Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 203-939-6 | CAS number: 112-14-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Octyl acetate is not likely to be a gene mutant in vitro
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
- Justification for type of information:
- QSAR prediction: migrated from IUCLID 5.6
- Qualifier:
- according to guideline
- Guideline:
- other: Prediction is done using QSAR Toolbox version 3.4
- Principles of method if other than guideline:
- Prediction is done using QSAR Toolbox version 3.4
- GLP compliance:
- no
- Type of assay:
- bacterial reverse mutation assay
- Specific details on test material used for the study:
- - Name of test material: Octyl acetate
- Molecular formula: C10H20O2
- Molecular weight: 172.266 g/mol
- Substance type: Organic
- Physical state: Liquid
- Impurities (identity and concentrations): No data - Target gene:
- Histidine
- Species / strain / cell type:
- S. typhimurium TA 100
- Details on mammalian cell type (if applicable):
- not specified
- Additional strain / cell type characteristics:
- not specified
- Cytokinesis block (if used):
- not specified
- Metabolic activation:
- with
- Metabolic activation system:
- S9 metabolic activation system
- Test concentrations with justification for top dose:
- No data
- Vehicle / solvent:
- No data
- Untreated negative controls:
- not specified
- Negative solvent / vehicle controls:
- not specified
- True negative controls:
- not specified
- Positive controls:
- not specified
- Positive control substance:
- not specified
- Remarks:
- not specified
- Details on test system and experimental conditions:
- No data
- Rationale for test conditions:
- No data
- Evaluation criteria:
- The plates were noted for a dose dependent increase in the number if revertants
- Statistics:
- No data
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- not specified
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- not specified
- Additional information on results:
- not specified
- Conclusions:
- Octyl acetate failed to induce mutation in Salmonella typhimurium strain TA100 in the presence of S9 metabolic activation system and hence is predicted to not classify as a gene mutant in vitro.
- Executive summary:
Gene mutation was predicted for Octyl acetate using SSS QSAR prediction database (2016). The study assumed the use of Salmonella typhimurium strain TA100 with S9 metabolic activation system. Octyl acetate failed to induce mutation in Salmonella typhimurium strain TA100 in the presence of S9 metabolic activation system and hence is predicted to not likely classify as a gene mutant in vitro.
Reference
The
prediction was based on dataset comprised from the following
descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 5 nearest neighbours
Domain logical expression:Result: In Domain
(((((((("a"
or "b" or "c" or "d" or "e") and("f"
and(not
"g")) ) and("h"
and(not
"i")) ) and("j"
and(not
"k")) ) and("l"
and(not
"m")) ) and
"n") and("o"
and(not
"p")) ) and("q"
and "r") )
Domain
logical expression index: "a"
Referential
boundary:The
target chemical should be classified as Esters (Acute toxicity) by
US-EPA New Chemical Categories
Domain
logical expression index: "b"
Referential
boundary:The
target chemical should be classified as Acetoxy AND Carboxylic acid
ester by Organic Functional groups
Domain
logical expression index: "c"
Referential
boundary:The
target chemical should be classified as Carboxylic acid ester by Organic
Functional groups (nested)
Domain
logical expression index: "d"
Referential
boundary:The
target chemical should be classified as Aliphatic Carbon [CH] AND
Aliphatic Carbon [-CH2-] AND Aliphatic Carbon [-CH3] AND Carbonyl,
aliphatic attach [-C(=O)-] AND Ester, aliphatic attach [-C(=O)O] AND
Miscellaneous sulfide (=S) or oxide (=O) AND Olefinic carbon [=CH- or
=C<] by Organic functional groups (US EPA)
Domain
logical expression index: "e"
Referential
boundary:The
target chemical should be classified as Carbonic acid derivative AND
Carboxylic acid derivative AND Carboxylic acid ester by Organic
functional groups, Norbert Haider (checkmol)
Domain
logical expression index: "f"
Referential
boundary:The
target chemical should be classified as AN2 AND AN2 >> Shiff base
formation after aldehyde release AND AN2 >> Shiff base formation after
aldehyde release >> Specific Acetate Esters AND SN1 AND SN1 >>
Nucleophilic attack after carbenium ion formation AND SN1 >>
Nucleophilic attack after carbenium ion formation >> Specific Acetate
Esters AND SN2 AND SN2 >> Acylation AND SN2 >> Acylation >> Specific
Acetate Esters AND SN2 >> Nucleophilic substitution at sp3 Carbon atom
AND SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific
Acetate Esters by DNA binding by OASIS v.1.4
Domain
