Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 265-041-0 | CAS number: 64741-41-9 A complex combination of hydrocarbons produced by distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C6 through C12 and boiling in the range of approximately 65°C to 230°C (149°F to 446°F).
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Repeated dose toxicity: inhalation
Administrative data
- Endpoint:
- chronic toxicity: inhalation
- Type of information:
- migrated information: read-across based on grouping of substances (category approach)
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Acceptable, well-documented publication similar or equivalent to OECD 453.
Data source
Reference
- Reference Type:
- publication
- Title:
- A Chronic Inhalation Study with Unleaded Gasoline Vapor
- Author:
- MacFarland et al.
- Year:
- 1 984
- Bibliographic source:
- Journal of the American College of Toxicology. Vol.3, No. 4
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)
- GLP compliance:
- not specified
- Limit test:
- yes
Test material
- Reference substance name:
- 86290-81-5
- Cas Number:
- 86290-81-5
- IUPAC Name:
- 86290-81-5
- Reference substance name:
- Unleaded motor gasoline
- IUPAC Name:
- Unleaded motor gasoline
- Test material form:
- other: low viscosity liquid hydrocarbon
- Details on test material:
- The unleaded automotive motor fuel (gasoline) used in the study was prepared to conform with the specifications of unleaded gasoline in use in the US in 1976, as determined by a road octane survey (DuPont Road Octane Survey, summer 1976; At the Lime the gasoline was blended for the study, benzene concentrations in US gasolines averaged about 1%, with a maximum approaching 2%; therefore, benzene content of the gasoline was adjusted to the upper limit of US gasolines. The specifications are shown in Table I, but more detailed information on chemical composition is provided in the Appendix.
The following details are found in the attachment:
Reid vapour pressure
distillation range
gravity
gum
sulfur
Phosphorus
lead
research octane number
motor octane number
aromatics
olefins
saturates
benzene
Constituent 1
Constituent 2
Test animals
- Species:
- other: rat and mouse
- Strain:
- other: Fischer 344 and B6C3F
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS: Rats STRAIN: Fischer 344 SEX: male/female
- Age at study initiation: 6 weeks
- Weight at study initiation: M: 95-129 g; F: 79-105 g
- Diet (e.g. ad libitum): ad libitum
- Water (e.g. ad libitum): ad libitum
- Acclimation period: 2 weeks
TEST ANIMALS: Mice STRAIN: B6C3F SEX: male/female
- Age at study initiation: 6 weeks
- Weight at study initiation: M: 14-26 g; F: 12-20 g
- Diet (e.g. ad libitum): ad libitum
- Water (e.g. ad libitum): ad libitum
- Acclimation period: 2 weeks
Administration / exposure
- Route of administration:
- inhalation: vapour
- Type of inhalation exposure:
- whole body
- Vehicle:
- other: unchanged (no vehicle)
- Details on inhalation exposure:
- GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Exposure apparatus: 16 m^3 stainless steel and glass exposure chambers
- System of generating particulates/aerosols: Gasoline was delivered from a liquid metering pump to a heated countercurrent vaporization column and completely volatilized. Dry nitrogen at 5-6 L/min was used to carry the vapor into the main inlet pipe of the chamber.
- Temperature, humidity in air chamber: Measured each day at the start of exposure and at 1, 3, and 5 hours
- Air flow rate: Between 900 and 1900 L/min - Analytical verification of doses or concentrations:
- yes
- Details on analytical verification of doses or concentrations:
- Nominal concentrations were determined daily, and calculations of concentration in ppm were made by using weight loss data and assuming an average molecular weight of 108 g/mol for the gasoline.
Analytical concentrations were determined by drawing samples from the chambers into a gas chromatograph equipped with a flame ionization detector. - Duration of treatment / exposure:
- Male rats: 107 weeks
Female rats: 109 weeks
Male mice: 107 weeks
Female mice: 113 weeks - Frequency of treatment:
- 6 hours per day, five days per week
Doses / concentrationsopen allclose all
- Remarks:
- Doses / Concentrations:
322 mg/m3
Basis:
analytical conc.
- Remarks:
- Doses / Concentrations:
1402 mg/m3
Basis:
analytical conc.
- Remarks:
- Doses / Concentrations:
9869 mg/m3
Basis:
analytical conc.
- No. of animals per sex per dose:
- 100 animals per sex per dose
- Control animals:
- yes, sham-exposed
Examinations
- Observations and examinations performed and frequency:
- CAGE SIDE OBSERVATIONS: Yes
- Time schedule: Twice daily
DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: once a month
BODY WEIGHT: Yes
- Time schedule for examinations: Body weights were recorded monthly for the first 17 months and biweekly thereafter.
HAEMATOLOGY: Yes
- Time schedule for collection of blood: 18-month interim and terminal sacrifice
- Anaesthetic used for blood collection: No data
- Animals fasted: No data
- How many animals: 7 male and 7 female rats per group
- Parameters checked: hemoglobin, hematocrit, erythrocyte count, total and differential leukocyte count, platelet count, reticulocyte count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration.
