Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 205-438-8 | CAS number: 140-88-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vivo
Administrative data
- Endpoint:
- in vivo mammalian germ cell study: gene mutation
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2015
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Study follows GLP and OECD
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 015
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- other: - OECD Guidelines for the Testing of Chemicals 488 (26 July 2013: Transgenic Rodent Somatic and Germ Cell Gene Mutation Assays
- GLP compliance:
- yes
- Type of assay:
- transgenic rodent mutagenicity assay
Test material
- Reference substance name:
- Ethyl acrylate
- EC Number:
- 205-438-8
- EC Name:
- Ethyl acrylate
- Cas Number:
- 140-88-5
- Molecular formula:
- C5H8O2
- IUPAC Name:
- ethyl acrylate
- Test material form:
- liquid: viscous
- Details on test material:
- - Name of test material (as cited in study report): Ethyl acrylate
- Physical state: liquid
- Analytical purity: 99.87wt% (GC)
- Lot/batch No.: 14352-14-273
- Stability under test conditions: The typical shelf-life is 12 months.
- Storage condition of test material: Room temperature (30°C or less)
- Other: Actual storage temperature and storage period: 9.2°C to 24.0°C January 13, 2015 to April 21, 2015 (from receipt to the final day of use)
Constituent 1
Test animals
- Species:
- mouse
- Strain:
- other: C57BL/6JJmsSlc-Tg (gpt delta) [SPF]
- Sex:
- male
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Japan SLC, Inc.
- Age at study initiation:
At the time of purchase: 8 weeks of age
At the time of assignment to groups: 9 weeks of age
- Weight at study initiation: 24.2 to 26.8 g
- Assigned to test groups: Animals were assigned to groups based on their body weights on Day 1 using LATOX-F/V5 (FFC) computer system package. The weight range of the animals used was within ±20% of the overall mean weight. Unselected animals were excluded from the study on Day 1.
- Housing: Three animals were housed in a polycarbonate cage (W 18.2 × D 26.0 × H 12.8 cm) with bedding (ALPHA-driTM; lot No. 04114, Shepherd Specialty Papers). However, animals were housed individually from Day -6 because aggressive behavior was observed.
- Diet (e.g. ad libitum): Animals were allowed access to pellet diet CRF-1 sterilized by radiation (lot No. 140703, Oriental Yeast) ad libitum. BSRC obtained the certificate of analysis (report No. AR-14-JP-002550-01: July 22, 2014) on the contaminant levels for this lot from the manufacture and confirmed that such levels were within the acceptable limits proposed by the Japan Experimental Animal Feed Association. The food was also provided to animals at the time of exchanging the feeders.
- Water (e.g. ad libitum): Animals were provided access to tap water from water bottles ad libitum. The drinking water was examined for the quality at another inspection agency in April 2015 according to the specifications of the Water Works Law. In March and May 2015, BSRC examined the water for bacteria (common bacteria and Escherichia coli). The analytical results (report No. K15-0033, in-house data Nos. GT15-03 and GT15-05) of these analyses indicated that the levels of contaminants in the water were within the acceptable limits of the Tap Water Quality Standard and that no bacteria were detected in the water
- Acclimation period: The quarantine and acclimation period was from Day -7 to 1
ENVIRONMENTAL CONDITIONS
- Temperature (°C): 20 to 26°C (actual values: 22.8 to 23.1°C)
- Humidity (%): 35 to 70%RH (actual values: 42.2 to 58.3%RH)
- Air changes (per hr): 12 times or more/hour
- Photoperiod (hrs dark / hrs light): 12 hours (lights on: 7:00, lights off: 19:00)
IN-LIFE DATES: From: March 24,2015 To: June 5, 2015
Administration / exposure
- Route of administration:
- oral: gavage
- Vehicle:
- - Vehicle(s)/solvent(s) used: Corn oil (lot No. WEF2972), the vehicle to prepare the test substance formulations, was used
- Storage conditions: Room temperature
- Manufacturer: Wako Pure Chemical Industries, Ltd
- Lot/batch no. (if required): (lot No. WEF2972)
- Grade: For biochemistry - Details on exposure:
- PREPARATION OF DOSING SOLUTIONS: The vehicle and the test substance were administered to mice orally once daily for 28 consecutive days at about 24-hour intervals using a disposable syringe with a Teflon sonde. The dosage volume (mL) was set at 0.1 mL per 10 g of body weight and was calculated on the basis of the most recent individual body weight measured in section 15.12.6.
