Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 220-552-8 | CAS number: 2809-21-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to aquatic algae and cyanobacteria
Administrative data
Link to relevant study record(s)
Description of key information
Endpoint waived on the basis that the study is technically unfeasible. The essential nutrients present in the test medium will be complexed by the phosphonates and as a result the test organisms will be exposed to phosphonate-metal complexes. Adverse effects seen in the studies are therefore likely to be theresult of nutrient complexation rather than a reflection of the true toxicity of the test substance
Key value for chemical safety assessment
Additional information
Several algal studies are available with HEDP acids and salts. The effects of HEDP observed in tests with algae are likely to be a consequence of nutrient availability limitations caused by complexation and not true toxicity (see the discussion below). The test results that are available cannot therefore be taken into account to assess the toxicity of HEDP. They have been included as supporting information to show the variability in determined EC50 and NOEC values and to illustrate the issues with testing substances that exhibit chelating behaviour. The available evidence suggests that toxic effects observed in the tests are a consequence of complexation of essential nutrients and not of true toxicity.
A study with DTPMP (TNO, 1996) has also been included as supporting evidence that observed effects are due to the consequence of complexation of essential nutrients (see below for details). The test demonstrates effects of iron-DTPMP complex to algae, not any effects of the free substance.
It is therefore concluded that the nutrient complexing behaviour of phosphonate substances renders testing to determine their intrinsic toxicity to algae impractical. However, there is no evidence of severe toxicity from metal complexes of the ligands.
Information requirement: Growth inhibition study with algae / cyanobacteria
Reason: study technically not feasible
Justification: In accordance with Section 2 of REACH Annex XI, the study does not need to be conducted because an assessment of the toxicity to aquatic algae and cyanobacteria is technically not possible due to the substance's complexing properties of essential nutrients present in the test media.
The effects of HEDP observed in tests with algae are likely to be a consequence of nutrient availability limitations caused by complexation and not true toxicity (see below). The test results that are available cannot therefore be taken into account to assess the toxicity of HEDP.
Nutrient complexation in algal test medium
It is a functional property of phosphonate substances that they form stable complexes (ligands) with metal ions. In algal toxicity tests essential nutrients will thus be bound to the phosphonates according to the Ligand binding model[1]. In algal growth medium some metals form strongly-bound complexes and others form weakly-bound ones. The phosphonates possess multiple metal-binding capacities, and pH will affect the number of binding sites by altering the ionisation state of the substance. However, the phosphonate ionisation is extensive regardless of the presence of metals (Girling et al. 2010).
The phosphonate-metal complexes may be very stable due to the formation of ring structures ("chelation"). This behaviour ensures that the phosphonic acids effectively bind and hold the metals in solution and renders them biologically less available As a result when a trace metal is complexed, its bioavailability is likely to be negligible (Girling et al. 2010, SIAR 2004). However, there is no evidence of severe toxicity from metal complexes of the ligands (Girling et al. 2010).
In algal growth inhibition tests, complexation of essential trace nutrients (including Fe, Cu, Co, and Zn) by phosphonate substances can lead to inhibition of cell reproduction and growth. Guidelines for toxicity tests with algae do not typically describe procedures for mitigating against this behaviour. For example the standard OECD Guideline 201, describing the algal growth inhibition test, only specifies that the “chelator content” should be below 1 mmol/l in order to maintain acceptable micronutrient concentrations in the test medium (SIAR 2004).
OECD guidance on the testing of difficult substances and mixtures (OECD, 2000) does include an annex describing “toxicity mitigation testing with algae for chemicals which form complexes with and/or chelate polyvalent metals”. The procedure is designed to determine whether it is the toxicity of the substance or the secondary effects of complexation that is responsible for any observed inhibition of growth. It involves testing the substance in its standard form and as its calcium salt in both standard algal growth medium and in medium with elevated CaCO3 hardness. Calcium is non-toxic to aquatic organisms and does not therefore influence the result of the test other than by competitively inhibiting the complexation of nutrients (SIAR 2004). By increasing the calcium content it may be that the nutrient metals are released from their complexed form although this may not always apply. The outcome of the test however only determines whether nutrient complexation is the cause of apparent toxicity and does not determine the inherent toxicity of the test substance for the reasons explained by the ligand binding model (Girling et al. 2010).
The magnitude of the stability constants depends on the properties of the metal and also of the ligand, in respect of the type of bonding, the three dimensional shape of the complexing molecule, and the number of complexing groups. The SIAR provides two tables of stability constants (effectively the strength of the complexation), one from Lacour et al. (1999) and one from Gledhill and Feijtel (1992). The Gledhill and Feijtel constants show a range of values for important divalent metal ions, cited as having been obtained from Monsanto internal reports (Owens, 1980). They show that ATMP, HEDP and DTPMP are strong complexing agents, with stability constant values ranging from 6 to 24 (Log10 values), as presented in the following table.
