Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Toxicity to reproduction

Currently viewing:

Administrative data

Endpoint:
developmental immunotoxicity
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
study well documented, meets generally accepted scientific principles, acceptable for assessment
Justification for type of information:
1. HYPOTHESIS FOR THE CATEGORY APPROACH: The hypothesis is that properties are likely to be similar or follow a similar pattern because of the presence of a common metal ion, in this case tungstate.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES):
Source: Sodium Tungstate
Target: Tungsten
3. CATEGORY APPROACH JUSTIFICATION: See Annex 3 in CSR
4. DATA MATRIX: See Annex 3 in CSR
Cross-referenceopen allclose all
Reason / purpose for cross-reference:
read-across: supporting information
Reason / purpose for cross-reference:
reference to same study
Reference
Endpoint:
immunotoxicity: short-term oral
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Remarks:
Well documented scientfically study with sufficient information provided on materials and methods to evaluate results. However as this study is used in the context of a read across, Klimisch 2 is assigned.
Justification for type of information:
1. HYPOTHESIS FOR THE CATEGORY APPROACH: The hypothesis is that properties are likely to be similar or follow a similar pattern because of the presence of a common metal ion, in this case tungstate.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES):
Source: Sodium tungstate
Target: Tungsten
3. CATEGORY APPROACH JUSTIFICATION: See Annex 3 in CSR
4. DATA MATRIX: See Annex 3 in CSR
Reason / purpose for cross-reference:
reference to same study
Reason / purpose for cross-reference:
reference to same study
Qualifier:
no guideline followed
Principles of method if other than guideline:
Experiments were conducted as described in Current Protocols in Immunology
GLP compliance:
not specified
Limit test:
no
Species:
mouse
Strain:
C57BL
Sex:
male/female
Details on test animals or test system and environmental conditions:
C57BL6 (28-day study male 8–12-week-old, 19–22 g. Mice were allowed to acclimatize to the animal facility for 7 days before commencement of the experimental phase. During the course of the experiment, animals had a 12 h day/night cycle in a temperature-controlled room (22 °C). All animals had ad libitum access to filtered water and a low molybdenum diet.
Route of administration:
oral: drinking water
Vehicle:
water
Details on exposure:
Water consumption was determined using graduated water bottles. Measurements were made daily of water consumed by mice. The tungstate in the water bottles was administered to calculate approximate ingested doses of tungstate based on an estimated water consumption of 4.5 ml/mouse/day. Water bottles were changed 2-3 times weekly, always using water from the source and a 1 M sodium tungstate stock supply.
Analytical verification of doses or concentrations:
not specified
Duration of treatment / exposure:
For the 28-day study, mice were administered 0, 62.5, 125, or 200 mg/kg/day of tungstate for the course.
Frequency of treatment:
Daily
Dose / conc.:
62.5 mg/kg bw/day (nominal)
Remarks:
Basis:
nominal in water
Dose / conc.:
125 mg/kg bw/day (nominal)
Remarks:
Basis:
nominal in water
Dose / conc.:
200 mg/kg bw/day (nominal)
Remarks:
Basis:
nominal in water
Control animals:
yes, concurrent vehicle
Sacrifice and pathology:
Animals were euthanized by CO2 asphyxiation and blood was obtained by cardiac puncture with a 23-gauge needle and placed into Na2EDTA-anti-coagulantcoated tubes. Tissues were harvested according to normal procedures, and the spleens and blood were processed for subsequent flow cytometric staining and analyses.
Humoral immunity examinations:
ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA): Yes, standard ELISA for IL-6, TNFa, IL-10, and IFNg
Statistics:
All statistical tests were performed with Systat . Statistical significance was assumed at p <0.05. Comparisons between treatments (tungstate dose, immune challenge) were performed as two-way analysis ofnvariance (ANOVA). Differences in weights were determined by repeated measures analysis of variance.
Clinical signs:
not specified
Mortality:
no mortality observed
Body weight and weight changes:
no effects observed
Description (incidence and severity):
During the course of the 28-day exposures the body weights were measured to determine if there were tungstate dependent changes. There were no statistically significant changes in body weight due to any tungstate dose levels.
Food consumption and compound intake (if feeding study):
not specified
Food efficiency:
not specified
Water consumption and compound intake (if drinking water study):
no effects observed
Description (incidence and severity):
No significant changes in water consumption due to the quantity of tungstate present in the water
Ophthalmological findings:
not specified
Haematological findings:
effects observed, treatment-related
Clinical biochemistry findings:
not specified
Urinalysis findings:
not specified
Behaviour (functional findings):
not specified
Immunological findings:
effects observed, treatment-related
Description (incidence and severity):
- Some sex-dependent differences in innate immune response were observed (neutrophils [Gr1++ CD11b+ ] and monocytes [Gr1-CD11b+] were different between males and females). However, these were un-related to tungstate exposure. Tungstate-dependent changes were only observed in the spleens of animals.
- In a 28-day statistically significant reductions were observed in the quantities of activated cytotoxic T-cells (TCTL; CD3+ CD8+ CD71+) and helper
T-cells (TH; CD3+ CD4+ CD71+). CD71+ TCTL cells were 12.87 2.05% (SE) in the 0 tungstate (control) group compared to 4.44 1.42% in the 200 mg/kg/day (p<0.001) group. THcells were 4.85 1.23% in controls and 2.76 0.51% in the 200 mg/kg/day (p<0.003) group.
- Tungstate exposure for 28 days did not result in significant changes in the percentage of helper Tcells (TH; CD3+ CD4+). However, the number of activated helper T-cells (CD3+ CD4+ CD71+ ), or CD71+ (transferrin receptor) TH cells were significantly reduced at the 200 mg/kg/day dose as compared to in the controls (4.85 1.23% for control vs 2.76 0.51% in tungstate group, p<0.003).
Organ weight findings including organ / body weight ratios:
not specified
Gross pathological findings:
not specified
Neuropathological findings:
not specified
Histopathological findings: non-neoplastic:
not specified
Histopathological findings: neoplastic:
not specified
Cell viabilities:
not specified
Humoral immunity examinations:
no effects observed
Description (incidence and severity):
No effect of the 28-day tungstate treatment on the quantity of cytotoxic T-cells (CD3+ CD8+) in the saline controls or in the SEB-challenged mice. The number of CD71+ CD8 cytotoxic T-cells was significantly reduced in the SEB-treated mice at high tungstate doses. The 0 mg/kg/day dose resulted in 12.87 2.05% CD71þ cytotoxic T-cells vs 4.44 1.42% in the 200 mg/kg/day group (p<0.001).
Other functional activity assays:
effects observed, treatment-related
Description (incidence and severity):
Among cytokines measured in plasma, the only significant change across both studies was a dose-dependent quantitative decrease in interferon (IFN)-g levels in SEB-treated mice. In the 28-day study there was a decrease from 6.98 0.77 pg/ml in the control mice to near baseline levels in the high-tungstate dose hosts (p<0.001)
Key result
Dose descriptor:
NOAEL
Effect level:
125 mg/kg bw/day (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
immunology

