Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 810-817-1 | CAS number: 1473386-29-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in mammalian cells
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- 11-03-2008 - 12-06-2008
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Guideline study OECD 476, GLP. Study according to relevant guideline.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 008
- Report date:
- 2008
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
- Version / remarks:
- adopted July 21, 1997
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- mammalian cell gene mutation assay
Test material
- Reference substance name:
- 2-Propenoic acid, 2-methyl-, isodecyl ester
- IUPAC Name:
- 2-Propenoic acid, 2-methyl-, isodecyl ester
- Reference substance name:
- Isodecyl methacrylate
- EC Number:
- 249-978-2
- EC Name:
- Isodecyl methacrylate
- Cas Number:
- 29964-84-9
- IUPAC Name:
- 8-methylnonyl methacrylate
- Details on test material:
- - Name of test material (as cited in study report): Isodecyl methacrylate
- Supplier: Evonik Röhm GmBH, Darmstadt, Germany
- Substance type: organic
- Physical state at room temperature: liquid
- Expiration date of the lot/batch: Aug 26, 2008
- Stability under test conditions: Stability in water: Several days at room temperature, refrigerated and in the freezer
- Storage condition of test material: At room temperature
Constituent 1
Constituent 2
Method
Species / strain
- Species / strain / cell type:
- Chinese hamster lung fibroblasts (V79)
- Metabolic activation:
- with and without
- Metabolic activation system:
- Mammalian liver microsomal fraction S9 mix
- Test concentrations with justification for top dose:
- Experiment I:
without S9 mix: 0.1; 0.3; 0.5; 1.0; and 2.0 µg/ml
with S9 mix: 37.5; 75; 150; 300; and 1200 µg/ml
Experiment II:
without S9 mix: 18.8 ;37.5; 75.0; 150; and 600 µg/ml
with S9 mix: 37.5; 75.0; 150; 300; and 600 µg/ml - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: Tetrahydrofuran (THF)
- Justification for choice of solvent/vehicle: relative non-toxicity towards the cells and solubility properties of the test item
Controlsopen allclose all
- Negative solvent / vehicle controls:
- yes
- Remarks:
- concurrent solvent controls (THF)
- Positive controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- ethylmethanesulphonate
- Remarks:
- Purity > 98 % ; Supplier :ACROS Organics, Geel, Belgium
Migrated to IUCLID6: without metabolic activation
- Positive controls:
- yes
- Positive control substance:
- 7,12-dimethylbenzanthracene
- Remarks:
- Purity 99.5 %; Supplier: Merck, Darmstadt, Germany
Migrated to IUCLID6: with metabolic activation
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in suspension
DURATION
- Exposure duration: Experiment I: 4 hours with and without metabolic activation
Experiment II: 4 hours with and 24 hours without metabolic activation. The experimental parts of the second experiment with
and without metabolic activation were performed in two separate experiments (experiment II and IIA) for technical reasons. The
results are combined and reported as experiment II.
NUMBER OF CELLS EVALUATED: The stained colonies with more than 50 cells were counted. In doubt the colony size was checked with a preparation
microscope (Nikon, 40407 Düsseldorf, Germany). - Evaluation criteria:
- Acceptability of the Assay
The gene mutation assay is considered acceptable if it meets the following criteria:
- the numbers of mutant colonies per 10exp+6 cells found in the negative and/or solvent controls fall within the laboratory historical control data
range of 2001 – 2006.
- the positive control substances must produce a significant increase in mutant colony frequencies (Historical data).
- the cloning efficiency II (absolute value) of the negative and/or solvent controls must exceed 50 %.
Evaluation of Results
A test item is regarded as positive if it induces either a concentration-related increase of the mutant frequency or a reproducible and positive
response at one of the test points.
A test item producing neither a concentration- related increase of the mutant frequency nor a reproducible positive response at any of the test
points is considered non-mutagenic in this system.
A positive response is described as follows:
A test item is regarded as mutagenic if it reproducibly induces a mutation frequency that is three times above the spontaneous mutation frequency
at least at one of the concentrations in the experiment.