The positive control substance was administered to mice orally once daily for 5 consecutive days at about 24-hour intervals using a disposable syringe with a Teflon sonde. The dosing volume was set at 0.1 mL per 10 g of body weight and was calculated on the basis of the most recent individual body weight measured. - Duration of treatment / exposure:
- 28 consecutive days at about 24-hour intervals
- Frequency of treatment:
- Once daily
- Post exposure period:
- 3 days of manifestation period
Doses / concentrations
- Remarks:
- Doses / Concentrations:
0, 8, 20, and 50 mg/kg/day
Basis:
nominal conc.
- No. of animals per sex per dose:
- To ensure that the data would be available for 5 animals in each group, the number of the treated animals was 6 in each group.
- Control animals:
- yes, historical
- Positive control(s):
- Benzo[a]pyrene (B[a]P)
- Justification for choice of positive control(s): Considering information in the academic documents, the following substance was selected as the positive control
- Route of administration: The positive control substance was administered to mice orally once daily for 5 consecutive days at about 24-hour intervals using a disposable syringe with a Teflon sonde.
- Doses / concentrations: The dose was set at 125 mg/kg in reference to a literature
Examinations
- Tissues and cell types examined:
- The animals were necropsied after euthanasia by exsanguination under isoflurane anesthesia. The liver, stomach and testes were removed from the animals. The liver, stomach and testes were observed macroscopically. The organ weight of the liver was measured. The organ weight to body weight ratio (relative organ weight) was calculated from the body weight weighed on the day of necropsy and organ weight (absolute organ weight / body weight on the harvest day × 100). The liver was measured in grams (to 2 decimal places).
- Details of tissue and slide preparation:
- METHOD OF ANALYSIS: Pathological examinations consisted of macroscopic examination and histopathological examination. Because histopathological findings were observed in the forestomach in a carcinogenesis study[3], the stomach and liver were selected for histopathological examination. Fixed stomach and liver were embedded in paraffin, sectioned and stained with hematoxylin and eosin (H.E.) routinely
Histopathological examination was conducted using all prepared specimens. All histopathological observations were graded according to severity and recorded. - Evaluation criteria:
- VALIDITY OF STUDY
Since the following conditions were satisfied, the test will be considered successfully performed:
- The mutation frequency for the liver in the positive control group markedly increases with a statistically significant difference from the negative control group. - The mutant frequency in the negative control group should be within the acceptable range calculated from our historical data. - Statistics:
- The data on the mutant frequency from the negative control group and each test substance treated group were tested by Bartlett’s test for homogeneity of variance first. If homogeneity was determined (not significant on Bartlett’s test), Dunnett’s multiple comparison test was performed to assess the statistical significance of differences between the negative control group and each test substance treated group. If there was no homogeneity (significant on Bartlett’s test), Steel’s test was performed to analyze the differences.
The data on the mutant frequency from the negative control group and the positive control group were tested by F test for homogeneity of variance first. If homogeneity of variance was determined (not significant on F test), Student’s t test was performed to assess the statistical significance of differences between the negative control group and the positive control group. If there was no homogeneity (significant on F test), Aspin-Welch’s t test was performed to analyze the differences.
The significance level of 5% (two-sided) was selected for each test.
The results were evaluated as positive when the mutant frequency in the test substance treated group was significantly different from that in the negative control group. Final judgment was made in consideration of biological relevance under the test conditions.
Results and discussion
Test results
- Sex:
- male
- Genotoxicity:
- negative
- Toxicity:
- no effects
- Vehicle controls validity:
- not applicable
- Negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- RESULTS OF DEFINITIVE STUDY
Liver
In the negative control group, the mean±SD of mutant frequency among the individuals was 3.14±1.35 (×10-6).
The means±SD of mutant frequencies in the ethyl acrylate treated groups, 8.00, 20.0 and 50.0 mg/kg/day, were 2.29±1.51 (×10-6), 1.67±0.98 (×10-6) and 1.68±1.16 (×10-6), respectively, indicating that ethyl acrylate was negative for liver genotoxicity in the Spi- assay . Furthermore, no statistically significant increases were observed as compared with the negative control group.