Taken together, the data from the current studies clearly indicate tungstate exposure could result in suppression of adaptive immunity. The data indicates little to no effect of tungstate at any dose on groups of mice exposed only to tungstate without being co-exposed to an immune stressor (eg SEB). This may suggest that some biological processes, such as T-cell activation, are more sensitive to tungstate.

Conclusions:
C57BL6 mice were administered 0, 62.5, 125, or 200 mg/kg/day of tungstate for 28-days. There were no statistically significant changes in body weight due to any tungstate dose levels. No significant changes in water consumption due to the quantity of tungstate present in the water. Tungstate exposure for 28 days did not result in significant changes in the percentage of helper T cells (TH; CD3+ CD4+). However, the number of activated helper T-cells (CD3+ CD4+ CD71+ ), or CD71+ (transferrin receptor) TH cells were significantly reduced at the 200 mg/kg/day dose as compared to in the controls. After these mice were intraperitoneally injected with Staphylococcal enterotoxin B (SEB) (20 mg/mouse) presented statistically significant reductions in the quantities of activated cytotoxic T-cells (TCTL; CD3+ CD8+ CD71+) and helper T-cells (TH; CD3+ CD4+ CD71+ ) compared to saline treated control animals. The data indicates little to no effect of tungstate at any dose on groups of mice exposed only to tungstate without being co-exposed to an immune stressor such as SEB.
Executive summary:

No immunotoxicity data of sufficient quality are available for tungsten (target substance). However, immunotoxicity data are available for sodium tungstate (source substance), which are used for read-across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read-across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read-across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach in the Category section of this IUCLID submission or Annex 3 in the CSR. 

Reason / purpose for cross-reference:
reference to same study
Reference
Endpoint:
immunotoxicity: short-term oral
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Remarks:
Well documented scientfically study with sufficient information provided on materials and methods to evaluate results. However as this study is used in the context of a read across, Klimisch 2 is assigned.
Justification for type of information:
1. HYPOTHESIS FOR THE CATEGORY APPROACH: The hypothesis is that properties are likely to be similar or follow a similar pattern because of the presence of a common metal ion, in this case tungstate.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES):
Source: Sodium tungstate
Target: Tungsten
3. CATEGORY APPROACH JUSTIFICATION: See Annex 3 in CSR
4. DATA MATRIX: See Annex 3 in CSR
Reason / purpose for cross-reference:
reference to same study
Reason / purpose for cross-reference:
reference to same study
Qualifier:
equivalent or similar to guideline
Guideline:
other:
Version / remarks:
Experiments were conducted as described in Current Protocols in Immunology
Principles of method if other than guideline:
Experiments were conducted as described in Current Protocols in Immunology
GLP compliance:
not specified
Limit test:
no
Species:
mouse
Strain:
C57BL
Sex:
male/female
Details on test animals or test system and environmental conditions:
C57BL6 mice were allowed to acclimatize to the animal facility for 7 days before commencement of the experimental phase. During the course of the experiment, animals had a 12 h day/night cycle in a temperature-controlled room (22 °C). All animals had ad libitum access to filtered water and a low molybdenum diet.
Route of administration:
oral: drinking water
Vehicle:
water
Details on exposure:
During the sensitization phase, appropriate tungstate doses continued to be administered to the treated mice. Ten days later, the mice were anesthetized with isofluorane (3.5%) for injection of 20 ml of NP-O-Su mixed (1:20) with phosphate-buffered saline (PBS, pH 7.8) into the right hind foot pad with a 28-gauge needle; an equivalent volume of PBS was injected into the contralateral foot. The extent of footpad swelling was measured with a dial gauge 24 h post-injection.
Analytical verification of doses or concentrations:
not specified
Duration of treatment / exposure:
C57BL6 mice were given tungstate orally by including appropriate doses (0, 0.2, 2, 20, 200 mg/kg/day) in their drinking water for 28 days.
Frequency of treatment:
Daily
Dose / conc.:
0.2 mg/kg bw/day (nominal)
Remarks:
Basis:
nominal in water
Dose / conc.:
2 mg/kg bw/day (nominal)
Remarks:
Basis:
nominal in water
Dose / conc.:
20 mg/kg bw/day (nominal)
Remarks:
Basis:
nominal in water
Dose / conc.:
200 mg/kg bw/day (nominal)
Remarks:
Basis:
nominal in water
Control animals:
yes, concurrent vehicle
Details on study design:
4-hydroxy-3-nitrophenylacetic acid active ester (NP-O-Su) was solubilized in 2% dimethyl sulfoxide for administration of 50 ml as a dorsal subcutaneous injection. This was immediately followed by 0.1 ml of borate-buffered saline solution (pH 8.6) to enhance haptenization and primary immune responses. During the sensitization phase, appropriate tungstate doses continued to be administered to the treated mice. Ten days later, the mice were anesthetized with 3.5% isofluorane for injection of 20 ml of NP-O-Su mixed (1:20) with PBS (pH 7.8) into the right hind foot pad with a 28-gauge needle; an equivalent volume of PBS was injected into the contralateral foot. The extent of footpad swelling was measured with a dial gauge 24 h post-injection.
Sacrifice and pathology:
Animals were euthanized by CO2 asphyxiation and blood was obtained by cardiac puncture with a 23-gauge needle and placed into Na2EDTA-anti-coagulantcoated tubes. Tissues were harvested according to normal procedures, and the spleens and blood were processed for subsequent flow cytometric staining and analyses.
Specific cell-mediated immunity:
DELAYED-TYPE HYPERSENSITIVITY (DTH) REACTION:
Tungstate-dependent immune suppression in a delayed-type hypersensitivity model. Mice were exposed to tungstate in their drinking water for 28 days prior to the initiation of primary and secondary immune responses with NP-O-Su. The left footpad received saline injection, and the right footpad immunogen. Twenty-four hours after secondary challenge, footpad thickness was measured using dial gauges. The difference between left and right footpad thickness for each mouse was calculated and plotted

