Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 201-083-8 | CAS number: 78-10-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Ecotoxicological Summary
Administrative data
Hazard for aquatic organisms
Freshwater
- Hazard assessment conclusion:
- no hazard identified
Marine water
- Hazard assessment conclusion:
- no hazard identified
STP
- Hazard assessment conclusion:
- no hazard identified
Sediment (freshwater)
- Hazard assessment conclusion:
- no hazard identified
Sediment (marine water)
- Hazard assessment conclusion:
- no hazard identified
Hazard for air
Air
- Hazard assessment conclusion:
- no hazard identified
Hazard for terrestrial organisms
Soil
- Hazard assessment conclusion:
- no hazard identified
Hazard for predators
Secondary poisoning
- Hazard assessment conclusion:
- no potential for bioaccumulation
Additional information
The hydrolysis half-life of tetraethyl orthosilicate (TEOS, CAS 78-10-4; EC No. 201-083-8) is approximately 4.4 hours at 25°C and pH 7 (based on measured data (OECD TG 111)); the substance will therefore undergo rapid hydrolysis in contact with water to form monosilicic acid (CAS 10193-36-9; EC No. 233-477-0) and ethanol (CAS 64-17-5; EC No. 200-578-6). Monosilicic acid (Si(OH)4) exists only in dilute aqueous solutions and readily condenses at concentrations above approximately 100-150 mg/L as SiO2 to give a dynamic equilibrium between monomer, oligomers and insoluble amorphous polysilicic acid.
Log Kow is not relevant for inorganic compounds such as silicic acid. However, on the basis of structure, monosilicic acid has a high affinity with water and low affinity for lipids and organic carbon. The water solubility of monosilicic acid is approximately 100-150 mg/L (limited by condensation reactions) (see Section 4.8 of the IUCLID dataset for further discussion).
The non-silanol hydrolysis product, ethanol, is discussed below.
REACH guidance (ECHA 2016, R.16) states that “for substances where hydrolytic DT50 is less than 12 hours, environmental effects are likely to be attributed to the hydrolysis product rather than to the parent itself”. ECHA Guidance Chapter R.7b (ECHA 2017) states that where degradation rates fall between >1 hour and <72 hours, testing of parent and/or degradation product(s) should be considered on a case-by-case basis.
The substance will be exposed to the environment through wastewater treatment plant (WWTP) effluent. The minimum residency time in the wastewater treatment plant is approximately 7 hours (although this is a conservative figure and wastewater treatment time may be hours longer) with an average temperature of 15°C (assumed to be at neutral pH). Significant degradation by hydrolysis would be expected before the substance is released to the receiving waters.
Direct releases of the registration substance to air are expected to be low. TEOS will hydrolyse on contact with atmospheric moisture to form monosilicic acid and ethanol,
The environmental hazard assessment, including sediment and soil compartments due to water and moisture being present, is therefore based on the properties of the silanol hydrolysis product, in accordance with REACH guidance.
As described below and in Section 4.8 of IUCLID, condensation reactions of the monosilicic acid are possible.
Silicic acid is a naturally-occurring substance which is not harmful to aquatic organisms at relevant concentrations. Monosilicic acid is the major bioavailable form of silicon for aquatic organisms and plays an important role in the biogeochemical cycle of silicon (Si). Most living organisms contain at least trace quantities of silicon. For some species Si is an essential element that is actively taken up. For example, diatoms, radiolarians, flagellates, sponges and gastropods all have silicate skeletal structures (OECD SIDS 2004, soluble silicates). Silicic acid has been shown to be beneficial in protection against mildew formation in wheat and to be non-phytotoxic in non-standard studies (Côte-Beaulieu et al. 2009).
Silicic acid is therefore not expected to be harmful to organisms present in the environment. To support this view, the available aquatic toxicity studies with organosilicon substances that hydrolyse to monosilicic acid report no effects at 100 mg/l nominal loading in short-term toxicity studies (PFA 2103x).
The non-Si hydrolysis product, ethanol, does not have the potential to cause harm at high treatment levels and therefore the hazard assessment and Predicted No Effect Concentrations (PNECs) are concluded as ‘no hazard identified’.
Considerations on the non-silanol hydrolysis product, ethanol:
Ethanol is well-characterised in the public domain literature and is not hazardous at the concentrations relevant to the studies; the short-term EC50 and LC50 values for this substance are in excess of 1000 mg/L (OECD 2004b).
References
Côté-Beaulieu C, Chain F, Menzies JG, Kinrade SD, Bélanger RR (2009). Absorption of aqueous inorganic and organic silicon compounds by wheat and their effect on growth and powdery mildew control. Environ Exp. Bot 65: 155–161.
ECHA (2016). REACH Guidance on Information Requirements and Chemical Safety Assessment Chapter R16: Environmental Exposure Assessment Version: 3.0. February 2016.
ECHA (2017). European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment, Chapter R.7b: Endpoint specific guidance. Version 4.0 June 2017.
PFA 2013x: Peter Fisk Associates, Analogue grouping report: Ecotoxicity of (poly)silicic acid generating compounds. PFA.300.003.001.
Conclusion on classification
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.