Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 271-846-8 | CAS number: 68609-97-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: GLP Guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 997
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- GLP compliance:
- yes
- Type of assay:
- bacterial reverse mutation assay
Test material
- Details on test material:
- The test article, alkyl glycidyl ether, was received by Microbiological Associates, Inc. on 08/15/96 and was assigned the code number 96BK39. The test article was characterized by the Sponsor as a colorless mobile liquid that should be stored in a cool dry area in a closed container under nitrogen. An expiration date was not provided.
Upon receipt, the test article was described as a clear, colorless liquid and was stored at room temperature, under nitrogen, protected from exposure to light.
Constituent 1
Method
- Target gene:
- Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in E. coli is sensitive to base-pair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- Aroclor 1254-induced rat liver S9
- Test concentrations with justification for top dose:
- Preliminary tests: 6.7, 10, 33, 67, 100, 333, 667, 1000, 3333, and 5000 ug/plate
Confirmatory assays:
TA98, TA 1535, TA 1537, (without activation) and TA 100, WP2 uvrA (with and without activation): 33, 100, 333, 1000, 5000 ug/plate
TA98, TA1535, (with activation): 10, 33, 100, 333, 1000, 3333 ug/plate
TA1537 (with activation): 3.3, 10, 33, 100, 333, 1000 ug/plate - Vehicle / solvent:
- Ethanol was selected as the solvent of choice based on solubility of the test article and compatibility with the target cells. The test article was soluble in ethanol at approximately 500 mg/ml, the maximum concentration tested.
The vehicle used to deliver alkyl glycidyl ether to the test system was 100 % ethanol (EtOH), (CA5# 64-17-5), obtained from Pharmco Products, Inc.
Controls
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-aminoantracene, 2-nitrofluorene, sodium azide, 9-aminoacridine, methyl methanesulfonate
- Details on test system and experimental conditions:
- The tester strains used were the Salmonella typhimurium histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames et al. (1975) and Escherichia coli tester strain WP2 uvrA Salmonella tester strains were received on 11/10/92 directly from Dr. Bruce Ames, University of California, Berkeley. E. coli was received on 07/01/87 from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.
Overnight cultures were prepared by inoculating from the appropriate master plate or from the appropriate frozen permanent stock into a vessel containing -50 ml of culture medium. To assure that cultures were harvested in late log phase, the length of incubation was controlled and monitored. Following inoculation, each flask was placed in a resting shaker/incubator at room temperature. The shaker/incubator was programmed to begin shaking at approximately 125 rpm at 37±2·C approximately 12 hours before the anticipated time of harvest. Each culture was monitored spectrophotometrically for turbidity and was harvested at a percent transmittance yielding a titer of approximately 109 cells per milliliter. The actual titers were
determined by viable count assays on nutrient agar plates.
Aroclor 1254-induced rat liver S9 was used as the metabolic activation system. The S9 was prepared from male Sprague-Dawley rats induced with a single intraperitoneal injection of Aroclor 1254, 500 mg/kg, five days prior to sacrifice. The S9 was batch prepared on 04/25/96,07/03/96 and 08/07/96 and stored at ≤ 70·C until used. Each bulk preparation of S9 was assayed for its ability to metabolize 2-aminoantbracene and 7,12-dimethylbenz(a)antbracene to forms mutagenic to Salmonella typhimurium TAl00.
The S9 mix was prepared immediately before its use and contained 10% S9, 5 mM glucose-6-phosphate,4 mM{3-nicotinamide-adenine dinucleotidephosphate,8 mMMg02 and 33 mM KCl in a 100 mM phosphate buffer at pH 7.4. The Sham S9 mixture (Sham mix), containing 100 mM phosphate buffer at pH 7.4, was prepared immediately before its use. To confirm the sterility of the S9 and Sham mixes, a 0.5 ml aliquot of each was plated on selective agar. - Evaluation criteria:
- For the test article to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain with a minimum of two increasing concentrations of test article. Data sets for strains TA1535 and TA1537 were judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than three times the mean vehicle control value. Data sets for strains TA98, TA100 and WP2 uvrA were judged positive if the increase in mean revertants at the peak of the dose response is equal to or greater than two times the mean vehicle control value.
- Statistics:
- For each replicate plating, the mean and standard deviation of the number of revertants per plate were calculated and are reported.
Results and discussion
Test resultsopen allclose all
- Species / strain:
- E. coli WP2
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- positive
- Remarks:
- In the independent repeat assay, positive responses were observed with tester strain TA1535 in the presence (5.4-fold, maximum increase) and absence (4.1-fold, maximum increase) of S9 activation.
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- In the preliminary toxicity assay, the maximum dose tested was 5000 µg per plate; this dose was achieved using a concentration of 100 mg/ml and a 50 µ1 plating aliquot. Generally, precipitate was observed at > 667 to >3333 µg per plate. Toxicity was generally observed at >1000 µg per plate in the presence of S9 activation only. Based on the findings of the toxicity assay, the maximum dose plated in the mutagenicity assay was 5000 µg per plate.