logical expression index: "g"
Referential
boundary:The
target chemical should be classified as AN2 >> Michael-type addition,
quinoid structures OR AN2 >> Michael-type addition, quinoid structures
>> Flavonoids OR AN2 >> Michael-type addition, quinoid structures >>
Quinone methides OR AN2 >> Michael-type addition, quinoid structures >>
Quinoneimines OR AN2 >> Michael-type addition, quinoid structures >>
Quinones and Trihydroxybenzenes OR AN2 >> Carbamoylation after
isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation
>> N-Hydroxylamines OR AN2 >> Michael-type addition on alpha,
beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on
alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered
Lactones OR AN2 >> Michael-type conjugate addition to activated alkene
derivatives OR AN2 >> Michael-type conjugate addition to activated
alkene derivatives >> Alpha-Beta Conjugated Alkene Derivatives with
Geminal Electron-Withdrawing Groups OR AN2 >> Nucleophilic addition
reaction with cycloisomerization OR AN2 >> Nucleophilic addition
reaction with cycloisomerization >> Hydrazine Derivatives OR AN2 >>
Nucleophilic addition to alpha, beta-unsaturated carbonyl compounds OR
AN2 >> Nucleophilic addition to alpha, beta-unsaturated carbonyl
compounds >> Alpha, Beta-Unsaturated Aldehydes OR AN2 >> Schiff base
formation OR AN2 >> Schiff base formation >> Alpha, Beta-Unsaturated
Aldehydes OR AN2 >> Schiff base formation >> Dicarbonyl compounds OR AN2
>> Schiff base formation >> Polarized Haloalkene Derivatives OR AN2 >>
Schiff base formation by aldehyde formed after metabolic activation OR
AN2 >> Schiff base formation by aldehyde formed after metabolic
activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base
formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >>
Haloalkane Derivatives with Labile Halogen OR AN2 >> Thioacylation via
nucleophilic addition after cysteine-mediated thioketene formation OR
AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated
thioketene formation >> Haloalkenes with Electron-Withdrawing Groups OR
AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated
thioketene formation >> Polarized Haloalkene Derivatives OR No alert
found OR Non-covalent interaction OR Non-covalent interaction >> DNA
intercalation OR Non-covalent interaction >> DNA intercalation >>
Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR
Non-covalent interaction >> DNA intercalation >> Aminoacridine DNA
Intercalators OR Non-covalent interaction >> DNA intercalation >>
Bleomycin and Structurally Related Compounds OR Non-covalent interaction
>> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA
intercalation >> DNA Intercalators with Carboxamide and Aminoalkylamine
Side Chain OR Non-covalent interaction >> DNA intercalation >>
Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA
intercalation >> Fused-Ring Primary Aromatic Amines OR Non-covalent
interaction >> DNA intercalation >> Organic Azides OR Non-covalent
interaction >> DNA intercalation >> Polycyclic Aromatic Hydrocarbon and
Naphthalenediimide Derivatives OR Non-covalent interaction >> DNA
intercalation >> Quinones and Trihydroxybenzenes OR Non-specific OR
Non-specific >> Incorporation into DNA/RNA, due to structural analogy
with nucleoside bases OR Non-specific >> Incorporation into DNA/RNA,
due to structural analogy with nucleoside bases >> Specific Imine
and Thione Derivatives OR Radical OR Radical >> Generation of ROS by
glutathione depletion (indirect) OR Radical >> Generation of ROS by
glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR
Radical >> Radical mechanism by ROS formation OR Radical >> Radical
mechanism by ROS formation (indirect) or direct radical attack on DNA OR
Radical >> Radical mechanism by ROS formation (indirect) or direct
radical attack on DNA >> Organic Peroxy Compounds OR Radical >> Radical
mechanism by ROS formation >> Five-Membered Aromatic Nitroheterocycles
OR Radical >> Radical mechanism by ROS formation >> Organic Azides OR
Radical >> Radical mechanism via ROS formation (indirect) OR Radical >>
Radical mechanism via ROS formation (indirect) >> Acridone,
Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical
mechanism via ROS formation (indirect) >> Anthrones OR Radical >>
Radical mechanism via ROS formation (indirect) >> Bleomycin and
Structurally Related Compounds OR Radical >> Radical mechanism via ROS
formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical
mechanism via ROS formation (indirect) >> Coumarins OR Radical >>
Radical mechanism via ROS formation (indirect) >> Diazenes and
Azoxyalkanes OR Radical >> Radical mechanism via ROS formation
(indirect) >> Flavonoids OR Radical >> Radical mechanism via ROS
formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical
mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic
