Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 240-841-2 | CAS number: 16812-54-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Ecotoxicological Summary
Administrative data
Hazard for aquatic organisms
Freshwater
- Hazard assessment conclusion:
- PNEC aqua (freshwater)
- PNEC value:
- 7.1 µg/L
- Assessment factor:
- 1
- Extrapolation method:
- sensitivity distribution
- PNEC freshwater (intermittent releases):
- 0 µg/L
Marine water
- Hazard assessment conclusion:
- PNEC aqua (marine water)
- PNEC value:
- 8.6 µg/L
- Assessment factor:
- 2
- Extrapolation method:
- sensitivity distribution
- PNEC marine water (intermittent releases):
- 0 µg/L
STP
- Hazard assessment conclusion:
- PNEC STP
- PNEC value:
- 0.33 mg/L
- Assessment factor:
- 100
- Extrapolation method:
- assessment factor
Sediment (freshwater)
- Hazard assessment conclusion:
- PNEC sediment (freshwater)
- PNEC value:
- 109 mg/kg sediment dw
- Assessment factor:
- 1
- Extrapolation method:
- sensitivity distribution
Sediment (marine water)
- Hazard assessment conclusion:
- PNEC sediment (marine water)
- PNEC value:
- 109 mg/kg sediment dw
- Assessment factor:
- 1
- Extrapolation method:
- sensitivity distribution
Hazard for air
Air
- Hazard assessment conclusion:
- no hazard identified
Hazard for terrestrial organisms
Soil
- Hazard assessment conclusion:
- PNEC soil
- PNEC value:
- 29.9 mg/kg soil dw
- Assessment factor:
- 2
- Extrapolation method:
- sensitivity distribution
Hazard for predators
Secondary poisoning
- Hazard assessment conclusion:
- PNEC oral
- PNEC value:
- 0.12 mg/kg food
- Assessment factor:
- 10
Additional information
The approach for deriving PNEC values was used in the 2008/2009 European Union Existing Substances Risk Assessment of Nickel (EU RAR) (EEC 793/93). The EU RAR was jointly prepared by the Danish Environmental Protection Agency (DEPA), which served as the Rapporteur of the Existing Substances Risk Assessment of Nickel, and the Nickel Producers Environmental Research Association (NiPERA), which represented the Nickel Industry in this process. The complete Environment section of the EU RAR can be found in the pdf linked to the following URL:
http://ecb.jrc.ec.europa.eu/DOCUMENTS/Existing-Chemicals/RISK_ASSESSMENT/REPORT/nickelreport311.pdf
All of the approaches described were discussed by the Technical Committee for New and Existing Substances (TC NES), and received final approval at the TC NES I meeting in April, 2008.
Common effects assessment basis:
The ecotoxicity databases on the effects of soluble nickel compounds to aquatic, soil- and sediment-dwelling organisms are extensive. It should be noted that the effects assessments of Nickel sulfide is based on the assumption that adverse effects to aquatic, soil- and sediment-dwelling organisms are a consequence of exposure to the bioavailable Ni-ion, as opposed to the parent substances. The result of this assumption is that the ecotoxicology will be similar for all soluble Ni substances used in the ecotoxicity experiments. Therefore, data from soluble nickel substances are used in the derivation of chronic ecotoxicological NOEC and L(E)C10 values. If both NOEC and L(E)C10 data are available for a given species, the L(E)C10 value was used in the effects assessment.
Conclusion on classification
Ni sulfide is classified as Aquatic Acute I/Chronic I in the 1st ATP to the CLP. Classification was confirmed by results of the Tranformation/Dissolution Screening Test.
The 2ndATP to the CLP introduced the chronic (long-term) environmental toxicity endpoint as defined by the 3rdversion of the UN-GHS into the EU hazard classification and labeling scheme. The GHS and EU scheme include the concept of degradation whereby rapid degradation from the water column (greater than 70 % removal in 28 days) results in different classification cut-off values and categories. For metals and inorganic metal compounds, the rapid and irreversible removal from the water column is equated to the rapid degradation concept for organics. The current draft guidance on metals includes a proposal to apply the “rapid degradation principle for organics” measured as a 70 % removal rate in 28 days in a comparable way for metals from laboratory and field experiments or by using a recently developed model. A Unit World Model (UWM) has recently been developed specifically for metals, building on previous screening-level calculations that have been developed for organic contaminants, and is capable of assessing the fate and effects of chemicals by the simultaneous consideration of chemical partitioning, transport, reactivity, and bioavailability. With regard to hazard assessment, the UWM is capable of assessing the removal of soluble metals from the water column resulting from sorption to particulate material, settling to the sediment compartment, and subsequent changes in speciation via precipitation by sulfides naturally present in the sediment compartment.
The UWM was used to assess the rapid removal of a group metals (e.g., Ni, Cu, Pb, Zn, As, Al, Co) in a generalized lake environment resulting from metal removal from the water column and sequestration in sediment. To estimate sorption by particulate matter in the water column, the UWM can use empirical, measured distribution coefficients (Kd), or the speciation module within the UWM (the Windermere Humic Aqueous Model, or WHAM) can calculate Kds. When an empirical Kd of log 4.42 was used, greater than 70% nickel removal was achieved in every loading and pH scenario. WHAM-based Kds tended to be substantially lower than empirical Kds, indicating that refinement of the WHAM approach was needed. To this end, the UWM was refined to accommodate an updated version of WHAM (WHAM 7). Additionally, the inorganic thermodynamic database used by WHAM to perform speciation calculations was updated because the previous version was found to be out of date and inaccurate. Analyses using WHAM7 and the revised inorganic thermodynamic database showed that greater than 70% nickel removal was achieved under the three pH scenarios with metal loadings at the acute and chronic ERVs at 28 days. At the upper chronic cutoff value of 1 mg/L, rapid removal was achieved for pH 6 and 8 without oxide binding and for all three pH values with oxide binding. Rapid removal was demonstrated at all pH values when loading was based on acute Ecotoxicity Reference Values (120 µg Ni/L at pH 6 and 68 µg Ni/L at pH 8) and chronic Ecotoxicity Reference Values (2.4 µg Ni/L) using calculated Kd values. Based on these results, nickel sulfide fulfills the criteria for rapid degradation for the environmental classification scheme in the 2ndATP to the CLP.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.