Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 600-813-6 | CAS number: 1072-68-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Additional information
Adsorption / Desorption:
In accordance with column 2 of REACH Annex VIII, the study does not need to be conducted if based on the physicochemical properties the substance can be expected to have a low potential for adsorption (e.g. the substance has a low octanol water partition coefficient), or the substance and its relevant degradation products decompose rapidly.1,4-Dimethyl-1H-pyrazole(CAS 1072 -68 -0) has a log Kow of 0.95(@25°C, pH 6.1, Kurume, Report No. 80546, 1994), howeverthe substance is not readily biodegradable (see IUCLID-Chapter 5.2.1).
Estimates for 1,4 -Dimethyl-1H-pyrazole by the MCI method and the log-Kow method of KOCWIN v2.00 (EPISuite v4.11; BASF SE 2016) calculated
log Koc values of 1.72 (MCI) and 1.85 (log Kow). Due to the results an adsorption to solid phase is not expected. Furthermore, regarding the experimental estimated log Kow, high water solubility and poor biodegradation the product might trickles away and can be transported to deeper soil areas with larger water loads.
Henry’s Law Constant (HLC):
The Henry’s Law Constant was calculated by using the bond estimation method of HENRYWIN v3.20 (EPISuite v 4.11) to be 8.81 Pa*m³/mol. The estimation refers to the uncharged molecule. The substance is within the applicability domain of the model.
Based on the calculated data the substance is expected to slowly evaporate into the atmosphere from the water surface
Distribution Modelling:
Based on the results of the Mackay LEVEL I v3.00 calculation, over time, the substance will preferentially distribute into the compartment water (97.8%); the data refer to the uncharged molecule (pKa value: 2.77).
At environmentally relevant conditions, the substance is predominantly present in its uncharged form (pH 4: 91.5%; pH 7 & pH 9: 100% uncharged).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