Statistics:
All statistical tests were performed with Systat . Statistical significance was assumed at p <0.05. Comparisons between treatments (tungstate dose, immune challenge) were performed as two-way analysis ofnvariance (ANOVA). Differences in weights were determined by repeated measures analysis of variance.
Clinical signs:
not specified
Mortality:
no mortality observed
Body weight and weight changes:
no effects observed
Description (incidence and severity):
No statistically significant changes in body weight due to any tungstate dose levels in the delayed-Type IV hypersensitivity experiments.
Food consumption and compound intake (if feeding study):
not specified
Food efficiency:
not specified
Water consumption and compound intake (if drinking water study):
no effects observed
Description (incidence and severity):
No significant changes in water consumption due to the quantity of tungstate present in the water
Ophthalmological findings:
not specified
Haematological findings:
not specified
Clinical biochemistry findings:
not specified
Urinalysis findings:
not specified
Behaviour (functional findings):
not specified
Immunological findings:
effects observed, treatment-related
Description (incidence and severity):
- In delayed-type hypersensitivity Type IV experiments, tungstate exposure prior to primary and secondary antigen challenge significantly reduced footpad swelling at 20 and 200 mg/kg/day.
Specific cell-mediated immunity:
effects observed, treatment-related
Description (incidence and severity):
In separate DTH trials (Figure 7) the 200 mg/kg/day dose resulted in significantly less swelling in the NP-O-Su challenged footpads. In the first experiment (DTH 1), both the 20 and 200 mg/kg/daydosed hosts had less edema than the saline controls (control vs 20 mg/kg/day [p<0.017]; control vs 200 mg/kg/day [p<0.013]). In a subsequent series (DTH 2), it was again found that there was significantly reduced swelling as a result of the 200 mg tungstate/ kg/day treatment (p<0.029). However, at two lower doses (i.e. 2 and 0.2 mg/kg/day), significantly reduced swelling compared to control mice that had not been exposed to tungstate was not observed.
Dose descriptor:
NOAEL
Effect level:
2 mg/kg bw/day (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: see 'Remark'
Conclusions:
It was shown in separate DTH experiments that there was significantly reduced footpad swelling in hosts that received the 20 and 200 mg/kg/day tungstate doses. Lower doses (i.e. 2 mg/kg/day; NOAEL) did not result in significant decreases in swelling.