Amines OR Radical >> Radical mechanism via ROS formation (indirect) >>
Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via
ROS formation (indirect) >> Hydrazine Derivatives OR Radical >> Radical
mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >>
Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR
Radical >> Radical mechanism via ROS formation (indirect) >>
Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS
formation (indirect) >> Nitroarenes with Other Active Groups OR Radical
>> Radical mechanism via ROS formation (indirect) >> Nitrobiphenyls and
Bridged Nitrobiphenyls OR Radical >> Radical mechanism via ROS formation
(indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR
Radical >> Radical mechanism via ROS formation (indirect) >>
p-Aminobiphenyl Analogs OR Radical >> Radical mechanism via ROS
formation (indirect) >> Polynitroarenes OR Radical >> Radical mechanism
via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR
Radical >> Radical mechanism via ROS formation (indirect) >> Quinones
and Trihydroxybenzenes OR Radical >> Radical mechanism via ROS formation
(indirect) >> Single-Ring Substituted Primary Aromatic Amines OR Radical
>> Radical mechanism via ROS formation (indirect) >> Specific Imine and
Thione Derivatives OR Radical >> Radical mechanism via ROS formation
(indirect) >> Thiols OR Radical >> ROS formation after GSH depletion OR
Radical >> ROS formation after GSH depletion (indirect) OR Radical >>
ROS formation after GSH depletion (indirect) >> Quinoneimines OR Radical
>> ROS formation after GSH depletion >> Quinone methides OR SN1 >>
Alkylation after metabolically formed carbenium ion species OR SN1 >>
Alkylation after metabolically formed carbenium ion species >>
Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR
SN1 >> Alkylation by carbenium ion formed OR SN1 >> Alkylation by
carbenium ion formed >> Diazoalkanes OR SN1 >> Carbenium ion formation
OR SN1 >> Carbenium ion formation >> Alpha-Haloethers OR SN1 >> Direct
nucleophilic attack on diazonium cation (DNA alkylation) OR SN1 >>
Direct nucleophilic attack on diazonium cation (DNA alkylation) >>
Diazenes and Azoxyalkanes OR SN1 >> Nucleophilic attack after carbenium
ion formation >> Acyclic Triazenes OR SN1 >> Nucleophilic attack after
carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic
attack after carbenium ion formation >> Pyrrolizidine Derivatives OR SN1
>> Nucleophilic attack after diazonium or carbenium ion formation OR SN1
>> Nucleophilic attack after diazonium or carbenium ion formation >>
Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after
metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after
metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines
OR SN1 >> Nucleophilic attack after nitrene formation OR SN1 >>
Nucleophilic attack after nitrene formation >> Organic Azides OR SN1 >>
Nucleophilic attack after nitrenium ion formation OR SN1 >> Nucleophilic
attack after nitrenium ion formation >> N-Hydroxylamines OR SN1 >>
Nucleophilic attack after nitrenium ion formation >> p-Aminobiphenyl
Analogs OR SN1 >> Nucleophilic attack after nitrenium ion formation >>
Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic
attack after nitrosonium cation formation OR SN1 >> Nucleophilic attack
after nitrosonium cation formation >> N-Nitroso Compounds OR SN1 >>
Nucleophilic attack after reduction and nitrenium ion formation OR SN1
>> Nucleophilic attack after reduction and nitrenium ion formation >>
Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after reduction
and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >>
Nucleophilic attack after reduction and nitrenium ion formation >> Nitro
Azoarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium
ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack
after reduction and nitrenium ion formation >> Nitroarenes with Other
Active Groups OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> Nitrobiphenyls and Bridged Nitrobiphenyls OR
SN1 >> Nucleophilic attack after reduction and nitrenium ion formation
>> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >>
Nucleophilic attack after reduction and nitrenium ion formation >>
Polynitroarenes OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN1 >>
Nucleophilic substitution after carbenium ion formation OR SN1 >>
Nucleophilic substitution after carbenium ion formation >>
Monohaloalkanes OR SN1 >> Nucleophilic substitution on diazonium ion OR
SN1 >> Nucleophilic substitution on diazonium ion >> Specific Imine and
Thione Derivatives OR SN1 >> SN1 reaction at nitrogen-atom bound to a
good leaving group or on nitrenium ion OR SN1 >> SN1 reaction at
nitrogen-atom bound to a good leaving group or on nitrenium ion >>
