Registration Dossier

Diss Factsheets

Toxicological information

Endpoint summary

Currently viewing:

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Solvent Red 49 (EC name: 3',6'-bis(diethylamino)spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-3-one). The study assumed the use of Salmonella typhimurium strain TA100 with S9 metabolic activation system. Solvent Red 49 failed to induce mutation in Salmonella typhimurium strain TA100 with S9 metabolic activation system and hence is predicted to not classify for gene mutation in vitro.

Based on this value it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from K2 prediction database and the supporting QMRF report has been attached
Qualifier:
according to guideline
Guideline:
other: Refer below principle
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.4
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of the test material: Solvent Red 49
- EC name: 3',6'-bis(diethylamino)spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-3-one
- Molecular formula: C28H30N2O3
- Molecular weight: 442.556 g/mol
- Substance type: Organic
- Smiles: C12(c3c(Oc4c1ccc(c4)N(CC)CC)cc(N(CC)CC)cc3)c1c(cccc1)C(O2)=O
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium TA 100
Details on mammalian cell type (if applicable):
Not applicable
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
No data
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation system
Test concentrations with justification for top dose:
No data
Vehicle / solvent:
No data
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Positive control substance:
not specified
Details on test system and experimental conditions:
No data
Rationale for test conditions:
No data
Evaluation criteria:
The plates werw observed for a dose depenednt increase in the number of revertants/plate
Statistics:
No data
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
No data

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 5 nearest neighbours
Domain  logical expression:Result: In Domain

((((("a" or "b" )  and ("c" and ( not "d") )  )  and ("e" and ( not "f") )  )  and "g" )  and ("h" and "i" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as SN1 AND SN1 >> Nitrenium Ion formation AND SN1 >> Nitrenium Ion formation >> Tertiary aromatic amine by DNA binding by OECD

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Direct Acylation Involving a Leaving group AND Acylation >> Direct Acylation Involving a Leaving group >> Acetates by Protein binding by OECD

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.4

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Flavonoids OR AN2 >>  Michael-type addition, quinoid structures >> Quinone methides OR AN2 >>  Michael-type addition, quinoid structures >> Quinoneimines OR AN2 >>  Michael-type addition, quinoid structures >> Quinones and Trihydroxybenzenes OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Michael-type conjugate addition to activated alkene derivatives OR AN2 >> Michael-type conjugate addition to activated alkene derivatives >> Alpha-Beta Conjugated Alkene Derivatives with Geminal Electron-Withdrawing Groups OR AN2 >> Nucleophilic addition reaction with cycloisomerization OR AN2 >> Nucleophilic addition reaction with cycloisomerization >> Hydrazine Derivatives OR AN2 >> Nucleophilic addition to alpha, beta-unsaturated carbonyl compounds OR AN2 >> Nucleophilic addition to alpha, beta-unsaturated carbonyl compounds >> Alpha, Beta-Unsaturated Aldehydes OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation >> Alpha, Beta-Unsaturated Aldehydes OR AN2 >> Schiff base formation >> Dicarbonyl compounds OR AN2 >> Schiff base formation >> Halofuranones OR AN2 >> Schiff base formation >> Specific 5-Substituted Uracil Derivatives OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >> Haloalkane Derivatives with Labile Halogen OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Non-covalent interaction >> DNA intercalation >> Aminoacridine DNA Intercalators OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide and Aminoalkylamine Side Chain OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines OR Non-covalent interaction >> DNA intercalation >> Organic Azides OR Non-covalent interaction >> DNA intercalation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR Non-covalent interaction >> DNA intercalation >> Quinolone Derivatives OR Non-covalent interaction >> DNA intercalation >> Quinones and Trihydroxybenzenes OR Non-covalent interaction >> DNA intercalation >> Specific 5-Substituted Uracil Derivatives OR Non-specific OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    >> Specific Imine and Thione Derivatives OR Radical OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism by ROS formation OR Radical >> Radical mechanism by ROS formation >> Five-Membered Aromatic Nitroheterocycles OR Radical >> Radical mechanism by ROS formation >> Organic Azides OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> C-Nitroso Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Diazenes and Azoxyalkanes OR Radical >> Radical mechanism via ROS formation (indirect) >> Flavonoids OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Hydrazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrobiphenyls and Bridged Nitrobiphenyls OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones and Trihydroxybenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific Imine and Thione Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Thiols OR Radical >> ROS formation after GSH depletion OR Radical >> ROS formation after GSH depletion (indirect) OR Radical >> ROS formation after GSH depletion (indirect) >> Quinoneimines OR Radical >> ROS formation after GSH depletion >> Quinone methides OR SN1 OR SN1 >> Alkylation after metabolically formed carbenium ion species OR SN1 >> Alkylation after metabolically formed carbenium ion species >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN1 >> Alkylation by carbenium ion formed OR SN1 >> Alkylation by carbenium ion formed >> Diazoalkanes OR SN1 >> Direct nucleophilic attack on diazonium cation (DNA alkylation) OR SN1 >> Direct nucleophilic attack on diazonium cation (DNA alkylation) >> Diazenes and Azoxyalkanes OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after carbenium ion formation >> Pyrrolizidine Derivatives OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrene formation OR SN1 >> Nucleophilic attack after nitrene formation >> Organic Azides OR SN1 >> Nucleophilic attack after nitrenium ion formation OR SN1 >> Nucleophilic attack after nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrosonium cation formation OR SN1 >> Nucleophilic attack after nitrosonium cation formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitro Azoarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrobiphenyls and Bridged Nitrobiphenyls OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation >> C-Nitroso Compounds OR SN1 >> Nucleophilic substitution on diazonium ion OR SN1 >> Nucleophilic substitution on diazonium ion >> Specific Imine and Thione Derivatives OR SN1 >> SN1 reaction at nitrogen-atom bound to a good leaving group or on  nitrenium ion OR SN1 >> SN1 reaction at nitrogen-atom bound to a good leaving group or on  nitrenium ion >> N-Aryl-N-Acetoxy(Benzoyloxy) Acetamides OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> N-Hydroxylamines OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group  OR SN2 >> Acylation involving a leaving group  >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation OR SN2 >> Alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >> Alkylation, direct acting epoxides and related after cyclization OR SN2 >> Alkylation, direct acting epoxides and related after cyclization >> Nitrogen and Sulfur Mustards OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Specific 5-Substituted Uracil Derivatives OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Direct nucleophilic attack on diazonium cation OR SN2 >> Direct nucleophilic attack on diazonium cation >> Hydrazine Derivatives OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Halofuranones OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 at sulfur atom OR SN2 >> SN2 at sulfur atom >> Sulfonyl Halides OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group >> N-Acetoxyamines OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group or nitrenium ion OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group or nitrenium ion >> N-Aryl-N-Acetoxy(Benzoyloxy) Acetamides by DNA binding by OASIS v.1.4

