Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 914-100-5 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Ecotoxicological Summary
Administrative data
Hazard for aquatic organisms
Freshwater
- Hazard assessment conclusion:
- PNEC aqua (freshwater)
- PNEC value:
- 0.68 mg/L
- Assessment factor:
- 1 000
- Extrapolation method:
- assessment factor
- PNEC freshwater (intermittent releases):
- 6.8 mg/L
Marine water
- Hazard assessment conclusion:
- PNEC aqua (marine water)
- PNEC value:
- 0.068 mg/L
- Assessment factor:
- 10 000
- Extrapolation method:
- assessment factor
STP
- Hazard assessment conclusion:
- PNEC STP
- PNEC value:
- 10 mg/L
- Assessment factor:
- 10
- Extrapolation method:
- assessment factor
Sediment (freshwater)
- Hazard assessment conclusion:
- insufficient hazard data available (further information necessary)
Sediment (marine water)
- Hazard assessment conclusion:
- insufficient hazard data available (further information necessary)
Hazard for air
Hazard for terrestrial organisms
Soil
- Hazard assessment conclusion:
- insufficient hazard data available (further information necessary)
Hazard for predators
Secondary poisoning
- Hazard assessment conclusion:
- no potential for bioaccumulation
Additional information
Potassic extracts is a multiconstituent substance. As its main constituents are simple inorganic salts (i.e. potassium sulfate, sodium sulfate and calcium sulfate), in aquatic environment, the soluble portion of each constituent completely dissociates into the sulfate ion (SO42-) and the corresponding cations: potassium (K+), sodium (Na+) and calcium (Ca2+) at neutral pH.
Although calcium sulfate is less soluble than the other constituents of the potassic extracts, its water solubility is sufficiently high to determine the absence of toxicity to aquatic organims at concentration higher than 100 mg/L, showing absence of harmful effect to the tested organisms, as it is also showed for the other constituents. The other physico-chemical properties of the constituents are similar: high melting point (> 880°C), high boiling point or decomposition before boiling, vapour pressure expected to be extremely low.
Based on the above information, the results obtained on the main individual salts present in the potassic extracts are used in a read-across approach to assess the toxicity of the multiconstituent substance. In a worst case approach, the lowest L(E)C50 value obtained on the three main constituents has been used to derive the PNEC value of the multiconstituent substance. It should be noted that for aquatic organisms, potassium sulfate was found to be the most toxic of the three salts and it is also the major constituent of the substance. Therefore, the use of its toxicity result to determine the PNEC value of the substance is considered as relevant.
Conclusion on classification
As the main constituents of potassic extracts are basic inorganic salts which totally dissociate into potassium, sodium, calcium and sulfate ions in water, no biodegradation potential and logKow can be determined. However, these salts are considered to have a low potential for bioaccumulation in organisms.
Based on the available data, the lowest L(E)C50 to aquatic organisms obtained on the main constituents of potassic extracts is above 100 mg/L.
Therefore, according to the Directive 67/548/EC, potassic extracts is not classified as dangerous for the environment.
Additionally, according to the Regulation (EC) No 1272/2008 (CLP), potassic extracts is not classified as hazardous to the aquatic environment.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.