Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 944-170-2 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 014
- Report date:
- 2014
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Version / remarks:
- dated May 30, 2008
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- adopted July 21, 1997
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- 2-[(3-decanamidopropyl)dimethylazaniumyl]acetate 2-[dimethyl(3-octanamidopropyl)azaniumyl]acetate
- EC Number:
- 944-170-2
- Molecular formula:
- not applicable, UVCB substance
- IUPAC Name:
- 2-[(3-decanamidopropyl)dimethylazaniumyl]acetate 2-[dimethyl(3-octanamidopropyl)azaniumyl]acetate
- Test material form:
- solid - liquid: aqueous solution
Constituent 1
Method
- Target gene:
- his-operon (Salmonella strains); trp (E.coli strain)
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
- Additional strain / cell type characteristics:
- other: uvrB- (Salmonella); uvrA- (E. coli)
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9 mix
- Test concentrations with justification for top dose:
- Pre-Experiment/Experiment I: 3, 10, 33, 100, 333, 1000, 2500 and 5000 μg/plate
Experiment II: 33, 100, 333, 1000, 2500 and 5000 μg/plate
(all concentrations adjusted to purity) - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: deionized water
- Justification for choice of solvent/vehicle: due to solubility properties and relative nontoxicity to the bacteria
Controlsopen allclose all
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- sodium azide
- methylmethanesulfonate
- other: 4-nitro-o-phenylene-diamine; without metabolic activation
- Positive controls:
- yes
- Positive control substance:
- other: 2-aminoanthracene; with metabolic activation
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: Experiment I: in agar (plate incorporation); Experiment II: preincubation
DURATION
- Preincubation period: 60 minutes. at 37°C (only Experiment II)
- Exposure duration: least 48 hours at 37 °C in the dark
NUMBER OF REPLICATIONS: triplicates
DETERMINATION OF CYTOTOXICITY
- Method: background growth; reduction in the number of revertants below the indication factor of 0.5 - Evaluation criteria:
- A test item is considered as a mutagen if a biologically relevant increase in the number of revertants exceeding the threshold of twice (strains TA 98, TA 100, and WP2 uvrA) or thrice (strains TA 1535 and TA 1537) the colony count of the corresponding solvent control is observed.
A dose dependent increase is considered biologically relevant if the threshold is exceeded at more than one concentration.
An increase exceeding the threshold at only one concentration is judged as biologically relevant if reproduced in an independent second experiment.
A dose dependent increase in the number of revertant colonies below the threshold is regarded as an indication of a mutagenic potential if reproduced in an independent second experiment. However, whenever the colony counts remain within the historical range of negative and solvent controls such an increase is not considered biologically relevant. - Statistics:
- According to the OECD guideline 471, a statistical analysis of the data is not mandatory.
Results and discussion
Test results
- Key result
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Remarks:
- only in strain TA 100 toxic effects were observed at 5000 μg/plate without S9 mix in experiment I and with and without S9 mix in experiment II
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Precipitation: no
COMPARISON WITH HISTORICAL CONTROL DATA:
In experiment I without S9 mix, the data in the solvent control of strain TA 100 were slightly above our historical control range. Since this deviation is rather small, this effect is considered to be based upon biologically irrelevant fluctuations in the number of colonies.
Applicant's summary and conclusion
- Conclusions:
- C8-10 Alkylamidopropyl betaine was evaluated in the bacterial reverse mutation assay (Ames test) using Salmonella typhimurium tester strains TA98, TA100, TA1535, and TA1537 and Escherichia coli tester strain WP2 uvrA in the presence and absence of rat liver S9 mix. Under the conditions of the study, the test substance was negative for mutagenic potential.
- Executive summary:
In a reverse gene mutation assay in bacteria according to OECD guideline 471 (adopted 21 July 1997) and EU method B.13/14 (30 May 2008), strains TA98, TA100, TA1535, and TA1537 of Salmonella typhimurium and Escherichia coli WP2 uvrA were exposed to C8-10 Alkylamidopropyl betaine (36% a.i. in aqueous solution) in deionized water at concentrations of 0 (control), 3, 10, 33, 100, 333, 1000, 2500 and 5000 μg/plate in the first experiment (plate incorporation assay) and 0 (control), 33, 100, 333, 1000, 2500 and 5000 μg/plate in the second experiment (preincubation assay) in the presence and absence of mammalian metabolic activation (rat liver S9 mix).. All concentrations were adjusted to purity.
The plates incubated with the test item showed normal background growth up to 5000 μg/plate with and without S9 mix in all strains used.
Toxic effects, evident as a reduction in the number of revertants (below the indication factor of 0.5), were absent in nearly all strains, only in strain TA 100 toxic effects were observed at 5000μg/plate without S9 mix in experiment I and with and without S9 mix in experiment II.
No substantial increase in revertant colony numbers of any of the five tester strains was observed following treatment with the test item at any concentration level, neither in the presence nor absence of metabolic activation (S9 mix). There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.
In experiment I without S9 mix, the data in the solvent control of strain TA 100 were slightly above the historical control range. Since this deviation is rather small, this effect is considered to be based upon biologically irrelevant fluctuations in the number of colonies.
Appropriate reference mutagens were used as positive controls. They showed a distinct increase in induced revertant colonies.
In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, C8-10 Alkylamidopropyl betaine did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