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as SN1 AND SN1 >> Nitrenium Ion formation AND SN1 >> Nitrenium Ion formation >> Tertiary aromatic amine by DNA binding by OECD

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Benzylamines-Acylation OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Formamides OR Michael addition OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems >> Furans OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems >> Thiophenes-Michael addition OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> 5-alkoxyindoles OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Hydroquinones OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Methylenedioxyphenyl OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Polycyclic (PAHs) and heterocyclic (HACs) aromatic hydrocarbons-Michael addition OR Michael addition >> Polarised Alkenes-Michael addition OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated amides OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated esters OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated ketones OR No alert found OR Schiff base formers OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  >> Ethanolamines (including morpholine) OR Schiff base formers >> Chemicals Activated by P450 to Mono-aldehydes OR Schiff base formers >> Chemicals Activated by P450 to Mono-aldehydes >> Thiazoles OR Schiff base formers >> Direct Acting Schiff Base Formers OR Schiff base formers >> Direct Acting Schiff Base Formers >> Mono aldehydes OR SN1 >> Carbenium Ion Formation OR SN1 >> Carbenium Ion Formation >> Allyl benzenes OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >> Nitrenium Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >> Primary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion formation >> Primary aromatic amine OR SN1 >> Nitrenium Ion formation >> Secondary aromatic amine OR SN1 >> Nitrenium Ion formation >> Tertiary (unsaturated) heterocyclic amine  OR SN1 >> Nitrenium Ion formation >> Unsaturated heterocyclic azo OR SN2 OR SN2 >> Epoxidation of Aliphatic Alkenes OR SN2 >> Epoxidation of Aliphatic Alkenes >> Halogenated polarised alkenes OR SN2 >> P450 Mediated Epoxidation OR SN2 >> P450 Mediated Epoxidation >> Thiophenes-SN2 OR SN2 >> SN2 at an sp3 Carbon atom OR SN2 >> SN2 at an sp3 Carbon atom >> Aliphatic halides by DNA binding by OECD