The test item is regarded as mutagenic if there is a reproducible concentration-related increase of the mutation frequency. Such evaluation may be
considered also in the case that a threefold increase of the mutant frequency is not observed.
However, in a case by case evaluation this decision depends on the level of the corresponding solvent control data. If there is by chance a low
spontaneous mutation rate in the range normally found ( mutants per 10exp+6 cells) a concentration-related increase of the mutations
within this range has to be discussed. The variability of the mutation rates of solvent controls within all experiments of this study was also taken into consideration. - Statistics:
- Statistical Analysis
A linear regression (least squares) was performed to assess a possible dose dependent increase of mutant frequencies using SYSTAT®11 (SYSTAT
Software, Inc., 501, Canal Boulevard, Suite C, Richmond, CA 94804, USA) statistics software. The number of mutant colonies obtained for the
groups treated with the test item were compared to the solvent control groups. A trend is judged as significant whenever the p-value (probability
value) is below 0.05. However, both, biological and statistical significance were considered together.
Results and discussion
Test results
- Species / strain:
- Chinese hamster lung fibroblasts (V79)
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Remarks:
- in forward gene mutations in mammalian cells
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- at 1200 µg/mL with S9 mix; at 1.0 µg/mL and above in Experiment I and 37.5 µg/mL in Experiment II without S9 mix
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Remarks on result:
- other: strain/cell type: V79
- Remarks:
- Migrated from field 'Test system'.
Any other information on results incl. tables
Results and Discussion
Isodecyl methacrylate was assessed for its potential to induce gene mutations at the HPRT locus using V79 cells of the Chinese hamster.
The assay was performed in two independent experiments with identical experimental procedures, using two parallel cultures each. The first main experiment was performed with and without liver microsomal activation and a treatment period of 4 h. The second experiment was performed with a treatment period of 24 hours in the absence of metabolic activation and 4 hours in the presence of metabolic activation.
The cell cultures were evaluated at the following concentrations:
Experiment I:
without S9 mix: 0.1; 0.3; 0.5; 1.0; and 2.0 µg/ml
with S9 mix: 37.5; 75; 150; 300; and 1200 µg/ml
Experiment II:
without S9 mix: 18.8 ;37.5; 75.0; 150; and 600 µg/ml
with S9 mix: 37.5; 75.0; 150; 300; and 600 µg/ml
Phase separation of the test item was observed at 300 µg/mL and above in the first experiment with metabolic activation and at 150 µg/mL and above in the second experiment without metabolic activation. In the second experiment with metabolic activation phase separation was noted at 300 µg/mL and above.
Relevant toxic effects indicated by a relative cloning efficiency 1 below 50 % occurred at 1.0 µg/mL and above in the first experiment without metabolic activation and at 1200.0 µg/mL and above with metabolic activation. In the second experiment toxic effects as described above occurred at 37.5 µg/mL without metabolic activation and at 1200 µg/mL with metabolic activation. The striking difference of toxic concentrations with and without metabolic activation is probably based on protein or lipid binding effects. In the presence of metabolic activation the protein and lipid concentration is higher due to the S9-mix added.This fact is furthermore supported by the considerably less severe cytotoxicity following 24 h treatment without metabolic activation. During long term exposure 10 % FCS have to be added increasing the protein and lipid concentration of the medium.
No relevant and reproducible increase in mutant colony numbers/106cells was observed in the main experiments up to the maximum concentration.
The induction factor reached or exceeded the threshold of three times the corresponding solvent control in experiment I at 37.5 µg/mL in the first culture with metabolic activation and at the same concentration in the first culture in experiment II without metabolic activation. However, both effects were judged as biologically irrelevant fluctuations since no increase was observed at higher concentrations or in the parallel cultures under identical conditions. Furthermore, the effects were not dose-dependent as indicated by the lacking statistical significance.
In both experiments of this study (with and without S9 mix) the range of the solvent controls was from 5.7 up to 24.0 mutants per 106cells; the range of the groups treated with the test item was from 3.3 up to 34.1 mutants per 106cells.