In the positive control group, the mean±SD of mutant frequency among the individuals was 12.17±7.03 (×10-6) and a statistically significant increase was observed compared with the negative control group.
Stomach
The means±SD of mutant frequencies in the ethyl acrylate treated groups, 8.00, 20.0 and 50.0 mg/kg/day, were 4.02±3.32 (×10-6), 3.36±3.38 (×10-6) and 2.00±0.31 (×10-6), respectively, indicating that ethyl acrylate was negative for stomach genotoxicity in the Spi-assay. Furthermore, no statistically significant increases were observed as compared with the negative control group.
In the positive control group, the mean±SD of mutant frequency among the individuals was 21.86±8.81 (×10-6) and a statistically significant increase was observed compared with the negative control group.
Any other information on results incl. tables
Body weight and general conditions: Body weights in all the test substance treated groups were similar to those in the control group throughout the treatment periods. There was no change in the general condition in any of the test substance treated groups.
Liver weight and relative liver weight: There was no difference in the liver weight or relative liver weights of the test substance treated groupscompared with those of the negative control group.
Macroscopic findings: There were no macroscopic findings related to test substance treatment in the liver, stomach or testis of the other animals.
Histopathological findings: Inflammatory cell infiltration (slight) in the forestomach was observed in 2 animals in the 8.00 mg/kg/day group and 1 animal in the 50.0 mg/kg/day group. Furthermore, inflammatory cell infiltration (slight) in the forestomach was observed in 4 animals in the positive control. There were no findings related to test substance treatment in the liver
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information): negative
Ethyl acrylate did not induce gene mutation in transgenic mice under the conditions in this study. - Executive summary:
In 2014 IARC added Ethyl Acrylate as an agent for high priority reevaluation in 2015-2019. Conduct of this study was required in preparation for IARC’s cancer classification reevaluation of Ethyl Acrylate. A gene mutation assay with transgenic mice (gpt delta mouse) was conducted to assess the potential of ethyl acrylate to induce gene point mutations and deletion mutations using the gpt gene and the red/gam genes (Spi⁻ selection), respectively, as mutation reporter genes in the liver and stomach.
In dose range-finding study in C57BL/6JJmsSlc mice treated for 28 days with 0, 25.0, 50.0, 100, or 200 mg/kg/day of ethyl acrylate in corn oil[1], gross observation revealed white nodules in the forestomach in all mice receiving 200 mg/kg/day and in one of the 3 mice receiving 100 mg/kg/day. Histopathological examination of animals in the 100 and 200 mg/kg/day groups revealed that there was an inflammatory response in the forestomach (consisting of squamous cell hyperplasia, fibrosis of mucosa, and infiltration of inflammatory cells). In addition, erosion was observed in 1 animal in the 200 mg/kg/day group. A local inflammatory response may interfere with the outcome of the mutagenicity data and should thus be avoided. Metabolism of ethyl acrylate occurs through carboxylesterases and through conjugation with glutathione. The latter metabolic reaction becomes saturated between 20 and 100 mg/kg, while dosages ≥ 100 mg/kg exhibit complete saturation[2]. Therefore, a dosage of 50.0 mg/kg/day was selected as the high dose as this dose was without a potentially confounding inflammatory response and is anticipated to be at the threshold for saturation of GSH metabolism, based on previous rodent studies. Two additional dosage levels including 20.0 and 8.00 mg/kg/day were selected as lower doses in the present study.
The test substance was administered to male transgenic mice orally for 28 consecutive days by gavage and after 3 days of the manifestation period, the liver, stomach and testis were removed and mutant frequencies in the liver and stomach were determined.
The results showed that the mutant frequencies (6-thioguanine[ER1] [m2] and Spi-selection) in the liver and stomach of all groups treated with ethyl acrylate were negative for genotoxicity under the conditions of thisstudy[ER3] [m4] . Furthermore, the mutant frequencies[ER5] [m6] in the liver and stomach of all groups treated with ethyl acrylate did not show any statistically significant increases as compared with the negative control group.
The mutant frequencies in the liver and stomach of the positive control group, which was treated with benzo[a]pyrene (B[a]P, dosage level of 125 mg/kg/day), increased in both thegptand Spi-assays and these increases were statistically significant compared with that of the negative control group.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.