Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 204-112-2 | CAS number: 115-86-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Developmental toxicity / teratogenicity
Administrative data
- Endpoint:
- developmental toxicity
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Guideline study.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 015
- Report date:
- 2015
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 414 (Prenatal Developmental Toxicity Study)
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.31 (Prenatal Developmental Toxicity Study)
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.3700 (Prenatal Developmental Toxicity Study)
- GLP compliance:
- yes (incl. QA statement)
- Limit test:
- no
Test material
- Reference substance name:
- Triphenyl phosphate
- EC Number:
- 204-112-2
- EC Name:
- Triphenyl phosphate
- Cas Number:
- 115-86-6
- Molecular formula:
- C18H15O4P
- IUPAC Name:
- triphenyl phosphate
- Test material form:
- solid: pellets
- Details on test material:
- - Name of test material (as cited in study report): Triphenyl phosphate
- Physical state: White pellets
- Analytical purity: 99.5%
- Lot/batch No.: CH13/085
- Stability under test conditions: stable
- Storage condition of test material: Room temperature
Constituent 1
Test animals
- Species:
- rabbit
- Strain:
- New Zealand White
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Charles River, Chatillon sur Chalaronne, France
- Nulliparous, non-pregnant and untreated females were used at inititation of the study.
- Age at delivery: 17-19 weeks; mating with adult and proven fertile males at WIL Research
- Fasting period before study: none
- Housing: individually
- Diet: ad libitum
- Water: ad libitum
Administration / exposure
- Route of administration:
- oral: gavage
- Vehicle:
- CMC (carboxymethyl cellulose)
- Remarks:
- 1% aqueous solution
- Details on exposure:
- PREPARATION OF DOSING SOLUTIONS:
The required amount of test substance was grinded to a fine powder in a grinding mill. Subsequently, the powder was suspended in the vehicle. Formulations (w/w) were prepared daily within 6 hours prior to dosing and were homogenized to a visually acceptable level.
VEHICLE
- Justification for use and choice of vehicle (if other than water): 1% aqueous carboxymethyl cellulose was chosen based on trial formulations performed at WIL.
- Amount of vehicle (if gavage): 5 ml/kg bw - Analytical verification of doses or concentrations:
- yes
- Details on analytical verification of doses or concentrations:
- Analyses were conducted on a single occasion during the treatment phase (26 November 2014), according to a validated method (Project 506608). Samples of formulations were analyzed for homogeneity (highest and lowest concentration) and accuracy of preparation (all concentrations). Stability in vehicle over 6 hours at room temperature was also determined (lowest concentration only).
- Details on mating procedure:
- After acclimatization, females were housed with sexually mature males (1:1) in special automatic mating cages i.e. with synchronized timing to initiate the nightly mating period, until evidence of copulation was observed. This system reduced the variation in the copulation times of the different females. The females were removed and housed individually if:
a) A copulation plug was observed, and / or
b) The daily vaginal smear was sperm positive.
The day of mating was designated day 0 post coitum.
Male rats of the same source and strain were used only for mating. These male rats are in the possession of RCC and were not considered part of the test system. The fertility of these males had been proven and was continuously monitored. - Duration of treatment / exposure:
- Day 6 - 28 post coitum inclusive
- Frequency of treatment:
- once daily
- Duration of test:
- All animals surviving to the end of the observation period (Day 29 post-coitum) and the female with premature delivery were euthanised by intravenous injection of pentobarbital (approx. 1 mL/kg Euthasol®20%) and subjected to an external, thoracic and abdominal examination, with special attention being paid to the reproductive organs and the fetuses.
- No. of animals per sex per dose:
- Each group consisted of 22 mated female rabbits.
- Control animals:
- yes, concurrent vehicle
- Details on study design:
- Rationale for dose levels
Dose levels were selected based on the results of a dose range finding study (Project 505943; see APPENDIX 6). In this latter study dose levels of 83, 250 and 750 mg/kgmg/kg bw/day were tested. Due to severe toxicity, all females at 750 mg/kgmg/kg bw/day and one female at 250 mg/kgmg/kg bw/day had to be euthanized before scheduled necropsy. Another female at 250 mg/kgmg/kg bw/day was noted with clinical signs (pale appearance on Days 22 and 23 post-coitum and reduced production of (pale) faeces from Day 17 post-coitum). She had no food consumption from Days 16-23 post-coitum and body weight loss (up to -6%). No signs of toxicity were noted for the remaining females at 250 mg/kgmg/kg bw/day and all females at 83 mg/kgmg/kg bw/day. Based on these data, dose levels of 32, 80 and 200 mg/kgmg/kg bw/day were selected for the present prenatal developmental toxicity study.
