Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 942-705-4 | CAS number: 2151868-08-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Biodegradation in water: screening tests
Administrative data
Link to relevant study record(s)
Description of key information
No experimental biodegradation test has been performed. Read-across is done to a similar structure (CAS 1073607-50-7). This substance is considered as non biodegradable. Moreover QSARs such as VEGA and Biowin consider both substance as non biodegradable. As a result this substance is considered as non biodegradable.
Key value for chemical safety assessment
- Biodegradation in water:
- under test conditions no biodegradation observed
Additional information
Read-across justification
Biodegradation data on v516690 (IUPAC name 4-[2-[(E)-2-[(3E)-2-chloro-3-[(2E)-2-[1,1-dimethyl-3-(4-sulfobutyl)benzo[e]indol-2-ylidene]ethylidene]inden-1-yl]vinyl]-1,1-dimethyl-benzo[e]indol-3-ium-3-yl]butane-1-sulfonate) is a data requirement for REACH dossiers 1-10 tonnes/year. Since information on this endpoint is lacking for this substance, read-across to the structurally similar substance infrazam (EC number: 700-626-0; CAS number: 1073607-50-7) is suggested. RAAF scenario 2 is applicable since the hypothesis is based on a different compound having the same type of effect.
The target substance has an additional aromatic group in comparison to infrazam.
Based on the OECD QSAR toolbox profiling application, both substances have a similar profile: both are not considered estrogen receptor binders, are not expected to bind to proteins (OASIS v1.1 and OECD) and fall within the same Cramer class (Class III) (possible significant toxicity).
Regarding in vitro mutagenicity (Ames alerts by ISS) no alert was found for both substances.
However, both substances have a H-acceptor-path3-H-acceptor alert (in vivo mutagenicity alerts by ISS). This alert explores the possibility that a chemical could potentially interact with DNA and/or proteins via non-covalent binding (Snyder et al. 2006[1]).
The only difference between the source and target substance in OECD QSAR toolbox is a structural alert for genotoxic carcinogenicity, only for v516690 based on alkenylbenzene presence. However the alkenyl-group should be available to react which is not the case, since the alkenyl group is part of a ring. This difference can therefore be refuted and is not considered relevant.
Biotransformation of both substances can be expected. OECD QSAR toolbox did not find any observed metabolites, but renders only simulated metabolites. The mechanism of biotransformation is expected to be very similar and not trigger any additional toxicity.
The outcome of Biowin 4.10 show that both substances are not biodegradable and consequently show that both substances behave similarly.
Moreover the water solubility and Log Kow are very similar. Both substances have a water solubility around 1-10 g/L. The Log Kow is 1.9 for the target substance v516690 and 1.2 for infrazam.
A readily biodegradability test is available for infrazam. Since the read-across substance is structurally very similar and no additional alerts have been found in OECD QSAR toolbox, it can be concluded that v516690 has a similar biodegradation.
[1]Snyder, R. D., Ewing, D. and Hendry, L. B. 2006. DNA intercalative potential of marketed drugs testing positive inin vitrocytogenetics assays.Mutat. Res.609, 47-59.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.