Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 629-661-9 | CAS number: 83834-59-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Concerning the stability of Ethylhexyl Methoxycinnamate, one study on hydrolysis and one study on phototransformation in water are available. As a consequence, these studies were chosen as key studies.
The study on hydrolysis as a function of pH consisted of two separate tests, the first test was under flow-through conditions, the second one in a closed system. This second closed system test was performed because the results with the flow-through test were unsatisfactory. The half-life (hydrolysis) of Ethylhexyl Methoxycinnamate was found to be > 1 year at pH's 4, 7 and 9 at 20 °C. The degradation products that were formed could not be successfully identified, as both TLC methods (straight phase and reversed phase) did not confirm each other.
In the study examining the phototransformation in water, it was concluded that according to the classification scheme by Mensink, trans-2-Ethylhexyl 4-methoxycinnamate can be regarded as being very rapidly degradable when transition to cis-2-Ethylhexyl 4-methoxycinnamate is taken into account. When trans-cis transition is left out, 2-Ethylhexyl 4-methoxycinnamate can be classified as fairly degradable with a DT50 in the range of ca. 5 - 9 days. The main photolytic degradation products are p-methoxycinnamate (34.8 % applied initial substance), unidentifiable substances M1 and M3 (according to TLC method I) or MA, MB and MD (according to TLC method II). The quantum yield for the trans-to-cis conversion was 0.0021. The quantum yield for the degradation into metabolites appeared to be in the range of 1*10^-5 to 2*10^-5.
It is concluded that hydrolysis is not a relevant degradation process, whereas the test substance is fairly degradable by phototransformation in water.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.