EMS(150 µg/mL in experiment I and 75 µg/mL in experiment II) and DMBA (2.0 µg/mL) were used as positive controls and showed a distinct increase in induced mutant colonies. This showed the sensitivity of the test system and the activity of the S9 mix.
Conclusion
In conclusion it can be stated that under the experimental conditions reported the test item did not induce gene mutations at the HPRT locus in V79 cells.
Therefore, Isodecyl methacrylate is considered to be non-mutagenic in this HPRT assay.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
negative
In conclusion it can be stated that under the experimental conditions reported the test item did not induce gene mutations at the HPRT locus in V79 cells.
Therefore, Isodecyl methacrylate is considered to be non-mutagenic in this HPRT assay. - Executive summary:
Isodecyl methacrylate was assessed for its potential to induce gene mutations at the HPRT locus using V79 cells of the Chinese hamster.
The assay was performed in two independent experiments with identical experimental procedures, using two parallel cultures each. The first main experiment was performed with and without liver microsomal activation and a treatment period of 4 h. The second experiment was performed with a treatment period of 24 hours in the absence of metabolic activation and 4 hours in the presence of metabolic activation.
The cell cultures were evaluated at the following concentrations:
Experiment I:
without S9 mix: 0.1; 0.3; 0.5; 1.0; and 2.0 µg/ml
with S9 mix: 37.5; 75; 150; 300; and 1200 µg/ml
Experiment II:
without S9 mix: 18.8 ;37.5; 75.0; 150; and 600 µg/ml
with S9 mix: 37.5; 75.0; 150; 300; and 600 µg/ml
Phase separation of the test item was observed at 300 µg/mL and above in the first experiment with metabolic activation and at 150 µg/mL and above in the second experiment without metabolic activation. In the second experiment with metabolic activation phase separation was noted at 300 µg/mL and above.
Relevant toxic effects indicated by a relative cloning efficiency 1 below 50 % occurred at 1.0 µg/mL and above in the first experiment without metabolic activation and at 1200.0 µg/mL and above with metabolic activation. In the second experiment toxic effects as described above occurred at 37.5 µg/mL without metabolic activation and at 1200 µg/mL with metabolic activation. The striking difference of toxic concentrations with and without metabolic activation is probably based on protein or lipid binding effects. In the presence of metabolic activation the protein and lipid concentration is higher due to the S9-mix added.This fact is furthermore supported by the considerably less severe cytotoxicity following 24 h treatment without metabolic activation. During long term exposure 10 % FCS have to be added increasing the protein and lipid concentration of the medium.
No relevant and reproducible increase in mutant colony numbers/106cells was observed in the main experiments up to the maximum concentration.
The induction factor reached or exceeded the threshold of three times the corresponding solvent control in experiment I at 37.5 µg/mL in the first culture with metabolic activation and at the same concentration in the first culture in experiment II without metabolic activation. However, both effects were judged as biologically irrelevant fluctuations since no increase was observed at higher concentrations or in the parallel cultures under identical conditions. Furthermore, the effects were not dose-dependent as indicated by the lacking statistical significance.
In both experiments of this study (with and without S9 mix) the range of the solvent controls was from 5.7 up to 24.0 mutants per 106cells; the range of the groups treated with the test item was from 3.3 up to 34.1 mutants per 106cells.
EMS(150 µg/mL in experiment I and 75 µg/mL in experiment II) and DMBA (2.0 µg/mL) were used as positive controls and showed a distinct increase in induced mutant colonies. This showed the sensitivity of the test system and the activity of the S9 mix.
Conclusion
In conclusion it can be stated that under the experimental conditions reported the test item did not induce gene mutations at the HPRT locus in V79 cells.
Therefore, Isodecyl methacrylate is considered to be non-mutagenic in this HPRT assay.
NOTE: Any of data in this dataset are disseminated by the European Union on a right-to-know basis and this is not a publication in the same sense as a book or an article in a journal. The right of ownership in any part of this information is reserved by the data owner(s). The use of this information for any other, e.g. commercial purpose is strictly reserved to the data owners and those persons or legal entities having paid the respective access fee for the intended purpose.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.