Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 278-014-3 | CAS number: 74878-48-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- April from 02 to 18, 2007
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 007
- Report date:
- 2007
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Fluorescent Brightener 363
- IUPAC Name:
- Fluorescent Brightener 363
Constituent 1
Method
- Target gene:
- histidine auxotrophs and tryptophan auxotrophs
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
- Metabolic activation:
- with and without
- Metabolic activation system:
- rat liver S9
- Test concentrations with justification for top dose:
- Pre-Experiment/Experiment I: 3; 10; 33; 100; 333; 1000; 2500; and 5000 µg/plate
Experiment II: 33; 100; 333; 1000; 2500; and 5000 µg/plate
Since no relevant toxic effects were observed with 5000 µg/plate in the pre-experiment/experiment I, it was chosen as maximal concentration.
Controls
- Untreated negative controls:
- yes
- Remarks:
- untreated
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO treated
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- sodium azide
- methylmethanesulfonate
- other: 4-nitro-o-phenylene-diamine (4-NOPD) for strains TA 1537, TA98 without S9; 2-aminoanthracene (2-AA) as positive control for all the used strains with S9
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in agar (plate incorporation) for experiment I; preincubation for experiment II
Pre-Experiment for Toxicity
To evaluate the toxicity of the test item a pre-experiment was performed with strains TA 1535, TA 1537, TA 98, TA 100, and WP2 uvrA. Eight concentrations were tested for toxicity and mutation induction with three plates each. The experimental conditions in this pre-experiment were the same as for the experiment I (plate incorporation test).
Toxicity of the test item results in a reduction in the number of spontaneous revertants or a clearing of the bacterial background lawn.
The pre-experiment is reported as main experiment I, if the following criteria are met: Evaluable plates (>0 colonies) at five concentrations or more in all strains used.
Dose Selection
In the pre-experiment the concentration range of the test item was 3 - 5000 µg/plate. The pre-experiment is reported as experiment I. Since no relevant toxic effects were observed 5000 µg/plate were chosen as maximal concentration. The concentration range included two logarithmic decades. The following concentrations of the active ingredient were tested in experiment II: 33; 100; 333; 1000; 2500; and 5000 µg/plate.
Experimental Performance
For each strain and dose level including the controls, three plates were used.
The following materials were mixed in a test tube and poured onto the selective agar plates:
100 µl Test solution at each dose level, solvent (negative control) or reference mutagen solution (positive control),
500 µl S9 mix (for test with metabolic activation) or S9 mix substitution buffer (for test without metabolic activation),
100 µl Bacteria suspension (cf. test system, pre-culture of the strains),
2000 µl Overlay agar
In the pre-incubation assay 100 µl test solution, 500 µl S9 mix/ S9 mix substitution buffer and 100 µL bacterial suspension were mixed in a test tube and shaken at 37 °C for 60 minutes. After pre-incubation 2.0 ml overlay agar (45 °C) was added to each tube. The mixture was poured on selective agar plates. After solidification the plates were incubated upside down for at least 48 hours at 37 °C in the dark.
Acceptability of the Assay
The Salmonella typhimurium and Escherichia coli reverse mutation assay is considered acceptable if it meets the following criteria:
- regular background growth in the negative and solvent control
- the spontaneous reversion rates in the negative and solvent control are in the range of historical data
- the positive control substances should produce a significant increase in mutant colony frequencies - Evaluation criteria:
- A test item is considered as a mutagen if a biologically relevant increase in the number of revertants exceeding the threshold of twice (strains TA 98, TA 100, and WP2 uvrA) or thrice (strains TA 1535 and TA 1537) the colony count of the corresponding solvent control is observed.- A dose dependent increase is considered biologically relevant if the threshold is exceeded at more than one concentration.- An increase exceeding the threshold at only one concentration is judged as biologically relevant if reproduced in an independent second experiment.- A dose dependent increase in the number of revertant colonies below the threshold is regarded as an indication of a mutagenic potential if reproduced in an independent second experiment. However, whenever the colony counts remain within the historical range of negative and solvent controls such an increase is not considered biologically relevant.
- Statistics:
- According to the OECD guideline 471, a statistical analysis of the data is not mandatory.
Results and discussion
Test resultsopen allclose all
- Species / strain:
- S. typhimurium, other: S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- The plates incubated with the test item showed normal background growth up to 5000 µg/plate. Only in experiment II in the absence of metabolic activation, reduced background growth was observed at 5000 µg/plate in strains used.
No toxic effects, evident as a reduction in the number of revertants, occurred in the test groups with and without metabolic activation. Minor reductions in the number of revertants was observed in the absence of metabolic activation in strain TA 1537 at 3 µg/plate in experiment I and in strain TA 100 at 5000 µg/plate in experiment II.
No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with test item at any dose level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.
Appropriate reference mutagens were used as positive controls. They showed a distinct increase of induced revertant colonies.
Applicant's summary and conclusion
- Conclusions:
- The test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.
- Executive summary:
The test item was assessed for its potential to induce gene mutations in the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using Salmonella typhimurium strains TA 1535, TA 1537, TA98, and TA 100, and the Escherichia coli strain WP2 uvrA. The assay was performed in two independent experiments both with and without liver microsomal activation. Each concentration and the controls were tested in triplicate. In the Pre-Experiment/Experiment I, the test item was tested at the concentrations of 3, 10, 33, 100, 333, 1000, 2500, and 5000 µg/plate, while in the experiment II it was tested at 33, 100, 333, 1000, 2500, and 5000 µg/plate. The plates incubated with the test item showed normal background growth up to 5000 µg/plate. Only in experiment II in the absence of metabolic activation, reduced background growth was observed at 5000 µg/plate in strains used. No toxic effects, evident as a reduction in the number of revertants, occurred in the test groups with and without metabolic activation. Minor reductions in the number of revertants was observed in the absence of metabolic activation in strain TA 1537 at 3 µg/plate in experiment I and in strain TA 100 at 5000 µg/plate in experiment II. No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with test item at any dose level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.
Conclusion
During the described mutagenicity test and under the experimental conditions reported, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.