dose was washed from the surface of the epidermis during the decontamination process, with only relatively small proportions of the dose (human up to 1%; rat up to 10%) remaining associated with the epidermis and therefore not regarded as systemically available.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.