CLINICAL CHEMISTRY: Yes
- Time schedule for collection of blood: At the interim sacrifices: 3, 6, 12, and 18 months
- Animals fasted: Yes
- How many animals: 7 male and 7 female rats per group
- Parameters checked: alkaline phosphatase, glutamic oxalacetic transaminase, glutamic pyruvic transaminase, ornithine carbamyl transferase, and isocitrate dehydrogenase
URINALYSIS: No
NEUROBEHAVIOURAL EXAMINATION: No - Sacrifice and pathology:
- GROSS PATHOLOGY: Yes
HISTOPATHOLOGY: Yes - Statistics:
- Body weight, hematologic, and serum biochemical data were tested for homogeneity of variance, followed by a parametric analysis of variance. When a significant F-ratio was obtained, individual group comparisons were performed, utilizing Student's T-test when variances were heterogeneous and Dunnett's test when homogeneous. In some cases where the number of animals was small and the variance heterogeneous, the non-parametric multiple-group test of Kruskal-Wallis was applied, and where appropriate, individual group comparisons were made with the Mann-Whitney U test.
Results and discussion
Results of examinations
- Clinical signs:
- no effects observed
- Mortality:
- no mortality observed
- Body weight and weight changes:
- effects observed, treatment-related
- Food consumption and compound intake (if feeding study):
- not specified
- Food efficiency:
- not specified
- Water consumption and compound intake (if drinking water study):
- not specified
- Ophthalmological findings:
- not specified
- Haematological findings:
- no effects observed
- Clinical biochemistry findings:
- no effects observed
- Urinalysis findings:
- not specified
- Behaviour (functional findings):
- not specified
- Organ weight findings including organ / body weight ratios:
- effects observed, treatment-related
- Gross pathological findings:
- effects observed, treatment-related
- Histopathological findings: non-neoplastic:
- no effects observed
- Histopathological findings: neoplastic:
- effects observed, treatment-related
- Details on results:
- CLINICAL SIGNS AND MORTALITY: No dose-related differences were noted in spontaneous death rate in either species.
BODY WEIGHT AND WEIGHT GAIN: Male rats in the high dose group had significantly lower body weights than controls from week 13 to termination. Female rats in the high dose group showed a similar depression, which was significant from week 26 to the end of the study. Male mice receiving the high dose exhibited a lower body weight than controls, which was significant from week 66 to termination.
HAEMATOLOGY: No treatment-related effects in either species.
CLINICAL CHEMISTRY: No treatment-related effects in either species.
ORGAN WEIGHTS: The kidney weights of male rats in the high dose group were elevated from the 3 month interim sacrifice through termination. At termination, the relative kidney weights of male rats dosed with 1402 mg/m3 and female rats dosed with 9869 mg/m3 were also elevated. There was a dose-related relative increase in the testes and ovaries of the rats receiving mid- and high-doses, and slight depression in absolute heart weights was noted in the hige dose groups (male and female rats). In mice, there were no treatment-related effects.
GROSS PATHOLOGY: A compound-related increase in liver nodules and masses was seen in female mice exposed to the high level.
HISTOPATHOLOGY: NON-NEOPLASTIC: Both sexes of rats exhibited a mild, multifocal, pulmonary inflammatory response characterized by an accumulation of alveolar macrophages in the alveolar speces of the lungs. The incidence of these aggregates of macrophages was similar in all treated group s and in control animals and were not considered to be treatment-related.
HISTOPATHOLOGY: NEOPLASTIC:
MICE: Female mice treated with 9869 mg/m3 gasoline vapor exhibited an increased incidence of hepatocellular carcinoma, considered to be treatment-related. The tumors were of 2 types: hepatocellular adenomas and hepatocellular carcinomas. Two female mice in the high dose group developed renal tumors.
RATS: Male rats exhibited primary renal neoplasms (1, 6, and 7 in low, mid and high dose groups, respectively) after 18 month exposure. Reexamination of the kidney sections some years after the initial reading revealed an increase in the incidence and severity of regenerative epithelial changes, and dilated tubules containing proteinaceous material. This findings are consistent with alpha 2 microglobulin-induced nephropathy.
Effect levels
- Dose descriptor:
- NOAEC
- Effect level:
- 1 402 mg/m³ air (analytical)
- Sex:
- male/female
- Basis for effect level:
- other: Based on decreased body weight gain in mice and rats at 9869 mg/m3.
Target system / organ toxicity
- Critical effects observed:
- not specified
Applicant's summary and conclusion
- Conclusions:
- The NOAEC for unleaded gasoline vapor is 1402 mg/m3 under the test conditions of this study, based on decreased body weight gain in mice and rats at 9869 mg/m3.
- Executive summary:
Unleaded gasoline vapor was administered by inhalation to Fischer 344 rats and B6C3F mice for 6 hours/day, 5 days/week for up to 113 weeks at analytical vapor concentrations of 322, 1402, and 9869 mg/m3to assess inhalation toxicity. No consistent, compound-related changes were seen in mortality, hematology or clinical chemistry parameters in either species. Significant depression of body weight gain was seen in both sexes of rats and male mice exposed to the highest level of gasoline vapor. On gross necropsy, a compound-related increase in liver nodules and masses was seen in female mice exposed to the highest dose level. In addition, male rats exposed to gasoline vapor at all concentrations exhibited primary kidney neoplasms, correlated histopathologically with an increase in the incidence and severity of regenerative epithelial changes and dilated tubules containing proteinaceous material. The kidney effects observed in male rats are indicative of alpha-2u-globulin nephropathy. Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formuation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats. These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes. Based on the decreased body weight gain at the highest dose, the no observed adverse effect concentration (NOAEC) was 1402 mg/m3.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.