Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Ecotoxicological information

Toxicity to soil microorganisms

Currently viewing:

Administrative data

Link to relevant study record(s)

Description of key information

Key value for chemical safety assessment

Additional information

There are no studies available on soil microorganisms for sodium aluminate. Nevertheless, aluminium is the most abundant metallic element in the Earth's crust. Based on its ubiquitous occurrence the present natural background concentration far outweighs anthropogenic contributions of aluminium to the terrestrial environment. As detailed in the endpoint summary on terrestrial toxicity in general further toxicity testing on terrestrial organisms is considered unjustified and waiving based on exposure consideration is applied.

However, for reasons of completeness existing data on the terrestrail toxicity of aluminium are provided in addition and summerised here.

Illmer et al. (1995) studied the toxicity of aluminium to soil microorganisms, using an undefined microbial biomass, by following biomass, microbial respiration, CM-cellulase activity and N-mineralisation. Microbial biomass decreased with increasing available aluminum concentration, independent of pH (2.9 to 3.5). From about 3 mg C biomass/g DM/h at 0 µmol/g DM Al, the microbial biomass decreased to approximately 1 mg C biomass/g DM/h at 87 µmol/g DM Al. Microbial respiration showed a slight, non-significant tendency to decrease with increasing available Al concentration. CM-Cellulase activity (representative of the C-Cycle) did not significantly correspond to an increased available Al concentration. The N-mineralization (representative of the N-Cycle) was negatively influenced by an increased available Al concentration. Kinraide & Sweeney (2003) investigated Rhizobium leguminosarum bv. trifolii strains streaked on agar plates after addition of AlCl3. Colonies were streaked with and without 48h incubation at 25 °C and colonies counted 72 hours after the respective streaking. The ratio between number of colonies streaked after 48 hours incubation and the number of colonies streaked without incubation is referred to as growth in terms of fold increase. Inhibition of cell growth (increase in cell number) by AlCl3 in solutions was observed at pH 4.4. Little or no cell increases occcured at 2 µM AlCl3 with die-off of the inoculum at higher concentrations. The toxicity of 1 µM AlCl3 increased with increasing pH (range 4.0 to 6.0).