Examinations
- Maternal examinations:
- Females were checked daily for the presence of clinical signs. Food consumption and body weight were determined at periodic intervals.
All animals surviving to Day 29 post-coitum were subjected to an examination post-mortem and external, thoracic and abdominal macroscopic findings were recorded. A laparohysterectomy was performed on each surviving female of the groups. - Ovaries and uterine content:
- The uteri, placentae and ovaries were examined, and the numbers of fetuses, early and late resorptions, total implantations and corpora lutea were recorded. Gravid uterine weights were recorded, and net body weights and net body weight changes were calculated.
- Fetal examinations:
- External, visceral, and skeletal findings were recorded as developmental variations (alterations in anatomic structure that are considered to have no significant biological effect on animal health or body conformity and/or represent slight deviations from normal) or malformations (those structural anomalies that alter general body conformity, disrupt or interfere with normal body function, or may be incompatible with life).
External:
Each viable fetus was examined in detail and weighed. All live fetuses were euthanized by administration of approximately 0.3 mL (= 60 mg) of sodium pentobarbital (Euthasol® 20%; AST Farma B.V., Oudewater, The Netherlands) into the oral cavity using a small flexible plastic or metal feeding tube. Nonviable fetuses (the degree of autolysis was minimal or absent) were examined and weighed. For late resorptions a gross external examination was performed.
Visceral (Internal):
All fetuses were examined for visceral anomalies by dissection in the fresh (non-fixed) state. The thoracic and abdominal cavities were opened and dissected using a technique described by Stuckhardt and Poppe (Ref. 1). This examination included the heart and major vessels. Fetal kidneys were examined and graded for renal papillae development as described by Woo and Hoar. The sex of all fetuses was determined by internal examination.
The heads were removed from approximately one-half of the fetuses in each litter and placed in Bouin's solution (Klinipath, Duiven, The Netherlands). Tissues were then transferred to a 70% aqueous ethanol (Klinipath, Duiven, The Netherlands) for subsequent processing and soft-tissue examination of all groups using the Wilson sectioning technique. After examination, the tissues were stored in 10% formalin. The heads from the remaining one-half of the fetuses in each litter of all groups were examined by a mid-coronal slice.
All carcasses, including the carcasses without heads, were eviscerated, skinned and fixed in identified containers containing 96% aqueous ethanol (Klinipath, Duiven, The Netherlands) for subsequent examination of skeletons.
Skeletal:
The eviscerated fetuses from all groups, following fixation in 96% aqueous ethanol, were macerated in potassium hydroxide (Merck, Darmstadt, Germany) and stained with Alizarin Red S (Klinipath, Duiven, The Netherlands) by a method similar to that described by Dawson. Subsequently, the skeletal examination was done on all fetuses.
The specimens of all groups will be archived in glycerin (Klinipath, Duiven, The Netherlands) with bronopol (Alfa Aesar, Karlsruhe, Germany) as preservative.
A few bones were not available for skeletal examination because they were accidentally damaged or lost during processing. The missing bones were listed in the raw data; evaluation by the fetal pathologist and study director determined there was no influence on the outcome of the individual or overall skeletal examinations, or on the integrity of the study as a whole. - Statistics:
- The following statistical methods were used to analyze the data:
- If the variables could be assumed to follow a normal distribution, the Dunnett-test (many-to-one t-test) based on a pooled variance estimate was applied for the comparison of the treated groups and the control group.
- The Steel-test (many-to-one rank test) was applied if the data could not be assumed to follow a normal distribution.
- The Fisher Exact-test was applied to frequency data.
- The Mann Whitney test was used to compare mean litter proportions (percent of litter) of the number of viable and dead fetuses, early and late resorptions, total resorptions, pre- and post-implantation loss, and sex distribution.
- Mean litter proportions (percent per litter) of total fetal malformations and developmental variations (external, visceral and skeletal), and each particular external, visceral and skeletal malformation or variation were subjected to the Kruskal-Wallis nonparametric ANOVA test to determine intergroup differences. If the ANOVA revealed statistically significant (p<0.05) intergroup variance, Dunn’s test was used to compare the compound-treated groups to the control group.