Table: Stability constants of phosphonates.
Type |
CAS Number |
Ca |
Cd |
Co |
Cu |
Hg |
Mg |
Ni |
Pb |
Zn |
Fe |
ATMP |
6419-19-8 |
7.6 |
12.7 |
18.4 |
17 |
21.7 |
6.7 |
15.5 |
16.4 |
14.1 |
approximately 25a |
ATMP-N-oxide-H |
15834-10-3 |
5.69 |
No data |
No data |
No data |
No data |
8.29 |
No data |
No data |
No data |
approximately 25a |
BHMT |
34690-00-1 |
6.1b |
12b |
18b |
20b |
22b |
6.3b |
20b |
13b |
19b |
approximately 25a |
DTPMP-H |
15827-60-8 |
6.7 |
9.7 |
17.3 |
19.5 |
22.6 |
6.6 |
19 |
8.6 |
19.1 |
approximately 25a |
HEDP |
2809-21-4 |
6.8 |
15.8 |
17.3 |
18.7 |
16.9 |
6.2 |
15.8 |
No data |
16.7 |
approximately 25a |
HMDTMP-H |
23605-74-5 |
5.4 |
13.3 |
18.9 |
19.8 |
21.9 |
6 |
20.6 |
17 |
19.5 |
approximately 25a |
EDTMP-H |
1429-50-1 |
9.6 |
21.4 |
15.8 |
24.3 |
31.8 |
10 |
20.2 |
23 |
21.1 |
approximately 25a |
Notes:
a - The complexation constant for phosphonates with iron (III) has been estimated by TNO (1996a) to be around log K = 25.
b – In the absence of experimental data, the stability constants of BHMT complexes has been estimated as the mean of the stability constants for each metal ion as measured with the structural analogues DTPMP and HMDTMP.
The complexation constant for phosphonates with iron (III) has been estimated by TNO (1996a) to be around log K = 25 (Girling et al. 2010).
All the algal toxicity studies available for phosphonates that have used standard and non-standard test conditions are presented in Girling et al. (2010). The studies show a large variation of toxicity for these substances sharing similar physico-chemical properties, with reliable EC50 varying from 0.1 to 450 mg/l.
The most refined study to date is the DTPMP study undertaken by TNO laboratories (1996) where concentrations of Cu, Co and Zn, were increased in the medium in line with their complexation strength (Cu up to 30 times, Co up to 30 times and Zn up to 300 times). When Fe was also added up to 300 times the guideline concentration no toxic effects were seen at the highest tested concentration (96h ErC50 equivalent to >10 mg/L). The increased amounts of Fe meant that complex iron-DTPMP bonds were formed, leaving the four nutrients free for algal uptake. The test demonstrates effects of iron-DTPMP complex to algae, not any effects of the free substance. The media concentration of Fe in the study is a highly unlikely scenario in a true environmental exposure, where Ca and Mg are likely to be more readily available but are also more weakly complexed. Where essential nutrients with stronger binding capacity are present, such as Cu, Co, Zn and Fe, the phosphonates will preferentially bind to these nutrients leaving the Ca and Mg free.
In Springborn Laboratories (1992) the mitigation procedures suggested in the OECD guidance on testing difficult substances (2000) were adopted when testing with HEDP acid (CAS 2809-21-4). The authors increased water hardness, complexed the test substance with CaCl2 and additionally performed a standard test which achieved 96 h EC50 values of 8.8, 3.5 and 12 mg/l respectively based on cell numbers. While the results are contrasting, the test does not reflect the true toxicity of the test substance since essential nutrients such as Co and Fe will, according to the ligand binding model and stability constants, continue to be preferentially bound and thus not be bioavailable to the algae. In the same manner results of a test carried out by HLS (2001) with elevated nutrient levels (x25 times) to counterbalance nutrient complexation by DTPMP-xNa (CAS 22042-96-2), will not be representative of inherent toxicity since the amounts of essential nutrients added will not be enough to counteract the phosphonates’ Fe and Co preferential complexation and as a result the nutrients will remain unavailable, inhibiting cell multiplication.
In addition SRI International (1984) tested the effects of EDTMP acid with a diatom and two species of cyanobacteria while increasing the nutrients in the test medium (x0.5 to x3 standard nutrient concentrations) to counteract the complexing effects of phosphonates. The general trend in the results supports that it is nutrient complexation that is the cause of the effects seen in the studies.The available evidence suggests that toxic effects observed in the tests are a consequence of complexation of essential nutrients and not of true toxicity. A study designed to ensure adequate levels of bioavailable nutrients with either of the phosphonates would result in the test substance being a phosphonates-Fe complex. Under conditions where iron is readily available to counteract the effects of nutrient complexation it is unlikely that the substance would have a negative effect on algal growth (Girling et al. 2010). The nutrient complexing behaviour of phosphonate substances therefore renders testing to determine their intrinsic toxicity to algae impractical.