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as Not bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "h"

Parametric boundary:The target chemical should have a value of log Kow which is >= 5.05

Domain logical expression index: "i"

Parametric boundary:The target chemical should have a value of log Kow which is <= 9.06

Conclusions:
Solvent Red 49 failed to induce mutation in Salmonella typhimurium strain TA100 with S9 metabolic activation system and hence is predicted to not classify for gene mutation in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Solvent Red 49 (EC name: 3',6'-bis(diethylamino)spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-3-one). The study assumed the use of Salmonella typhimurium strain TA100 with S9 metabolic activation system. Solvent Red 49 failed to induce mutation in Salmonella typhimurium strain TA100 with S9 metabolic activation system and hence is predicted to not classify for gene mutation in vitro.

Based on this value it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Gene mutation in vitro:

Prediction model based estimation and studies from two read across have been reviwed and summarized to determine the mutagenic nature of Solvent Red 49 (EC name: 3',6'-bis(diethylamino)spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-3-one):

Study 1 and Study 2:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Solvent Red 49 (EC name: 3',6'-bis(diethylamino)spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-3-one).

The study assumed the use of Salmonella typhimurium strain TA100 with S9 metabolic activation system and strain TA1535 without S9 metabolic activation system. Solvent Red 49 failed to induce mutation in Salmonella typhimurium strain TA100 with S9 metabolic activation system and strain TA1535 without S9 metabolic activation system and hence does not classify for gene mutation in vitro

Based on this value it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Study 3:

Gene mutation study was performed By Weubbles et al (1985) to evaluate the mutagenic nature of 70 -80% structurally similar Rhodamine B (RA CAS no 81 -88 -9) using Salmonella typhimurium strain TA1538 and TA100. Bacteria were grown overnight in Oxoid nutrient broth, then refrigerated at 4-5OC for a few hours before use. 0.1 ml of bacterial culture was added to 2 ml of 45°C molten top agar containing 0.01 mg histidine HCI and 0.012 mg biotin/ml, followed by the test sample in ≤0.2 ml DMSO. Finally, 0.5 ml of sodium phosphate buffer, pH 7.4 (no activation), or 0.5 ml of Aroclor-induced rat S9 mixture was added, and the mixture was poured on minimal glucose agar plates. Histidine revertant colonies were counted on a Biotran II automated colony counter after 2-day incubation at 37°C. A sample was judged mutagenic if it produced greater than twice the spontaneous background colonies at more than one dose or at the highest dose tested. In the above mentioned study, Rhodamine B failed to induce gene mutation in the Salmonella typhimurium strains TA1538 and TA100 with and without metabolic activation. Hence,Rhodamine B, is not likely to be a gene mutant in vitro.

Study 4:

Another study from read across chemical with 70 -80% structural similarity was also reviewed. D&C yellow No.8 (RA CAS no 518 -47 -9)  was tested for mutagenic potential with the Salmonella/ mammalian -microsome test using the Salmonella typhimurium strains TA100, TA98, TA1535 or TA1537 in the presence and absence of S9 metabolic activation system by Muzall et al (1979). In the plate incorporation assay performed, the 2 ml of liquid top agar was cooled to 45°C and 0.1 ml of a broth culture of microorganism and test substance in volumes of ≤0.4 ml of DMSO was added prior to placing on minimal agar plates. In all tests, the top agar was used with and without the S9 mix. After 48 h incubation at 37°C, the colonies which reverted to the prototroph were counted and compared to counts on the control plate to demonstrate mutagenicity or toxicity. Materials which caused a 2-fold increase of revertants, as compared to the number of spontaneous revertants on the control plates, were denoted as mutagens. Those which reduced the number of revertants were considered inhibitory. D&C yellow No.8  failed to induce an increase in the number of revertants in the Salmonella typhimurium strains TA100, TA98, TA1535 or TA1537 in the presence and absence of S9 metabolic activation system and hence is non-mutagenic in nature.

Based on the weight of evidence data summarized for the target and read across chemicals, Solvent Red 49 (EC name: 3',6'-bis(diethylamino)spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-3-one) is not likely to exhibit genetic toxicity. Thus, the chemical is not classified as a genetic toxicant.

Justification for classification or non-classification

Based on the weight of evidence data summarized, Solvent Red 49 (CAS no 509 -34 -2; EC name: 3',6'-bis(diethylamino)spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-3-one) is not likely to exhibit genetic toxicity. Thus, the chemical is not classified as a genetic toxicant.