All tests were two-sided and in all cases p < 0.05 was accepted as the lowest level of significance. Group means were calculated for continuous data and medians were calculated for discrete data (scores) in the summary tables. Test statistics were calculated on the basis of exact values for means and pooled variances. Individual values, means and standard deviations might be rounded off before printing. Therefore, two groups might display the same printed means for a given parameter, yet display different test statistics values.
No statistics were applied for data on maternal survival, pregnancy status, group mean numbers of dead fetuses, early and late resorptions, and pre- and post-implantation loss. - Indices:
- For each litter the following calculations were performed:
Pre-implantation loss (%) = (number of corpora lutea - number of implantation sites) divided by the number of corpora lutea x 100
Post-implantation loss (%) = (number of implantation sites - number of live fetuses) divided by the number of implantation sites x 100
The fetal developmental findings were summarized by: 1) presenting the incidence of a given finding both as the number of fetuses and the number of litters available for examination in the group; and 2) considering the litter as the basic unit for comparison, calculating the number of affected fetuses as a mean litter proportion on a total group basis, where:
Viable fetuses affected/litter (%) = number of viable fetuses affected/litter divided by the number of viable fetuses/litter x 10 - Historical control data:
- available
Results and discussion
Results: maternal animals
General toxicity (maternal animals)
- Clinical signs:
- no effects observed
- Mortality:
- no mortality observed
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- no effects observed
- Gross pathological findings:
- no effects observed
Maternal developmental toxicity
- Number of abortions:
- no effects observed
- Pre- and post-implantation loss:
- no effects observed
- Total litter losses by resorption:
- no effects observed
- Dead fetuses:
- no effects observed
- Changes in pregnancy duration:
- no effects observed
- Description (incidence and severity):
- Migrated Data from removed field(s)
Field "Effects on pregnancy duration" (Path: ENDPOINT_STUDY_RECORD.DevelopmentalToxicityTeratogenicity.ResultsAndDiscussion.ResultsMaternalAnimals.MaternalDevelopmentalToxicity.EffectsOnPregnancyDuration): no effects observed
Field "Description (incidence and severity)" (Path: ENDPOINT_STUDY_RECORD.DevelopmentalToxicityTeratogenicity.ResultsAndDiscussion.ResultsMaternalAnimals.MaternalDevelopmentalToxicity.DescriptionIncidenceAndSeverityEffectsOnPregnancyDuration): one femaled in the high dose group delivered early - Changes in number of pregnant:
- no effects observed
- Details on maternal toxic effects:
- Maternal toxic effects:no effects
Details on maternal toxic effects:
No toxicologically significant changes were noted in any of the maternal parameters investigated in this study (i.e. mortality, clinical signs, body weights, food consumption, and macroscopic examination) in the tested doses of up to and including 200 mg/kg bw/day. Higher doses were shown to induce strong toxicity (mortality at 750 and 250 mg/kg bw/day) in the dose range finding studies and were thus not included in the main study.
Effect levels (maternal animals)
open allclose all
- Dose descriptor:
- NOAEL
- Effect level:
- >= 200 mg/kg bw/day (actual dose received)
- Basis for effect level:
- other: maternal toxicity
- Dose descriptor:
- NOAEL
- Effect level:
- >= 200 mg/kg bw/day (actual dose received)
- Basis for effect level:
- other: developmental toxicity
Maternal abnormalities
- Abnormalities:
- no effects observed
Results (fetuses)
- Fetal body weight changes:
- no effects observed
- Description (incidence and severity):
- Migrated Data from removed field(s)
Field "Fetal/pup body weight changes" (Path: ENDPOINT_STUDY_RECORD.DevelopmentalToxicityTeratogenicity.ResultsAndDiscussion.ResultsFetuses.FetalPupBodyWeightChanges): no effects observed - Reduction in number of live offspring:
- no effects observed
- Changes in sex ratio:
- no effects observed
- Changes in litter size and weights:
- no effects observed
- External malformations:
- no effects observed
- Skeletal malformations:
- no effects observed
- Visceral malformations:
- effects observed, non-treatment-related
- Description (incidence and severity):
- Treatment at 200 mg/kg bw/day resulted in a higher incidence of lungs with absent accessory lung lobe(s). While in the control and mid dose groups only one fetus (A015-03 and A048-02, respectively) each was noted with this malformation, the incidence increased to 3(3) fetuses (litter) in the high dose
group (A067-03, A069-07, A074-04). This resulted in a litter proportion of 1.6% which was at the upper limit of the available historical control range for this finding (MAX: 1.7%). In addition, 2 dead fetuses from litter 78 that were delivered preterm on Day 29 post-coitum (A078-03 and A078-05) had absent
