Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Link to relevant study record(s)

Description of key information

Key value for chemical safety assessment

Absorption rate - oral (%):
Absorption rate - dermal (%):
Absorption rate - inhalation (%):

Additional information

In aqueous environments, such as the body TSP is dissociated into the Calcium (Ca2+), the sulfate (SO4 2-) ions and phosphate ions (PO4 3-).

Ca2+ is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca2+ balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average Ca2+ daily from which is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca2+ balance, the kidney must excrete the same amount of Ca2+ that the small intestine absorbs. This is accomplished by a combination of filtration of Ca2+ across the glomeruli and subsequent re-absorption of the filtered Ca2+ along the renal tubules.Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca2+ fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D3) and parathyroid hormone.

Phosphate is a major intracellular anion which participates in providing energy for metabolism of substances and contributes to important metabolic and enzymatic reactions in almost all organs and tissues. Phosphate exerts a modifying influence on calcium concentrations, a buffering effect on acid-base equilibrium, and has a major role in the renal excretion of hydrogen ions. Phosphate is absorbed from, and to a limited extent secreted into, the gastrointestinal tract. Transport of phosphate from the gut lumen is an active, energy-dependent process that is modified by several factors. Vitamin D stimulates phosphate absorption, an effect reported to precede its action on calcium ion transport. In adults, about two thirds of the ingested phosphate is absorbed, and that which is absorbed is almost entirely excreted into the urine. In growing children, phosphate balance is positive. Concentrations of phosphate in plasma are higher in children than in adults.

Absorption of sulphate depends on the amount ingested. 30 - 44% of sulfate was excreted in the 24-h urine after oral administration of magnesium or sodium sulfate (5.4 g sulfate) in volunteers. At high sulphate doses that exceed intestinal absorption, sulphate is excreted in feces. Intestinal sulphate may bind water into the lumen and cause diarrhoea in high doses. Sulphate is a normal constituent of human blood and does not accumulate in tissues. Sulphate levels are regulated by the kidney through a reabsorption mechanism. Sulphate is usually eliminated by renal excretion. It has also an important role in the detoxification of various endogenous and exogenous compounds, as it may combine with these to form soluble sulphate esters that are excreted in the urine.

For risk assessment purposes oral absorption of TSP is set at 50%, inhalation absorption 100% and dermal absorption 10%.