Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in mammalian cells
Remarks:
Type of genotoxicity: gene mutation
Type of information:
migrated information: read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Study period:
2010
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: see 'Remark'
Remarks:
The study has been performed according to OECD and/or EC guidelines and according to GLP principles. According to the ECHA guidance document “Practical guide 6: How to report read-across and categories (Dec 2012)”, the reliability was changed from RL1 to RL2 to reflect the fact that this study was conducted on a read-across substance (CAS 7722-76-1).

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2010

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.17 (Mutagenicity - In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
Principles of method if other than guideline:
The recommendations of the “International Workshop on Genotoxicity Tests Workgroup” (the IWGT), published in the literature (Clive et al., 1995, Moore et al., 1999, 2000, 2002, 2003, 2006 and 2007).
GLP compliance:
yes (incl. QA statement)
Type of assay:
mammalian cell gene mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
Ammonium dihydrogenorthophosphate
EC Number:
231-764-5
EC Name:
Ammonium dihydrogenorthophosphate
Cas Number:
7722-76-1
Molecular formula:
H3N.H3O4P
IUPAC Name:
ammonium dihydrogen phosphate
Details on test material:
- Name of test material (as cited in study report): Ammonium dihydrogenorthophosphate
- Substance type: White crystals
- Physical state: Solid
- Stability under test conditions: Stable
- Storage condition of test material: At room temperature in the dark

Method

Target gene:
Thymidine kinase (TK) locus in L5178Y mouse lymphoma cells
Species / strain
Species / strain / cell type:
mouse lymphoma L5178Y cells
Details on mammalian cell type (if applicable):
- Type and identity of media:
-RPMI 1640 Hepes buffered medium (Dutch modification) containing penicillin/streptomycin (50 U/ml and 50 μg/ml, respectively), 1 mM sodium pyruvate and 2 mM L-glutamin supplemented with 10% (v/v) heat-inactivated horse serum (=R10 medium).
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: yes
- Periodically checked for karyotype stability: no
- Periodically "cleansed" against high spontaneous background: yes
Metabolic activation:
with and without
Metabolic activation system:
Rat liver S9-mix induced by a combination of phenobarbital and ß-naphthoflavone
Test concentrations with justification for top dose:
Dose range finding test:
Without and with S9-mix, 3 hours treatment: 3, 10, 33, 100 and 333 µg/mL
Without S9-mix, 24 hours treatment: 3, 10, 33, 100 and 333 µg/ml and 0.003, 0.01, 0.03, 0.1, 0.3, 1 and 3 µg/mL
Experiment 1:
Without S9-mix, 3 hours treatment: 0.003, 0.03, 0.1, 0.25, 0.5, 1, 1.4 and 2 µg/mL
With S9-mix, 3 hours treatment: 0.01, 0.03, 0.1, 0.3, 1, 3, 10 and 12 µg/mL
Experiment 2
Without S9-mix, 24 hours treatment: 0.01, 0.03, 0.1, 0.25, 0.5, 1, 1.4 and 1.8 µg/mL
With S9-mix, 3 hours treatment: 0.01, 0.1, 1, 10, 12, 14, 16 and 17 μg/mL
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: RPMI 1640 medium
- Justification for choice of solvent/vehicle:Test compound was soluble in RPMI 1640 medium and RPMI 1640 medium has been accepted and approved by authorities and international guidelines
Controls
Negative solvent / vehicle controls:
yes
Positive controls:
yes
Positive control substance:
cyclophosphamide
methylmethanesulfonate
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium

DURATION
- Exposure duration:
Short-term treatment
With and without S9-mix: 3 hours
Prolonged treatment period
Without S9-mix: 24 hours
- Expression time (cells in growth medium): 2 days
- Selection time (if incubation with a selection agent): 11 to 12 days

SELECTION AGENT (mutation assays): 5 µg/mL trifluorothymidine (TFT)

NUMBER OF REPLICATIONS:
- Solvent controls: Duplo cultures
- Treatment groups and positive control: Single cultures

NUMBER OF CELLS EVALUATED: 9.6 x 10E5 cells/concentration

DETERMINATION OF CYTOTOXICITY
- Method: relative suspension growth (dose range finding test) and relative total growth (mutation experiments)
Evaluation criteria:
The global evaluation factor (GEF) has been defined by the IWTG as the mean of the negative/solvent MF distribution plus one standard deviation. For the micro well version of the assay the GEF is 126.

A test substance is considered positive (mutagenic) in the mutation assay if it induces a MF of more then MF(controls) + 126 in a dose-dependent manner. An observed increase should be biologically relevant and will be compared with the historical control data range.

A test substance is considered equivocal (questionable) in the mutation assay if no clear conclusion for positive or negative result can be made after an additional confirmation study.

A test substance is considered negative (not mutagenic) in the mutation assay if:
a) None of the tested concentrations reaches a mutation frequency of MF(controls) + 126.
b) The results are confirmed in an independently repeated test.

Results and discussion

Test results
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: No
- Effects of osmolality: No
- Precipitation: No precipitation was observed up to and including the top dose of 850 µg/mL (= 0.01 M)

RANGE-FINDING/SCREENING STUDIES:
- Toxicity was observed at dose levels of 3 µg/mL in the absence of S9, 3 hours treatment; at dose levels of 33 µg/mL in the presence of S9, 3 hours treatment; at dose levels of 1 µg/mL in the absence of S9, 24 hours treatment

COMPARISON WITH HISTORICAL CONTROL DATA:
The spontaneous mutation frequencies in the solvent-treated control cultures were between the minimum and maximum value of the historical control data range and within the acceptability criteria of this assay.

ADDITIONAL INFORMATION ON CYTOTOXICITY:
In the absence of S9-mix, the relative total growth of the highest test substance concentration was reduced by 79 and 83% compared to the total growth of the solvent controls after the 3 and 24 hours treatment period, respectively.

In the presence of S9-mix, no toxicity was observed up to and including the highest tested dose level in both experiments.

Applicant's summary and conclusion

Conclusions:
Interpretation of results (migrated information):
negative

The spontaneous mutation frequencies in the solvent-treated control cultures were between the minimum and maximum value of the historical control data range and within the acceptability criteria of this assay.

Mutation frequencies in cultures treated with positive control chemicals were increased by 11- and 16-fold for MMS in the absence of S9-mix, and by 19- and 11-fold for CP in the presence of
S9-mix. It was therefore concluded that the test conditions, both in the absence and presence of S9-mix, were appropriate and that the metabolic activation system (S9-mix) functioned properly.

In the absence of S9-mix, Ammonium dihydrogenorthophosphate did not induce a significant increase in the mutation frequency in the first experiment. This result was confirmed in an independent repeat experiment with modifications in the duration of treatment time.

In the presence of S9-mix, Ammonium dihydrogenorthophosphate did not induce a significant increase in the mutation frequency in the first experiment. This result was confirmed in an independent repeat experiment with modifications in the concentration of the S9 for metabolic activation.

It is concluded that Ammonium dihydrogenorthophosphate is not mutagenic in the mouse lymphoma L5178Y test system under the experimental conditions described in this report.