Mutagenicity Assay
The results of the mutagenicity assay were generated in Experiments Bl, B3 and B4. Generally, precipitate was observed at >1000 µg per plate. Toxicity was observed at >1000 µg per plate in the presence of S9 activation only. (Tables 26 and 27)
In Experiment B1, the mutagenicity assay, a positive response was observed with tester strain TA1535 (8.8-fold, maximum increase) in the presence S9 activation. Due to an unacceptable positive control value, tester strain TAl00 in the presence of S9 activation was not evaluated but was retested in Experiment B2.
Due to an unacceptable positive control value in Experiment B2, tester strain TAl00 in the presence of S9 activation was not evaluated but was retested in Experiment B4.
In Experiment B3, the independent repeat assay, positive responses were observed with tester strain TA1535 in the presence (5.4-fold, maximum increase) and absence (4.1-fold, maximum increase) of S9 activation. No other positive responses were observed with any of the remaining tester strain/activation combinations.
In Experiment B4, no positive response was observed with tester strain TAl00 in the presence of S9 activation.
In the preliminary toxicity assay, the maximum dose tested was 5000 µg per plate; this dose was achieved using a concentration of 100 mg/ml and a 50 µ1 plating aliquot. Generally, precipitate was observed at > 667 to >3333 µg per plate. Toxicity was generally observed at >1000 µg per plate in the presence of S9 activation only. Based on the findings of the toxicity assay, the maximum dose plated in the mutagenicity assay was 5000 µg per plate.
Mutagenicity Assay
The results of the mutagenicity assay were generated in Experiments Bl, B3 and B4. Generally, precipitate was observed at >1000 µg per plate. Toxicity was observed at >1000 µg per plate in the presence of S9 activation only. (Tables 26 and 27)
In Experiment B1, the mutagenicity assay, a positive response was observed with tester strain TA1535 (8.8-fold, maximum increase) in the presence S9 activation. Due to an unacceptable positive control value, tester strain TAl00 in the presence of S9 activation was not evaluated but was retested in Experiment B2.
Due to an unacceptable positive control value in Experiment B2, tester strain TAl00 in the presence of S9 activation was not evaluated but was retested in Experiment B4.
In Experiment B3, the independent repeat assay, positive responses were observed with tester strain TA1535 in the presence (5.4-fold, maximum increase) and absence (4.1-fold, maximum increase) of S9 activation. No other positive responses were observed with any of the remaining tester strain/activation combinations.
In Experiment B4, no positive response was observed with tester strain TAl00 in the presence of S9 activation. - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
positive with metabolic activation tester strain TA1535
positive without metabolic activation tester strain TA1535
negative tester strains TA98, TA100, and TA1537
All criteria for a valid study were met as described in the· protocol. The results of the Bacterial Reverse Mutation Assay with an Independent Repeat Assay indicate that, under the conditions of this study, alkyl glycidyl ether did cause a positive response with tester strain TA1535 in the presence and absence of Aroclor-induced rat liver 59. - Executive summary:
The purpose of this study was to evaluate the mutagenic potential of the test article (or its metabolites) by measuring its ability to induce reverse mutations at selected loci of several strains ofSalmonella typhimuriumand one strain ofE. coliin the presence and absence of 59 activation.
The assay was performed in two phases, using the plate incorporation method. The first phase, the preliminary toxicity assay, was used to establish the dose range for the mutagenicity assay. The second phase, the mutagenicity assay (initial and independent repeat assays), was used to evaluate the mutagenic potential of the test article.
Ethanol was selected as the solvent of choice based on solubility of the test article and compatibility with the target cells. The test article was soluble in ethanol at approximately 500 mg/ml, the maximum concentration tested.
In the preliminary toxicity assay, the maximum dose tested was 5000 µg per plate; this dose was achieved using a concentration of 100 mg/ml and a 50 µl plating aliquot.
Generally, precipitate was observed at > 667 to >3333 µg per plate. Toxicity was generally observed at > 1000 µg per plate in the presence of 89 activation only. Based on the findings of the toxicity assay, the maximum dose plated in the mutagenicity assay was 5000 µg per plate.
In the mutagenicity assay, a positive response was observed with tester strain TA1535.
Generally, precipitate was observed at >1000 µg per plate. Toxicity was observed at >1000 µg per plate in the presence of 59 activation only.
Under the conditions of this study, test article alkyl glycidyl ether was concluded to be positive in the Bacterial Reverse Mutation Assay with an Independent Repeat Assay.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.
Welcome to the ECHA website. This site is not fully supported in Internet Explorer 7 (and earlier versions). Please upgrade your Internet Explorer to a newer version.
This website uses cookies to ensure you get the best experience on our websites.
Find out more on how we use cookies.