accessory lung lobes. The total litter proportion of fetuses at 200 mg/kg bw/day with absent accessory lung lobe(s) thus increased from 1.6% (given in Table 1.15; APPENDIX 1) to 2.4%. This litter proportion was clearly above the range of available historical control data. Lungs with absent accessory lung lobe(s) is a more common finding in New Zealand White rabbits. The historical control data from this laboratory consisted of 17 developmental studies with this strain in which in total 2787 (315) control fetuses (litters) were examined. In 10 of these studies fetuses with absent accessory lung lobe(s) were found, i.e. in total 20 (17) control fetuses (litter). The highest incidence was 3(3) fetuses (litter) seen in 2 studies. As in the high dose group of the present study the incidence of lungs with absent accessory lobe(s) was only slightly higher with in total 5(4) fetuses (litter) including the 2 fetuses from the preterm delivered litter, it was considered as an incidence finding and thus not to be toxicologically relevant. - Details on embryotoxic / teratogenic effects:
- Details on embryotoxic / teratogenic effects:
There were no developmental findings up to and including 200 mg/kg bw/day that were considered to be toxicologically relevant.
No toxicologically relevant changes were noted in any of the developmental parameters investigated in this study (i.e. litter size, sex ratio, fetal body weights, external, visceral and skeletal developmental malformations or variations, visceral variations). Higher doses were shown to induce strong toxicity (mortality at 750 and 250 mg/kg bw/day) in the dose range finding studies and were thus not included in the main study.
Effect levels (fetuses)
- Dose descriptor:
- NOAEL
- Effect level:
- 200 mg/kg bw/day (actual dose received)
- Sex:
- male/female
- Basis for effect level:
- other: No toxicologically relevant changes were noted in any of the developmental parameters investigated in this study.
Fetal abnormalities
- Abnormalities:
- not specified
Overall developmental toxicity
- Developmental effects observed:
- no
Any other information on results incl. tables
Accuracy, homogeneity and stability of formulations were demonstrated by analyses.
Applicant's summary and conclusion
- Executive summary:
Triphenyl phosphate was tested in a prenatal developmental toxicity study in pregnant New Zealand rabbits following OECD TG 414. The test item was administered once daily by oral gavage from Days 6 to 28 post-coitum at doses of 0, 32, 80 and 200 mg/kg bw/day in 1% aqueous carboxymethyl cellulose. The doses were chosen on the basis of dose range finding studies that showed strong toxicity (including mortality) at 750 and 250 mg/kg bw/day.
Females were checked daily for the presence of clinical signs. Food consumption and body weight were determined at periodic intervals. Formulations prepared on one day during treatment were analyzed for accuracy, homogeneity and stability.
All animals surviving to Day 29 post-coitum were subjected to an examination post-mortem and external, thoracic and abdominal macroscopic findings were recorded. A laparohysterectomy was performed on each surviving female of the groups. The uteri, placentae and ovaries were examined, and the numbers of fetuses, early and late resorptions, total implantations and corpora lutea were recorded. Gravid uterine weights were recorded, and net body weights and net body weight changes were calculated. The fetuses were weighed, sexed and examined for external, visceral and skeletal malformations and developmental variations. All live fetuses were euthanized. One half of the fetuses were decapitated and the heads were fixed in Bouin’s fixative. All fetuses were dissected and examined for visceral anomalies and subsequently fixed in 96% aqueous ethanol. The fetuses of all groups were stained with Alizarin Red S for skeletal examinations.
No toxicologically significant changes were noted in any of the maternal parameters investigated in this study (i.e. mortality, clinical signs, body weights, food consumption, and macroscopic examination). No toxicologically relevant changes were noted in any of the developmental parameters investigated in this study (i.e. litter size, sex ratio, fetal body weights, external, visceral and skeletal developmental malformations or variations, visceral variations).
Based on the results of this prenatal developmental toxicity study, both the maternal and developmental No Observed Adverse Effect Levels (NOAELs) for triphenyl phosphate were established as being at least 200 mg/kg bw/day, since no adverse effect was observed. No higher doses could be tested in pregnant rabbits based on dose range finding studies.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.