N-Acyloxy(Alkoxy) Arenamides OR SN2 >> Acylation >> N-Hydroxylamines OR
SN2 >> Acylation involving a leaving group OR SN2 >> Acylation
involving a leaving group >> Haloalkane Derivatives with Labile Halogen
OR SN2 >> Acylation involving a leaving group after metabolic activation
OR SN2 >> Acylation involving a leaving group after metabolic activation
>> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation OR SN2 >>
Alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates
OR SN2 >> Alkylation by epoxide metabolically formed after E2 reaction
OR SN2 >> Alkylation by epoxide metabolically formed after E2 reaction
>> Monohaloalkanes OR SN2 >> Alkylation, direct acting epoxides and
related OR SN2 >> Alkylation, direct acting epoxides and related >>
Epoxides and Aziridines OR SN2 >> Alkylation, direct acting epoxides and
related after cyclization OR SN2 >> Alkylation, direct acting epoxides
and related after cyclization >> Nitrogen and Sulfur Mustards OR SN2 >>
Alkylation, direct acting epoxides and related after P450-mediated
metabolic activation OR SN2 >> Alkylation, direct acting epoxides and
related after P450-mediated metabolic activation >> Haloalkenes with
Electron-Withdrawing Groups OR SN2 >> Alkylation, direct acting epoxides
and related after P450-mediated metabolic activation >> Polarized
Haloalkene Derivatives OR SN2 >> Alkylation, direct acting epoxides and
related after P450-mediated metabolic activation >> Polycyclic Aromatic
Hydrocarbon and Naphthalenediimide Derivatives OR SN2 >> Alkylation,
nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation,
nucleophilic substitution at sp3-carbon atom >> Haloalkane Derivatives
with Labile Halogen OR SN2 >> Alkylation, nucleophilic substitution at
sp3-carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >>
Alkylation, nucleophilic substitution at sp3-carbon atom >>
Monohaloalkanes OR SN2 >> Alkylation, nucleophilic substitution at
sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >> Alkylation, ring
opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >>
Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed
after metabolic activation OR SN2 >> Direct acting epoxides formed after
metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides
formed after metabolic activation >> Quinoline Derivatives OR SN2 >>
Direct acylation involving a leaving group OR SN2 >> Direct acylation
involving a leaving group >> Acyl Halides OR SN2 >> Direct nucleophilic
attack on diazonium cation OR SN2 >> Direct nucleophilic attack on
diazonium cation >> Hydrazine Derivatives OR SN2 >> DNA alkylation OR
SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2
reaction with aziridinium and/or cyclic sulfonium ion formation
(enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or
cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR
SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes
Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 carbon
atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic
substitution at sp3 carbon atom after thiol (glutathione) conjugation >>
Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon
atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives
OR SN2 >> SN2 at sp3 and activated sp2 carbon atom OR SN2 >> SN2 at sp3
and activated sp2 carbon atom >> Polarized Haloalkene Derivatives OR SN2
>> SN2 at sp3-carbon atom OR SN2 >> SN2 at sp3-carbon atom >>
Alpha-Haloethers OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2
OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes
with Other Active Groups OR SN2 >> SN2 reaction at nitrogen-atom bound
to a good leaving group OR SN2 >> SN2 reaction at nitrogen-atom bound to
a good leaving group >> N-Acetoxyamines OR SN2 >> SN2 reaction at
nitrogen-atom bound to a good leaving group or nitrenium ion OR SN2 >>
SN2 reaction at nitrogen-atom bound to a good leaving group or nitrenium
ion >> N-Acyloxy(Alkoxy) Arenamides by DNA binding by OASIS v.1.4
Domain
logical expression index: "h"
Referential
boundary:The
target chemical should be classified as No alert found by DNA binding by
OECD
Domain
logical expression index: "i"
Referential
boundary:The
target chemical should be classified as Michael addition OR Michael
addition >> P450 Mediated Activation of Heterocyclic Ring Systems OR
Michael addition >> P450 Mediated Activation of Heterocyclic Ring
Systems >> Furans OR Michael addition >> P450 Mediated Activation to
Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated
Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael
addition >> P450 Mediated Activation to Quinones and Quinone-type
Chemicals >> Hydroquinones OR Michael addition >> P450 Mediated
Activation to Quinones and Quinone-type Chemicals >>
Methylenedioxyphenyl OR Michael addition >> Polarised Alkenes-Michael
