Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-490-9 | CAS number: 8052-42-4 A very complex combination of high molecular weight organic compounds containing a relatively high proportion of hydrocarbons having carbon numbers predominantly greater than C25 with high carbon-to-hydrogen ratios. It also contains small amounts of various metals such as nickel, iron, or vanadium. It is obtained as the non-volatile residue from distillation of crude oil or by separation as the raffinate from a residual oil in a deasphalting or decarbonization process.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Hydrolysis:
Hydrolysis is a reaction in which a water molecule or hydroxide ion substitutes for another atom or group of atoms present in a chemical resulting in a structural change of that chemical. Potentially hydrolyzable groups include alkyl halides, amides, carbamates, carboxylic acid esters and lactones, epoxides, phosphate esters, and sulfonic acid esters (Neely and Blau, 1985). The lack of a suitable leaving group renders compounds resistant to hydrolysis.
The chemical constituents that comprise the bitumen category consist entirely of carbon and hydrogen and do not contain hydrolyzable groups. As such, they have a very low potential to hydrolyze. Therefore, this degradative process will not contribute to their removal from the environment.
The available data and available weight of evidence demonstrate that bitumen is resistant to hydrolysis because it lacks a functional group that is hydrolytically reactive. Therefore, this fate process will not contribute to a measurable degradative loss of these substances from the environment. Further testing is not required under Annex XI, section 1.2
Phototransformation in air:
Standard tests for atmospheric oxidation half-lives are intended for single substances and are not appropriate for this complex substance. However, this endpoint is characterized using quantitative structure property relationships for representative hydrocarbon structures that comprise the hydrocarbon blocks used to assess the environmental risk of this substance with the PETRORISK model (see library tab in PETRORISK spreadsheet attached to Section 13).
Phototransformation in water and soil:
The direct photolysis of an organic molecule occurs when it absorbs sufficient light energy to result in a structural transformation. The absorption of light in the ultra violet (UV) -visible range, 110-750 nm, can result in the electronic excitation of an organic molecule. The stratospheric ozone layer prevents UV light of less than 290 nm from reaching the earth's surface. Therefore, only light at wavelengths between 290 and 750 nm can result in photochemical transformations in the environment. A conservative approach to estimating a photochemical degradation rate is to assume that degradation will occur in proportion to the amount of light wavelengths >290 nm absorbed by the molecule. This substance contains hydrocarbon molecules that absorb UV light below 290 nm, a range of UV light that does not reach the earth's surface. Therefore, this substance does not have the potential to undergo photolysis in water and soil, and this fate process will not contribute to a measurable degradative loss of this substance from the environment.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.