Taken together, the DTH data from the current study indicate tungstate exposure could result in suppression of adaptive immunity. The data indicates little to no effect of tungstate at any dose on groups of mice exposed only to tungstate without being co-exposed to an immune stressor such as NP-O-Su (4-hydroxy-3-nitrophenylacetic acid active ester)
Executive summary:

No fertility, reproductive, or developmental toxicity data of sufficient quality are available for tungsten (target substance). However, reproductive toxicity data are available for sodium tungstate (source substance), which are used for read-across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read-across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read-across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach in the Category section of this IUCLID submission or Annex 3 in the CSR. 

Data source

Reference
Reference Type:
publication
Title:
Unnamed
Year:
2014

Materials and methods

Test guideline
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 415 [One-Generation Reproduction Toxicity Study (before 9 October 2017)]
GLP compliance:
yes
Limit test:
no
Justification for study design:
SPECIFICATION OF STUDY DESIGN FOR EXTENDED ONE-GENERATION REPRODUCTION TOXICITY STUDY WITH JUSTIFICATIONS [please address all points below]:

- Basis for dose level selection : Doses of tungstate in the two studies were selected based on previous work that used similar doses in rats (McInturf et al, 2011).
- Exclusion of extension of Cohort 1B
- Exclusion of developmental neurotoxicity Cohorts 2A and 2B
- Inclusioncof developmental immunotoxicity Cohort 3
- Route of administration : Drinking water
- Other considerations, eg on choice of species, strain, vehicle and number of animals [if applicable]

Test material

Constituent 1
Chemical structure
Reference substance name:
Disodium wolframate
EC Number:
236-743-4
EC Name:
Disodium wolframate
Cas Number:
13472-45-2
Molecular formula:
Na2O4W
IUPAC Name:
Disodium dioxido(dioxo)tungsten
Test material form:
solid: crystalline
Specific details on test material used for the study:
SOURCE OF TEST MATERIAL
- Source and lot/batch No.of test material: Sigma, St. Louis, MO

Test animals

Species:
mouse
Strain:
C57BL
Remarks:
C57BL6
Details on species / strain selection:
C57BL6 Mice were obtained from Charles River Laboratories (Wilmington, MA).
Sex:
male/female
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Charles River Laboratories (Wilmington, MA)
- Age at study initiation: 8–12-week-old
- Weight at study initiation: 19–22 g
- Housing: Mice were housed singly during the course of the study and pair mated for breeding. After confirmation of pregnancy, males were removed.
- Diet (eg ad libitum): All animals had ad libitum access to a low molybdenum diet
- Water (eg ad libitum): All animals had ad libitum access to filtered water
- Acclimation period: Mice were allowed to acclimatize to the animal facility for 7 days before commencement of the experimental phase
ENVIRONMENTAL CONDITIONS
- Temperature (°C): Temperature-controlled room at 22 ⁰C.
- Photoperiod (hrs dark / hrs light): During the course of the experiment, animals had a 12 h day/night cycle.

Administration / exposure

Route of administration:
oral: drinking water
Vehicle:
water
Details on exposure:
PREPARATION OF DOSING SOLUTIONS: Water bottles were changed 2–3 times weekly, always using water from the source and a 1 M sodium tungstate stock supply
Details on mating procedure:
Mice were housed singly during the course of the study and pair mated for breeding. After confirmation of pregnancy, males were removed
Analytical verification of doses or concentrations:
not specified
Details on analytical verification of doses or concentrations:
The tungstate in the water bottles was administered to calculate approximate ingested doses of tungstate based on an estimated water consumption of 4.5 ml/mouse/day. Body weights were recorded weekly and quantities of tungstate adjusted appropriately in water bottles. Water consumption was determined using graduated water bottles. Measurements were made daily of water consumed by mice.
Duration of treatment / exposure:
In the one-gen exposure, mice were exposed to tungstate for 90 days prior to mating (Weeks 1–12). The next 7 weeks comprised gestation and weaning (Weeks 13–19). After pups (F1) were weaned, the parents (P) were necropsied as described, and 9 weeks after initiation of the study. The F1 generation was exposed to tungstate for a further 90 days after weaning and then necropsied. During all phases of the onegen study mice were kept on the appropriate tungstate dose.
Frequency of treatment:
Daily via drinking water.
Details on study schedule:
- Parental (P0) mice exposed for 12 weeks before mating, followed by gestation, birth, and weaning.
- F1 mice (offspring) exposed after weaning for 12 weeks.
Doses / concentrationsopen allclose all
Dose / conc.:
0 mg/kg bw/day (nominal)
Dose / conc.:
2 mg/kg bw/day (nominal)
Dose / conc.:
62.5 mg/kg bw/day (nominal)
Dose / conc.:
125 mg/kg bw/day (nominal)
Dose / conc.:
200 mg/kg bw/day (actual dose received)
No. of animals per sex per dose:
There were eight mice per group
Control animals:
yes, concurrent vehicle
Details on study design:
- Dose selection rationale: Selected based on previous work that used similar doses in rats (McInturf et al., 2011).