Prolonged (14-day) studies show a decrease in toxicity with time. For example SRI International (1981) reports a 96 h ErC50 value of 0.42 and a 14 d ErC50 value of 27 mg/l when testing EDTMP acid with Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata) under standard conditions. This mitigation of effects adds to the evidence that it is not inherent toxicity that is causing the observed effects. This is thought to be attributable to the release of phosphorous by the gradual photodegradation of the phosphonic substances.
The interpretation of these data is also consistent with findings presented in the risk assessment being carried out for the chelating agent EDTA (CAS 60-00-4, Risk Assessment 2004), which is actually a weaker complexing agent than BHMT. It has been demonstrated that for EDTA it is not the absolute concentration, but rather the ratio of the EDTA concentration to that of the metal cations that is crucial to determining algal growth under the conditions of a toxicity test (EC, 2003).
The ability of iron to catalyse photodegradation of phosphonates means that the interpretation of all algal growth data is somewhat uncertain; this applies to the complexing agents discussed above including EDTA. However, limitation of micronutrient availability is considered to be a sufficiently generic phenomenon to explain effects observed in toxicity tests with substances that have the capacity to chelate cationic metals (Girling et al. 2010).
Available data on effects to algae and aquatic plants have been reviewed and discussed in the peer-reviewed and published SIAR (please refer to Section 4.1.3 of the SIAR). The conclusion(s) or critical result(s) from the SIAR are as follows:
A total of nine results from tests with three freshwater genera were available for consideration - two results from short-term (96-hour) tests and seven results from prolonged-term tests (14 to 18 days). None of the tests satisfied the requirements for achieving a reliability rating of 1 but two short-term and two prolonged-term tests were of an acceptable standard for assessing the toxicity of the substance. A reliable short-term (96-hour) test with Selenastrum capricornutum yielded an EC50, based on growth rate, of 3.0 mg/L. The lowest reliable NOEC determined in the prolonged tests was 13 mg/L (14-day), although there is evidence that the cultures did not remain in exponential growth during the phase of the test extending from 96 hours to 14 days. A 14-day LOEC of 1-10 mg/L and a 21-day NOEC of 3 mg/L were also determined in other tests, the reliability of which could not be assessed.
A detailed interpretation of the effects of nutrient complexation by, and photolytic release of phosphorus from, phosphonic acids on algal growth in toxicity studies is given in Annex V to the phosphonic acid SIARs (2004). The principle conclusions of the review are that:
· Algal growth may be stimulated by the presence of supplementary phosphorous released by the photolytic degradation of phosphonic acids.
· Algal growth may be inhibited by the complexation of micronutrients (trace metals) by phosphonic acids. This inhibition is an algistatic rather than algicidal effect. Under the standard test conditions used for most studies, the trace metals will be fully and strongly bound to the HEDP, with the strong possibility that their bioavailability will have been reduced considerably.
These two phenomena can occur at different stages in the course of the same algal test and at different exposure levels of the substance.
The ability of iron to catalyse photodegradation of phosphonates means that the interpretation of algal growth data can be somewhat uncertain; this applies to the complexing agents discussed above including EDTA. However, limitation of micronutrient availability is considered to be a sufficiently generic phenomenon to explain effects observed in toxicity tests with substances that have the capacity to chelate cationic metals.
Conclusions: Great care has to be exercised in interpreting the results of the algal tests carried out with phosphonic acids. The significant potential for nutrient complexation by phosphonates and/or release of phosphorous from degradation of phosphonates to respectively either inhibit or stimulate algal growth makes definitive interpretation difficult. However the available evidence suggests that toxic effects observed in tests with structurally analogous substances are a consequence of complexation of essential nutrients and not of true toxicity. These effects do not obey a classic dose response and as such extrapolation using an assessment factor is inappropriate. In addition, similar effects would not be anticipated in natural environmental waters. Therefore further algal toxicity studies are not recommended.
Please see the attached position paper which further discusses algal tests with phosphonate substances and presents arguments against further algal testing.
[1]Ligand’ is a general term used to describe a molecule that bonds to a metal; in the present case the phosphonate can form several bonds and the resultant chelated complex can be a very stable entity. It is possible that two molecules could bind to the individual metal, or that one molecule could bind two metals. In dilute solution a 1:1 interaction is the most probable. To simplify discussion, the ligand is considered to be able to form a strongly-bound complex with some metals, and a more weakly-bound complex with others.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.