Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 203-497-4 | CAS number: 107-51-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
PBT assessment
Administrative data
PBT assessment: overall result
- Name:
- octamethyltrisiloxane
- Type of composition:
- boundary composition of the substance
- State / form:
- liquid
- Reference substance:
- octamethyltrisiloxane
- PBT status:
- the substance is not PBT / vPvB
- Justification:
The substance does not meet the definitive criteria for persistence in the aquatic or soil compartments; it is not P or vP. The criteria for persistence (vP) in the sediment compartment are met.
The substance does not meet the definitive criteria for bioaccumulation based on weight of evidence determination using expert judgement; it is not B or vB
The substance does not meet the definitive criteria for toxicity; it is not T.
Registrants comment on aquatic toxicity
L3 is non-toxic to aquatic organisms.At the highest concentrations that could be tested in water (limited by low water solubility), there were no observable effects in both short- and long-term studies with fish, daphnids, or algae.
Based on this ecotoxicity data it can be concluded that the criteria for T are not met.
As an alternative approach to the aquatic ‘T’, the possible back-calculation from a sediment NOEC value to an aquatic NOEC value using the equilibrium partitioning (EqP) calculation is set out in REACH Guidance R.11 (PBT/vPvB Assessment).The equilibrium partitioning theory is intended to be used to calculate an initial PNECsediment/soilfrom a pelagic PNECwaterwhen no sediment/soil studies are available. The R11 guidance allows for the use of equilibrium partitioning (EqP) theory to back-calculate a NOEC value of a sediment test to a pelagic NOEC value which can then be compared with theAnnex XIII aquaticT criterion. The method converts the sediment NOEC to a dissolved water concentration (or aquatic NOEC).
The ‘T’ criteria defined in REACH Regulation Annex XIII and the REACH PBT guidance (R11) do not cover sediment or soil. The registrant considers that this gap in regulatory guidance should not be filled using the equilibrium partitioning calculation, which is not validated in this respect. The REACH Guidance R.11 suggests that this method should only be considered if it is technically not feasible to perform a test via the water phase (e.g. for substances with Log Kow> 6, where the substance partitions out of solution). However, direct studies on pelagic organisms are available for L3 and these should be given more weight.
In addition, use of EqP theory to back-calculate a NOEC value of a sediment test to a pelagic NOEC value is based by implication on the assumption that the sediment toxicity is mediated through the pore water. However, the benthic studies include exposure via direct contact and ingestion of solid phase as well as via pore water. Use of EqP methods necessitates that the method is shown to be valid for the particular substance. The absence of pelagic effects for L3 means that use of EqP for any purpose has not been validated.
Selck and Forbes (2018) have set out a robust rationale explaining why the assessment of risks to the benthic compartment should be based on data for that compartment, and not the pelagic compartment. The corollary is clear, that risks to the pelagic compartment should not be based on data from the benthic compartment.
Therefore, the registrant considers the use of EqP theory to back-calculate a NOEC value of a sediment test to a pelagic NOEC value to not be valid.
Reference
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.