addition OR Michael addition >> Polarised Alkenes-Michael addition >>
Alpha, beta- unsaturated aldehydes OR Michael addition >> Polarised
Alkenes-Michael addition >> Alpha, beta- unsaturated esters OR Michael
addition >> Polarised Alkenes-Michael addition >> Alpha, beta-
unsaturated ketones OR SN1 OR SN1 >> Carbenium Ion Formation OR SN1 >>
Carbenium Ion Formation >> Aliphatic N-Nitro OR SN1 >> Carbenium Ion
Formation >> Allyl benzenes OR SN1 >> Iminium Ion Formation OR SN1 >>
Iminium Ion Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium
Ion formation OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1
>> Nitrenium Ion formation >> Tertiary aromatic amine by DNA binding by
OECD
Domain
logical expression index: "j"
Referential
boundary:The
target chemical should be classified as Non binder, non cyclic structure
by Estrogen Receptor Binding
Domain
logical expression index: "k"
Referential
boundary:The
target chemical should be classified as Non binder, MW>500 OR Non
binder, without OH or NH2 group OR Strong binder, OH group by Estrogen
Receptor Binding
Domain
logical expression index: "l"
Referential
boundary:The
target chemical should be classified as No alert found by Protein
binding by OECD
Domain
logical expression index: "m"
Referential
boundary:The
target chemical should be classified as Acylation OR Acylation >> Direct
Acylation Involving a Leaving group OR Acylation >> Direct Acylation
Involving a Leaving group >> Acetates OR Acylation >> Direct Acylation
Involving a Leaving group >> Anhydrides OR SN2 OR SN2 >> SN2 reaction at
sp3 carbon atom OR SN2 >> SN2 reaction at sp3 carbon atom >> Allyl
acetates and related chemicals by Protein binding by OECD
Domain
logical expression index: "n"
Referential
boundary:The
target chemical should be classified as Bioavailable by Lipinski Rule
Oasis ONLY
Domain
logical expression index: "o"
Referential
boundary:The
target chemical should be classified as Carbonic acid derivative AND
Carboxylic acid derivative AND Carboxylic acid ester by Organic
functional groups, Norbert Haider (checkmol)
Domain
logical expression index: "p"
Referential
boundary:The
target chemical should be classified as 1,2-diol OR Alcohol OR
Dialkylether OR Ether OR Hydroxy compound OR Primary alcohol OR
Secondary alcohol by Organic functional groups, Norbert Haider (checkmol)
Domain
logical expression index: "q"
Parametric
boundary:The
target chemical should have a value of log Kow which is >= 1.74
Domain
logical expression index: "r"
Parametric
boundary:The
target chemical should have a value of log Kow which is <= 4.39
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Additional information
Additional information from genetic toxicity in vitro:
Gene mutation in vitro:
Prediction model based estimation and data from read across chemicals have been reviewed and summarized to determine the mutagenic nature of Octyl acetate:
Gene mutation was predicted for Octyl acetate using SSS QSAR prediction database (2016). The study assumed the use of Salmonella yphimurium strain TA100 with S9 metabolic activation system. Octyl acetate failed to induce mutation in Salmonella typhimurium strain TA100 in the presence of S9 metabolic activation system and hence is predicted to not likely classify as a gene mutant in vitro.
Gene mutation was predicted for Octyl acetate using SSS QSAR prediction database (2016). The study assumed the use of Salmonella yphimurium strain TA1535 without S9 metabolic activation system. Octyl acetate failed to induce mutation in Salmonella typhimurium strain TA1535 in the absence of S9 metabolic activation system and hence is predicted to not likely classify as a gene mutant in vitro.
Gene mutation toxicity study was performed by Zeiger et al (1992) to determine the mutagenic nature of ethyl acetate and butyl acetate. The study was performed using Salmonella typhimurium strainsTA97, TA98, TA100, TA1535, TA1537 in the presence and absence of S9 metabolic activation system. The chemical was dissolved in DMSO and used at dose levels of 0, 100, 333, 1000, 3333 or 10000 µg/plate for ethyl acetate and 0, 33, 100, 333, 1000, 1666, 3333 or 10000 µg/plate for buty; acetate respectively. The chemicals Ethyl acteate and Butyl acetate failed to induce mutation in Salmonella typhimurium strainsTA97, TA98, TA100, TA1535, TA1537 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
Based on the weight of evidence data summarized, Octyl acetate is not likely to classify as a gene mutant in vitro.
Justification for selection of genetic toxicity endpoint
Data is from prediction database
Justification for classification or non-classification
Based on the weight of evidence data summarized, Octyl acetate is not likely to classify as a gene mutant in vitro.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.