Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
Reaction mass of sodium(E)-6,7'-carbonylbis(azanediyl)bis(4-hydroxy-3-((E)-phenyldiazenyl) naphthalene-2-sulfonate) and disodium 3-[(4-acetamidophenyl)azo]-4-hydroxy-7-[[[[5-hydroxy-6-(phenylazo)-7-sulphonato-2-naphthyl]amino]carbonyl]amino]naphthalene-2-sulphonate and disodium 7,7'-(carbonyldiimino)bis[4-hydroxy-3-(phenylazo)naphthalene-2-sulphonate]
EC number: 939-268-7 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Stability: thermal, sunlight, metals
Administrative data
Link to relevant study record(s)
Description of key information
Decomposition from 200 °C
Additional information
Thermo gravimetric analysis (TGA) - OECD 113
Justification for classification or non-classification
The purpose of the methods is to obtain a preliminary judgement of the stability of a substance with respect to heat and air in order to provide guidance in the performance of other tests. The thermogravimetric analysis (TGA) determination gives information about decomposition reactions involving the elimination of volatile decomposition products.
The thermal stability of the substance is a relevant parameter specially for the explosive potential and can give indication about if and how proceed with further specific investigations.
During the Direct Red 023 Reaction mass thermal investigation four losses of weight were observed: the first one was attributed to the water evaporation, the others losses of weight were attributed to the thermal decomposition of the test substance. At the end of analysis (700 °C) about the 19 percent of the substance weight was lost. The Differential Scanning Calorimetry analysis performed in order to determine the melting/boiling point shows that the energy involved in the decomposition does not give reason of concern related to an explosive potential.
These consideration within those outlined in the explosiveness enpoint, lead to the conclusion that a classification for explosiveness of Direct Red 023 Reaction mass is not proposed, according to the CLP Regulation (EC 1272/2008).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.