- Rationale for animal assignment (if not random):
- Fasting period before blood sampling for clinical biochemistry:
- Other:

Examinations

Parental animals: Observations and examinations:
CAGE SIDE OBSERVATIONS: No data

DETAILED CLINICAL OBSERVATIONS: No data

BODY WEIGHT: Yes
- Time schedule for examinations: Body weights were weekly monitored during the course of exposure.

WATER CONSUMPTION AND COMPOUND INTAKE (if drinking water study): Yes
- Time schedule for examinations: Measurements were made daily of water consumed by mice.
Litter observations:
PARAMETERS EXAMINED
The following parameters were examined in [F1] offspring: number of live, births, litter size, or sex ratio.

ASSESSMENT OF DEVELOPMENTAL IMMUNOTOXICITY: The focus of these studies was to determine changes in immunological populations. Therefore, we performed complete blood counts and measured hematological parameters from the blood of animals at necropsy. With two exceptions (monocyte%
and red blood cell distribution width):
- Immune activation with Staphylococcal enterotoxin B (SEB) to induce immune response) and necropsy (spleen & blood)
- Flow cytometry: FSC vs SSC
- ELISA for or IL-6, TNFa, IL-10, and IFNg.
Statistics:
All statistical tests were performed with Systat (v11 or v13, Systat Software Inc., Chicago, IL). Statistical significance was assumed at p50.05. Comparisons between treatments (tungstate dose, immune challenge) were performed as two-way analysis of variance (ANOVA). Differences in weights were determined by repeated measures analysis of variance (RM-ANOVA). When assumptions of normality and/or equal variances were violated, non-parametric Kruskal-Wallis tests were performed. Specific post-hoc tests were performed and multiple test corrections performed when appropriate.

Results and discussion

Results: P0 (first parental generation)

General toxicity (P0)

Clinical signs:
not specified
Mortality:
not specified
Body weight and weight changes:
no effects observed
Description (incidence and severity):
We found no statistically significant changes in body weight due to any tungstate dose levels. The 200 mg/kg/day males in the P generation show a consistent trend towards decreased weights. This observation, however, was not statistically significant.
Food consumption and compound intake (if feeding study):
not specified
Food efficiency:
not specified
Water consumption and compound intake (if drinking water study):
no effects observed
Description (incidence and severity):
No significant changes in water consumption due to the quantity of tungstate present in the water
Ophthalmological findings:
not specified
Haematological findings:
no effects observed
Description (incidence and severity):
Other parameters suggest a dose-dependent trend (eg hematocrit); however, these trends were not statistically significant. There were no significant alterations in overall quantities of hematological populations.
Clinical biochemistry findings:
not specified
Urinalysis findings:
not specified
Behaviour (functional findings):
not specified
Immunological findings:
effects observed, treatment-related
Organ weight findings including organ / body weight ratios:
not specified

Reproductive function / performance (P0)

Reproductive performance:
no effects observed
Description (incidence and severity):
No statistically significant changes were observed in the number of live births, litter size, or sex ratio at any dose of tungstate tested.

Effect levels (P0)

open allclose all
Key result
Dose descriptor:
NOAEL
Effect level:
200 mg/kg bw/day (nominal)
Based on:
test mat.
Sex:
male
Basis for effect level:
body weight and weight gain
Key result
Dose descriptor:
NOEL
Effect level:
200 mg/kg bw/day (nominal)
Based on:
test mat.
Sex:
female
Basis for effect level:
reproductive performance
Key result
Dose descriptor:
NOEL
Effect level:
125 mg/kg bw/day (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: immunotoxicity

Target system / organ toxicity (P0)

Key result
Critical effects observed:
no

Results: F1 generation

General toxicity (F1)

Clinical signs:
not specified
Mortality / viability:
not examined
Haematological findings:
no effects observed
Description (incidence and severity):
The red blood cell distribution width (RDW) was higher in the P generation vs the F1 pups (p<0.004).

Developmental immunotoxicity (F1)

Developmental immunotoxicity:
effects observed, treatment-related
Description (incidence and severity):
FLOW CYTOMETRY:
With two exceptions (monocyte% and red blood cell distribution width), there were no statistical differences in the data between P and F1. There were no significant changes in any of the parameters measured in response to tungstate, with the exception of the percent monocytes (%MO). There were fewer lymphocytes in the F1 generation compared to the P generation (p<0.023), but this was not dose related. Furthermore, any statistically significant differences between the innate or immune responses of P and F1 mice were not noted.

The percentage of monocytes was dose-dependently lower at higher concentrations when compared to control (p<0.003).
Tungstate-dependent changes in the one-gen exposures were only observed in the spleens of animals. Furthermore, any statistically significant differences between the innate or immune responses of P and F1 mice were not noted.
The F1 controls in the SEB-treated groups were 7.20±0.76% and 2.85±0.53% for the 200 mg/kg/day tungstate groups (p<0.001). No statistically significant differences were noted in the overall quantity of CD3+ CD4+TH cells. Additionally, there were no significant effects of generation on the suppression of CD71+ TH cells in SEB-treated mice exposed to tungstate.
There were no statistically significant differences in quantities of CD3+ CD8+ cells in the one-gen study. The F1 mice CD3+ CD8+ CD71+ were 6.33±0.49% for the controls and 2.52±0.25% in the 200 mg/kg/day tungstate group (p<0.001).

CYTOKINES
Although not statistically significant, the F1 mice had an overall reduced IFN-g response, especially at the 62.5 mg/kg/day dose, compared to their parents.

Effect levels (F1)

Key result
Dose descriptor:
NOEL
Generation:
F1 (cohort 3)
Effect level:
125 mg/kg bw/day (nominal)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
developmental immunotoxicity

Target system / organ toxicity (F1)

Key result
Critical effects observed:
no

Overall reproductive toxicity

Key result
Reproductive effects observed:
no

Applicant's summary and conclusion

Conclusions:
- Reduction in the quantity of CD71+ helper and cytotoxic T-cells present in the high-dose tungstate exposure groups (200 mg/kg/day) when challenged with SEB.
- A consistent reduced level of CD71 on SEB-treated cells in the 200 mg/kg/day tungstate group was noted. Because CD71 reductions due to tungstate were only seen in SEB-challenged mice, this would suggest that reduced CD71 levels of TH and TCTL cells in the spleens of SEB-treated mice was a result of either suppressed cell cycling or, potentially, alterations to apoptosis of these cells.
- Tungstate exposure could result in suppression of adaptive immunity. Data indicates little to no effect of tungstate at any dose on groups of mice exposed only to tungstate without being co-exposed to an immune stressor (Staphylococcal enterotoxin B, SEB).
Executive summary:

No fertility, reproductive, or developmental toxicity data of sufficient quality are available for tungsten (target substance). However, reproductive toxicity data are available for sodium tungstate (source substance), which are used for read-across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read-across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read-across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach in the Category section of this IUCLID submission or Annex 3 in the CSR.